1
|
Ohta H, Nozawa T, Nakano T, Morimoto Y, Ishizuka T. Nonlinear age-related differences in probabilistic learning in mice: A 5-armed bandit task study. Neurobiol Aging 2024; 142:8-16. [PMID: 39029360 DOI: 10.1016/j.neurobiolaging.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/21/2024]
Abstract
This study explores the impact of aging on reinforcement learning in mice, focusing on changes in learning rates and behavioral strategies. A 5-armed bandit task (5-ABT) and a computational Q-learning model were used to evaluate the positive and negative learning rates and the inverse temperature across three age groups (3, 12, and 18 months). Results showed a significant decline in the negative learning rate of 18-month-old mice, which was not observed for the positive learning rate. This suggests that older mice maintain the ability to learn from successful experiences while decreasing the ability to learn from negative outcomes. We also observed a significant age-dependent variation in inverse temperature, reflecting a shift in action selection policy. Middle-aged mice (12 months) exhibited higher inverse temperature, indicating a higher reliance on previous rewarding experiences and reduced exploratory behaviors, when compared to both younger and older mice. This study provides new insights into aging research by demonstrating that there are age-related differences in specific components of reinforcement learning, which exhibit a non-linear pattern.
Collapse
Affiliation(s)
- Hiroyuki Ohta
- Department of Pharmacology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.
| | - Takashi Nozawa
- Mejiro University, 4-31-1 Naka-Ochiai, Shinjuku, Tokyo 161-8539, Japan
| | - Takashi Nakano
- Department of Computational Biology, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan; International Center for Brain Science (ICBS), Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan
| | - Yuji Morimoto
- Department of Physiology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Toshiaki Ishizuka
- Department of Pharmacology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|
2
|
Guan Q, Zhang Y, Wang ZK, Liu XH, Zou J, Zhang LL. Skeletal phenotypes and molecular mechanisms in aging mice. Zool Res 2024; 45:724-746. [PMID: 38894518 PMCID: PMC11298674 DOI: 10.24272/j.issn.2095-8137.2023.397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/28/2024] [Indexed: 06/21/2024] Open
Abstract
Aging is an inevitable physiological process, often accompanied by age-related bone loss and subsequent bone-related diseases that pose serious health risks. Research on skeletal diseases caused by aging in humans is challenging due to lengthy study durations, difficulties in sampling, regional variability, and substantial investment. Consequently, mice are preferred for such studies due to their similar motor system structure and function to humans, ease of handling and care, low cost, and short generation time. In this review, we present a comprehensive overview of the characteristics, limitations, applicability, bone phenotypes, and treatment methods in naturally aging mice and prematurely aging mouse models (including SAMP6, POLG mutant, LMNA, SIRT6, ZMPSTE24, TFAM, ERCC1, WERNER, and KL/KL-deficient mice). We also summarize the molecular mechanisms of these aging mouse models, including cellular DNA damage response, senescence-related secretory phenotype, telomere shortening, oxidative stress, bone marrow mesenchymal stem cell (BMSC) abnormalities, and mitochondrial dysfunction. Overall, this review aims to enhance our understanding of the pathogenesis of aging-related bone diseases.
Collapse
Affiliation(s)
- Qiao Guan
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Yuan Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Zhi-Kun Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Xiao-Hua Liu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Ling-Li Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China. E-mail:
| |
Collapse
|
3
|
Appetitive Motivation and Associated Neurobiology Change Differentially across the Life Course of Mouse Offspring Exposed to Peri- and Postnatal High Fat Feeding. Nutrients 2022; 14:nu14235161. [PMID: 36501191 PMCID: PMC9735866 DOI: 10.3390/nu14235161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
Alterations in neural pathways that regulate appetitive motivation may contribute to increased obesity risk in offspring born to mothers fed a high fat (HF) diet. However, current findings on the impact of maternal obesity on motivation in offspring are inconclusive, and there is no information about the long-lasting effects in aged animals. This study examined the longitudinal effect of perinatal and chronic postnatal HF intake on appetitive motivation in young and aged offspring. Female C57Bl/6 were fed either a control (C) or HF diet before mating through to lactation. At weaning, offspring were maintained on the C or HF diet, generating the following four diet groups: C/C, C/HF, HF/C, and HF/HF based on the pre/post weaning diet. At 6 months, motivation was higher in HF/C females, but lower in male and female C/HF and HF/HF mice. By 12 months, this difference was lost, as C-fed animals became less motivated, while motivation increased in HF-fed mice. The mRNA levels of dopamine receptor 1 and 2 increased with age, while cannabinoid receptor 1 and μ-opioid receptor expression remained stable or decreased in mesolimbic and mesocortical dopaminergic pathways. Results from this study suggest that perinatal and chronic postnatal HF feeding produced opposite effects on appetitive motivation in young adult offspring mice, which was also reflected in the shift in motivation over time. These results have significant implications for patterns of hedonic eating across the life course and the relative risk of obesity at different time points.
Collapse
|
4
|
Peng S, Zeng L, Haure-Mirande JV, Wang M, Huffman DM, Haroutunian V, Ehrlich ME, Zhang B, Tu Z. Transcriptomic Changes Highly Similar to Alzheimer's Disease Are Observed in a Subpopulation of Individuals During Normal Brain Aging. Front Aging Neurosci 2021; 13:711524. [PMID: 34924992 PMCID: PMC8675870 DOI: 10.3389/fnagi.2021.711524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is a major risk factor for late-onset Alzheimer’s disease (LOAD). How aging contributes to the development of LOAD remains elusive. In this study, we examined multiple large-scale transcriptomic datasets from both normal aging and LOAD brains to understand the molecular interconnection between aging and LOAD. We found that shared gene expression changes between aging and LOAD are mostly seen in the hippocampal and several cortical regions. In the hippocampus, the expression of phosphoprotein, alternative splicing and cytoskeleton genes are commonly changed in both aging and AD, while synapse, ion transport, and synaptic vesicle genes are commonly down-regulated. Aging-specific changes are associated with acetylation and methylation, while LOAD-specific changes are more related to glycoprotein (both up- and down-regulations), inflammatory response (up-regulation), myelin sheath and lipoprotein (down-regulation). We also found that normal aging brain transcriptomes from relatively young donors (45–70 years old) clustered into several subgroups and some subgroups showed gene expression changes highly similar to those seen in LOAD brains. Using brain transcriptomic datasets from another cohort of older individuals (>70 years), we found that samples from cognitively normal older individuals clustered with the “healthy aging” subgroup while AD samples mainly clustered with the “AD similar” subgroups. This may imply that individuals in the healthy aging subgroup will likely remain cognitively normal when they become older and vice versa. In summary, our results suggest that on the transcriptome level, aging and LOAD have strong interconnections in some brain regions in a subpopulation of cognitively normal aging individuals. This supports the theory that the initiation of LOAD occurs decades earlier than the manifestation of clinical phenotype and it may be essential to closely study the “normal brain aging” to identify the very early molecular events that may lead to LOAD development.
Collapse
Affiliation(s)
- Shouneng Peng
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Lu Zeng
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | | | - Minghui Wang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Derek M Huffman
- Department of Medicine, Albert Einstein College of Medicine, New York City, NY, United States.,Institute for Aging Research, Albert Einstein College of Medicine, New York City, NY, United States.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York City, NY, United States
| | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Mental Illness Research, Education and Clinical Center (MIRECC), James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, United States
| | - Michelle E Ehrlich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Bin Zhang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| | - Zhidong Tu
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, United States.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York City, NY, United States
| |
Collapse
|
5
|
Abstract
The influenza A virus (IAV) infection is usually restricted to the respiratory tract and only rarely enters the central nervous system (CNS) and causes neurological symptoms. However, the roles of host factors involved in IAV infection in the CNS remain largely undetermined. Therefore, we aimed to characterize the host responses to IAV infection in the brain. We isolated a strain of IAV H5N6, which is neurotoxic and highly pathogenic to mice. High-throughput RNA sequencing (RNA-seq) revealed 240 differentially expressed genes in IAV-infected brains. Among the significantly downregulated genes, we focused on the gene encoding progesterone receptor membrane component-1 (PGRMC1) and observed that IAV H5N6 infection clearly inhibited PGRMC1 in both neuroblastoma and glioma cells. Furthermore, treatment with AG205, a PGRMC1-specific inhibitor, or PGRMC1 knockout promoted H5N6 multiplication in vitro, while overexpression of PGRMC1 resulted in opposite effects. Furthermore, AG205 treatment or PGRMC1 knockout significantly inhibited the retinoic acid-inducible gene I (RIG-I)-mediated interferon beta (IFN-β) signaling pathway and reduced the levels of several antiviral proteins (Mx1 and ISG15). In addition, PGRMC1-mediated regulation of IFN signaling relied on inhibition of the expression and ubiquitination of RIG-I. The loss of PGRMC1 leads to an increased susceptibility of mice (brain and lung) to influenza A virus infection. Conclusively, our results show for the first time that IAV H5N6 downregulates PGRMC1 expression to contribute to virus proliferation by inhibiting RIG-I-mediated IFN-β production in the brain. These findings may offer new insights regarding the interplay between IAV and host factors that may impact IAV pathogenicity in the brain. IMPORTANCE Central nervous system (CNS) disease is one of the most common extra-respiratory tract complications of influenza A virus (IAV) infections. However, there is still little knowledge about IAV regulating host responses in brain. In this study, we identified progesterone receptor membrane component-1 (PGRMC1) as a novel host factor involved in the replication and propagation of IAV H5N6 in the host brain. We also observed that PGRMC1 antagonism was required for viral evasion from the host immune response during IAV infection via inhibition of the retinoic acid-inducible gene I (RIG-I)-mediated interferon beta (IFN-β) signaling pathway and downstream antiviral gene expression. This study revealed a newly identified regulatory mechanism used by IAV H5N6 to ensure its life cycle in the CNS.
Collapse
|
6
|
Porcher L, Bruckmeier S, Burbano SD, Finnell JE, Gorny N, Klett J, Wood SK, Kelly MP. Aging triggers an upregulation of a multitude of cytokines in the male and especially the female rodent hippocampus but more discrete changes in other brain regions. J Neuroinflammation 2021; 18:219. [PMID: 34551810 PMCID: PMC8459490 DOI: 10.1186/s12974-021-02252-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/25/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Despite widespread acceptance that neuroinflammation contributes to age-related cognitive decline, studies comparing protein expression of cytokines in the young versus old brains are surprisingly limited in terms of the number of cytokines and brain regions studied. Complicating matters, discrepancies abound-particularly for interleukin 6 (IL-6)-possibly due to differences in sex, species/strain, and/or the brain regions studied. METHODS As such, we clarified how cytokine expression changes with age by using a Bioplex and Western blot to measure multiple cytokines across several brain regions of both sexes, using 2 mouse strains bred in-house as well as rats obtained from NIA. Parametric and nonparametric statistical tests were used as appropriate. RESULTS In the ventral hippocampus of C57BL/6J mice, we found age-related increases in IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-6, IL-9, IL-10, IL-12p40, IL-12p70, IL-13, IL-17, eotaxin, G-CSF, interfeuron δ, KC, MIP-1a, MIP-1b, rantes, and TNFα that are generally more pronounced in females, but no age-related change in IL-5, MCP-1, or GM-CSF. We also find aging is uniquely associated with the emergence of a module (a.k.a. network) of 11 strongly intercorrelated cytokines, as well as an age-related shift from glycosylated to unglycosylated isoforms of IL-10 and IL-1β in the ventral hippocampus. Interestingly, age-related increases in extra-hippocampal cytokine expression are more discreet, with the prefrontal cortex, striatum, and cerebellum of male and female C57BL/6J mice demonstrating robust age-related increase in IL-6 expression but not IL-1β. Importantly, we found this widespread age-related increase in IL-6 also occurs in BALB/cJ mice and Brown Norway rats, demonstrating conservation across species and rearing environments. CONCLUSIONS Thus, age-related increases in cytokines are more pronounced in the hippocampus compared to other brain regions and can be more pronounced in females versus males depending on the brain region, genetic background, and cytokine examined.
Collapse
Affiliation(s)
- Latarsha Porcher
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Sophie Bruckmeier
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA
| | - Steven D Burbano
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Julie E Finnell
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Nicole Gorny
- Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA
| | - Jennifer Klett
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Susan K Wood
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA
| | - Michy P Kelly
- Pharmacology, Physiology & Neuroscience, University of South Carolina School of Medicine, 6439 Garners Ferry Rd, Columbia, SC, 29209, USA. .,Department of Anatomy & Neurobiology, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA. .,Center for Research on Aging, University of Maryland School of Medicine, 20 Penn St, HSFII Rm 216, Baltimore, MD, 21201, USA.
| |
Collapse
|
7
|
Islam R, Kaffman A. White-Matter Repair as a Novel Therapeutic Target for Early Adversity. Front Neurosci 2021; 15:657693. [PMID: 33897364 PMCID: PMC8062784 DOI: 10.3389/fnins.2021.657693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Early adversity (EA) impairs myelin development in a manner that persists later in life across diverse mammalian species including humans, non-human primates, and rodents. These observations, coupled with the highly conserved nature of myelin development suggest that animal models can provide important insights into the molecular mechanisms by which EA impairs myelin development later in life and the impact of these changes on network connectivity, cognition, and behavior. However, this area of translational research has received relatively little attention and no comprehensive review is currently available to address these issues. This is particularly important given some recent mechanistic studies in rodents and the availability of new agents to increase myelination. The goals of this review are to highlight the need for additional pre-clinical work in this area and to provide specific examples that demonstrate the potential of this work to generate novel therapeutic interventions that are highly needed.
Collapse
Affiliation(s)
- Rafiad Islam
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Arie Kaffman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
8
|
Hahn A, Pensold D, Bayer C, Tittelmeier J, González-Bermúdez L, Marx-Blümel L, Linde J, Groß J, Salinas-Riester G, Lingner T, von Maltzahn J, Spehr M, Pieler T, Urbach A, Zimmer-Bensch G. DNA Methyltransferase 1 (DNMT1) Function Is Implicated in the Age-Related Loss of Cortical Interneurons. Front Cell Dev Biol 2020; 8:639. [PMID: 32793592 PMCID: PMC7387673 DOI: 10.3389/fcell.2020.00639] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/25/2020] [Indexed: 01/19/2023] Open
Abstract
Increased life expectancy in modern society comes at the cost of age-associated disabilities and diseases. Aged brains not only show reduced excitability and plasticity, but also a decline in inhibition. Age-associated defects in inhibitory circuits likely contribute to cognitive decline and age-related disorders. Molecular mechanisms that exert epigenetic control of gene expression contribute to age-associated neuronal impairments. Both DNA methylation, mediated by DNA methyltransferases (DNMTs), and histone modifications maintain neuronal function throughout lifespan. Here we provide evidence that DNMT1 function is implicated in the age-related loss of cortical inhibitory interneurons. Dnmt1 deletion in parvalbumin-positive interneurons attenuates their age-related decline in the cerebral cortex. Moreover, conditional Dnmt1-deficient mice show improved somatomotor performance and reduced aging-associated transcriptional changes. A decline in the proteostasis network, responsible for the proper degradation and removal of defective proteins, is implicated in age- and disease-related neurodegeneration. Our data suggest that DNMT1 acts indirectly on interneuron survival in aged mice by modulating the proteostasis network during life-time.
Collapse
Affiliation(s)
- Anne Hahn
- Department of Functional Epigenetics, Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Daniel Pensold
- Department of Functional Epigenetics, Institute of Human Genetics, University Hospital Jena, Jena, Germany.,Department of Functional Epigenetics in the Animal Model, Institute of Biology II, RWTH Aachen University, Aachen, Germany
| | - Cathrin Bayer
- Department of Functional Epigenetics, Institute of Human Genetics, University Hospital Jena, Jena, Germany.,Department of Functional Epigenetics in the Animal Model, Institute of Biology II, RWTH Aachen University, Aachen, Germany
| | - Jessica Tittelmeier
- Department of Functional Epigenetics, Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Lourdes González-Bermúdez
- Department of Functional Epigenetics, Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Lisa Marx-Blümel
- Department of Functional Epigenetics, Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Jenice Linde
- Department of Functional Epigenetics in the Animal Model, Institute of Biology II, RWTH Aachen University, Aachen, Germany.,Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany
| | - Jonas Groß
- Department of Functional Epigenetics, Institute of Human Genetics, University Hospital Jena, Jena, Germany
| | - Gabriela Salinas-Riester
- Transcriptome and Genome Analysis Laboratory (TAL), Department of Developmental Biochemistry, University of Göttingen, Göttingen, Germany
| | - Thomas Lingner
- Transcriptome and Genome Analysis Laboratory (TAL), Department of Developmental Biochemistry, University of Göttingen, Göttingen, Germany
| | - Julia von Maltzahn
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Marc Spehr
- Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany.,Department of Chemosensation, Institute of Biology II, RWTH Aachen University, Aachen, Germany
| | - Tomas Pieler
- Centre for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Department of Developmental Biochemistry, University of Göttingen, Göttingen, Germany
| | - Anja Urbach
- Institute of Neurology, University Hospital Jena, Jena, Germany
| | - Geraldine Zimmer-Bensch
- Department of Functional Epigenetics, Institute of Human Genetics, University Hospital Jena, Jena, Germany.,Department of Functional Epigenetics in the Animal Model, Institute of Biology II, RWTH Aachen University, Aachen, Germany.,Research Training Group 2416 MultiSenses - MultiScales, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Demir EA, Karagoz M. Platelet-Rich Plasma (PRP) is a Potential Self-Sourced Cognition Booster in Elderly Mice. Exp Aging Res 2020; 46:139-153. [PMID: 31939709 DOI: 10.1080/0361073x.2020.1716154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: A complex set of neurotrophic growth factors participates in neuroplasticity in the aging brain. Platelets are a copious source of growth factors, most of which display also the neurotropic activity. On this basis, we investigated behavioral and cognitive consequences of the administration of intravenous allogeneic platelet-rich plasma (PRP) in senescent mice.Methods: The animals (16-18 months old) were injected with either physiological saline or PRP which was acquired from age-matched counterparts and subjected to a battery of tests comprised of open-field, elevated-plus maze, tail suspension, and Morris water maze test.Results: We found that PRP treatment increases locomotion and improves learning and memory in elderly mice. Importantly, the PRP-treated animals did not exhibit any anxiety- or depression-like behaviors.Conclusion: The present study is the first to demonstrate that allogeneic PRP possesses beneficial effects against cognitive aging and it signifies that PRP may be used as a novel self-sourced treatment in age-related cognitive decline.
Collapse
Affiliation(s)
- Enver Ahmet Demir
- Department of Physiology, Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Mehtap Karagoz
- Faculty of Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| |
Collapse
|
10
|
Stanojlovic M, Pallais Yllescas JP, Mavanji V, Kotz C. Chemogenetic activation of orexin/hypocretin neurons ameliorates aging-induced changes in behavior and energy expenditure. Am J Physiol Regul Integr Comp Physiol 2019; 316:R571-R583. [PMID: 30726119 PMCID: PMC6589608 DOI: 10.1152/ajpregu.00383.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023]
Abstract
Aging affects numerous physiological processes, as well as behavior. A large number of these processes are regulated, at least partially, by hypothalamic orexin neurons, and orexin tone may decrease with normal aging. In this study, we hypothesized that designer receptors exclusively activated by designer drugs (DREADD) stimulation of orexin neuronal activity will ameliorate the effect of aging on behavioral and metabolic alterations in young and middle-aged mice. DREADD targeting was achieved by stereotaxic injection of AAV vectors (AAV2-hSyn-DIO-hM3D(Gq)-mCherry) into the lateral hypothalamus of 5- and 12-mo old orexin-cre female mice and was confirmed by immunohistochemistry (IHC) analysis of orexin A and mCherry expression. After recovery, animals were subjected to a behavioral test battery consisting of the elevated plus maze (EPM), open field (OFT), and novel object recognition tests (NORT) to assess effects of aging on anxiety-like behavior, general locomotion, and working memory. A comprehensive laboratory animal monitoring system (CLAMS) was used to measure spontaneous physical activity (SPA) and energy expenditure (EE). The results indicate that activation of orexin neurons mitigates aging-induced reductions in anxiety-like behavior in middle-aged mice (P < 0.005) and increases locomotion in both young and middle-aged mice (P < 0.05). Activation of orexin neurons increases SPA (P < 0.01) and EE (P < 0.005) in middle-aged mice, restoring the levels to that observed in young animals. Results from this study identify orexin neurons as potential therapeutic targets for age-related impairments in cognitive and anxiety-related behavior, and energy balance.
Collapse
Affiliation(s)
- Milos Stanojlovic
- Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
| | | | - Vijaya Mavanji
- Minneapolis Veterans Affairs Health Care System, Geriatric Research Education and Clinical Center , Minneapolis, Minnesota
| | - Catherine Kotz
- Integrative Biology and Physiology, University of Minnesota , Minneapolis, Minnesota
- Minneapolis Veterans Affairs Health Care System, Geriatric Research Education and Clinical Center , Minneapolis, Minnesota
| |
Collapse
|
11
|
Greer JB, Schmale MC, Fieber LA. Whole-transcriptome changes in gene expression accompany aging of sensory neurons in Aplysia californica. BMC Genomics 2018; 19:529. [PMID: 29996779 PMCID: PMC6042401 DOI: 10.1186/s12864-018-4909-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/29/2018] [Indexed: 02/07/2023] Open
Abstract
Background Large-scale molecular changes occur during aging and have many downstream consequences on whole-organism function, such as motor function, learning, and memory. The marine mollusk Aplysia californica can be used to study transcriptional changes that occur with age in identified neurons of the brain, because its simplified nervous system allows for more direct correlations between molecular changes, physiological changes, and their phenotypic outcomes. Behavioral deficits in the tail-withdrawal reflex of aged animals have been correlated with reduced excitation in sensory neurons that control the reflex. RNASeq was used to investigate whole-transcriptome changes in tail-withdrawal sensory neurons of sexually mature and aged Aplysia to correlate transcriptional changes with reduced behavioral and physiological responses. Results Paired-end sequencing resulted in 210 million reads used for differential expression analysis. Aging significantly altered expression of 1202 transcripts in sensory neurons underlying the tail-withdrawal reflex, with an approximately equal number of these genes up- and down regulated with age. Despite overall bidirectionality of expression changes, > 80% of ion channel genes that were differentially expressed had decreased expression with age. In particular, several voltage-gated K+ and Ca2+ channels were down regulated. This marked decrease in ion channel expression may play an important role in previously observed declines in aged sensory neuron excitability. We also observed decreased expression of genes and pathways involved in learning and memory. Genes involved in the stress response showed increased expression in aged Aplysia neurons. Conclusions Significantly altered expression of many genes between sexually mature and aged Aplysia suggests large molecular changes that may impact neuronal function. Decreased ion channel mRNA observed could mean fewer receptors present in aged neurons, resulting in reduced excitability of PVC sensory neurons, ultimately leading to reduced tail-withdrawal reflex observed in aged Aplysia. Significant changes in other genes and pathways, such as stress response and learning and memory, have previously been shown to occur with age in many vertebrate organisms. This suggests that some effects of aging are common across many animal phyla. Electronic supplementary material The online version of this article (10.1186/s12864-018-4909-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justin B Greer
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| | - Michael C Schmale
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| |
Collapse
|
12
|
Long-Term Neuroinflammation Induced by Influenza A Virus Infection and the Impact on Hippocampal Neuron Morphology and Function. J Neurosci 2018; 38:3060-3080. [PMID: 29487124 DOI: 10.1523/jneurosci.1740-17.2018] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 12/16/2022] Open
Abstract
Acute influenza infection has been reported to be associated with neurological symptoms. However, the long-term consequences of an infection with neurotropic and non-neurotropic influenza A virus (IAV) variants for the CNS remain elusive. We can show that spine loss in the hippocampus after infection with neurotropic H7N7 (rSC35M) and non-neurotropic H3N2 (maHK68) in female C57BL/6 mice persists well beyond the acute phase of the disease. Although spine number was significantly reduced at 30 d postinfection (dpi) with H7N7 or H3N2, full recovery could only be observed much later at 120 dpi. Infection with H1N1 virus, which was shown previously to affect spine number and hippocampus-dependent learning acutely, had no significant long-term effects. Spine loss was associated with an increase in the number of activated microglia, reduced long-term potentiation in the hippocampus, and impairment in spatial memory formation, indicating that IAV-associated inflammation induced functional and structural alterations in hippocampal networks. Transcriptome analyses revealed regulation of many inflammatory and neuron- and glia-specific genes in H3N2- and H7N7-infected mice at day 18 and in H7N7-infected mice at day 30 pi that related to the structural and functional alterations. Our data provide evidence that neuroinflammation induced by neurotropic H7N7 and infection of the lung with a non-neurotropic H3N2 IAV result in long-term impairments in the CNS. IAV infection in humans may therefore not only lead to short-term responses in infected organs, but may also trigger neuroinflammation and associated chronic alterations in the CNS.SIGNIFICANCE STATEMENT In the acute phase of influenza infection, neuroinflammation can lead to alterations in hippocampal neuronal morphology and cognitive deficits. The results of this study now also provide evidence that neuroinflammation induced by influenza A virus (IAV) infection can induce longer-lasting, virus-specific alterations in neuronal connectivity that are still detectable 1 month after infection and are associated with impairments in spatial memory formation. IAV infection in humans may therefore not only lead to short-term responses in infected organs, but may also trigger neuroinflammation and associated chronic alterations in the CNS.
Collapse
|
13
|
French L, Ma T, Oh H, Tseng GC, Sibille E. Age-Related Gene Expression in the Frontal Cortex Suggests Synaptic Function Changes in Specific Inhibitory Neuron Subtypes. Front Aging Neurosci 2017; 9:162. [PMID: 28611654 PMCID: PMC5446995 DOI: 10.3389/fnagi.2017.00162] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/09/2017] [Indexed: 12/22/2022] Open
Abstract
Genome-wide expression profiling of the human brain has revealed genes that are differentially expressed across the lifespan. Characterizing these genes adds to our understanding of both normal functions and pathological conditions. Additionally, the specific cell-types that contribute to the motor, sensory and cognitive declines during aging are unclear. Here we test if age-related genes show higher expression in specific neural cell types. Our study leverages data from two sources of murine single-cell expression data and two sources of age-associations from large gene expression studies of postmortem human brain. We used nonparametric gene set analysis to test for age-related enrichment of genes associated with specific cell-types; we also restricted our analyses to specific gene ontology groups. Our analyses focused on a primary pair of single-cell expression data from the mouse visual cortex and age-related human post-mortem gene expression information from the orbitofrontal cortex. Additional pairings that used data from the hippocampus, prefrontal cortex, somatosensory cortex and blood were used to validate and test specificity of our findings. We found robust age-related up-regulation of genes that are highly expressed in oligodendrocytes and astrocytes, while genes highly expressed in layer 2/3 glutamatergic neurons were down-regulated across age. Genes not specific to any neural cell type were also down-regulated, possibly due to the bulk tissue source of the age-related genes. A gene ontology-driven dissection of the cell-type enriched genes highlighted the strong down-regulation of genes involved in synaptic transmission and cell-cell signaling in the Somatostatin (Sst) neuron subtype that expresses the cyclin dependent kinase 6 (Cdk6) and in the vasoactive intestinal peptide (Vip) neuron subtype expressing myosin binding protein C, slow type (Mybpc1). These findings provide new insights into cell specific susceptibility to normal aging, and suggest age-related synaptic changes in specific inhibitory neuron subtypes.
Collapse
Affiliation(s)
- Leon French
- Neurobiology of Depression and Aging Lab, Centre for Addiction and Mental Health, Campbell Family Mental Health Research InstituteToronto, ON, Canada.,Department of Psychiatry, University of TorontoToronto, ON, Canada.,Institute of Medical Science, University of TorontoToronto, ON, Canada
| | - TianZhou Ma
- Department of Biostatistics, University of PittsburghPittsburgh, PA, United States
| | - Hyunjung Oh
- Neurobiology of Depression and Aging Lab, Centre for Addiction and Mental Health, Campbell Family Mental Health Research InstituteToronto, ON, Canada
| | - George C Tseng
- Department of Biostatistics, University of PittsburghPittsburgh, PA, United States
| | - Etienne Sibille
- Neurobiology of Depression and Aging Lab, Centre for Addiction and Mental Health, Campbell Family Mental Health Research InstituteToronto, ON, Canada.,Department of Psychiatry, University of TorontoToronto, ON, Canada.,Department of Pharmacology and Toxicology, University of TorontoToronto, ON, Canada
| |
Collapse
|
14
|
Ianov L, Rani A, Beas BS, Kumar A, Foster TC. Transcription Profile of Aging and Cognition-Related Genes in the Medial Prefrontal Cortex. Front Aging Neurosci 2016; 8:113. [PMID: 27242522 PMCID: PMC4868850 DOI: 10.3389/fnagi.2016.00113] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/29/2016] [Indexed: 12/22/2022] Open
Abstract
Cognitive function depends on transcription; however, there is little information linking altered gene expression to impaired prefrontal cortex function during aging. Young and aged F344 rats were characterized on attentional set shift and spatial memory tasks. Transcriptional differences associated with age and cognition were examined using RNA sequencing to construct transcriptomic profiles for the medial prefrontal cortex (mPFC), white matter, and region CA1 of the hippocampus. The results indicate regional differences in vulnerability to aging. Age-related gene expression in the mPFC was similar to, though less robust than, changes in the dorsolateral PFC of aging humans suggesting that aging processes may be similar. Importantly, the pattern of transcription associated with aging did not predict cognitive decline. Rather, increased mPFC expression of genes involved in regulation of transcription, including transcription factors that regulate the strength of excitatory and inhibitory inputs, and neural activity-related immediate-early genes was observed in aged animals that exhibit delayed set shift behavior. The specificity of impairment on a mPFC-dependent task, associated with a particular mPFC transcriptional profile indicates that impaired executive function involves altered transcriptional regulation and neural activity/plasticity processes that are distinct from that described for impaired hippocampal function.
Collapse
Affiliation(s)
- Lara Ianov
- Department of Neuroscience, McKnight Brain Institute, University of FloridaGainesville, FL, USA
- Genetics and Genomics Program, Genetics Institute, University of FloridaGainesville, FL, USA
| | - Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of FloridaGainesville, FL, USA
| | - Blanca S. Beas
- Department of Neuroscience, McKnight Brain Institute, University of FloridaGainesville, FL, USA
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of FloridaGainesville, FL, USA
| | - Thomas C. Foster
- Department of Neuroscience, McKnight Brain Institute, University of FloridaGainesville, FL, USA
- Genetics and Genomics Program, Genetics Institute, University of FloridaGainesville, FL, USA
| |
Collapse
|
15
|
Moustafa AA. On the relationship among different motor processes: a computational modeling approach. Front Comput Neurosci 2015; 9:34. [PMID: 25852532 PMCID: PMC4364174 DOI: 10.3389/fncom.2015.00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/03/2015] [Indexed: 11/13/2022] Open
|
16
|
Stilling RM, Benito E, Gertig M, Barth J, Capece V, Burkhardt S, Bonn S, Fischer A. De-regulation of gene expression and alternative splicing affects distinct cellular pathways in the aging hippocampus. Front Cell Neurosci 2014; 8:373. [PMID: 25431548 PMCID: PMC4230043 DOI: 10.3389/fncel.2014.00373] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/21/2014] [Indexed: 01/20/2023] Open
Abstract
Aging is accompanied by gradually increasing impairment of cognitive abilities and constitutes the main risk factor of neurodegenerative conditions like Alzheimer's disease (AD). The underlying mechanisms are however not well understood. Here we analyze the hippocampal transcriptome of young adult mice and two groups of mice at advanced age using RNA sequencing. This approach enabled us to test differential expression of coding and non-coding transcripts, as well as differential splicing and RNA editing. We report a specific age-associated gene expression signature that is associated with major genetic risk factors for late-onset AD (LOAD). This signature is dominated by neuroinflammatory processes, specifically activation of the complement system at the level of increased gene expression, while de-regulation of neuronal plasticity appears to be mediated by compromised RNA splicing.
Collapse
Affiliation(s)
- Roman M Stilling
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen Göttingen, Germany ; Research Group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen Göttingen, Germany
| | - Eva Benito
- Research Group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen Göttingen, Germany
| | - Michael Gertig
- Research Group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen Göttingen, Germany
| | - Jonas Barth
- Research Group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen Göttingen, Germany
| | - Vincenzo Capece
- Research Group for Computational Analysis of Biological Networks, German Center for Neurodegenerative Diseases (DZNE) Göttingen Göttingen, Germany
| | - Susanne Burkhardt
- Research Group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen Göttingen, Germany
| | - Stefan Bonn
- Research Group for Computational Analysis of Biological Networks, German Center for Neurodegenerative Diseases (DZNE) Göttingen Göttingen, Germany
| | - Andre Fischer
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen Göttingen, Germany ; Research Group for Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Göttingen Göttingen, Germany
| |
Collapse
|
17
|
Zink AN, Perez-Leighton CE, Kotz CM. The orexin neuropeptide system: physical activity and hypothalamic function throughout the aging process. Front Syst Neurosci 2014; 8:211. [PMID: 25408639 PMCID: PMC4219460 DOI: 10.3389/fnsys.2014.00211] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/07/2014] [Indexed: 12/18/2022] Open
Abstract
There is a rising medical need for novel therapeutic targets of physical activity. Physical activity spans from spontaneous, low intensity movements to voluntary, high-intensity exercise. Regulation of spontaneous and voluntary movement is distributed over many brain areas and neural substrates, but the specific cellular and molecular mechanisms responsible for mediating overall activity levels are not well understood. The hypothalamus plays a central role in the control of physical activity, which is executed through coordination of multiple signaling systems, including the orexin neuropeptides. Orexin producing neurons integrate physiological and metabolic information to coordinate multiple behavioral states and modulate physical activity in response to the environment. This review is organized around three questions: (1) How do orexin peptides modulate physical activity? (2) What are the effects of aging and lifestyle choices on physical activity? (3) What are the effects of aging on hypothalamic function and the orexin peptides? Discussion of these questions will provide a summary of the current state of knowledge regarding hypothalamic orexin regulation of physical activity during aging and provide a platform on which to develop improved clinical outcomes in age-associated obesity and metabolic syndromes.
Collapse
Affiliation(s)
- Anastasia N Zink
- Graduate Program in Neuroscience, School of Medicine, University of Minnesota Minneapolis, MN, USA
| | | | - Catherine M Kotz
- Graduate Program in Neuroscience, School of Medicine, University of Minnesota Minneapolis, MN, USA ; GRECC (11G), Minneapolis VA Healthcare System Minneapolis, MN, USA ; Department of Food Science and Nutrition, University of Minnesota Saint Paul, MN, USA
| |
Collapse
|
18
|
Kadakkuzha BM, Akhmedov K, Capo TR, Carvalloza AC, Fallahi M, Puthanveettil SV. Age-associated bidirectional modulation of gene expression in single identified R15 neuron of Aplysia. BMC Genomics 2013; 14:880. [PMID: 24330282 PMCID: PMC3909179 DOI: 10.1186/1471-2164-14-880] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 12/05/2013] [Indexed: 01/06/2023] Open
Abstract
Background Despite the advances in our understanding of aging-associated behavioral decline, relatively little is known about how aging affects neural circuits that regulate specific behaviors, particularly the expression of genes in specific neural circuits during aging. We have addressed this by exploring a peptidergic neuron R15, an identified neuron of the marine snail Aplysia californica. R15 is implicated in reproduction and osmoregulation and responds to neurotransmitters such as acetylcholine, serotonin and glutamate and is characterized by its action potential bursts. Results We examined changes in gene expression in R15 neurons during aging by microarray analyses of RNAs from two different age groups, mature and old animals. Specifically we find that 1083 ESTs are differentially regulated in mature and old R15 neurons. Bioinformatics analyses of these genes have identified specific biological pathways that are up or downregulated in mature and old neurons. Comparison with human signaling networks using pathway analyses have identified three major networks [(1) cell signaling, cell morphology, and skeletal muscular system development (2) cell death and survival, cellular function maintenance and embryonic development and (3) neurological diseases, developmental and hereditary disorders] altered in old R15 neurons. Furthermore, qPCR analysis of single R15 neurons to quantify expression levels of candidate regulators involved in transcription (CREB1) and translation (S6K) showed that aging is associated with a decrease in expression of these regulators, and similar analysis in three other neurons (L7, L11 and R2) showed that gene expression change during aging could be bidirectional. Conclusions We find that aging is associated with bidirectional changes in gene expression. Detailed bioinformatics analyses and human homolog searches have identified specific biological processes and human-relevant signaling pathways in R15 that are affected during aging. Evaluation of gene expression changes in different neurons suggests specific transcriptomic signature of single neurons during aging.
Collapse
|
19
|
Gao L, Hidalgo-Figueroa M, Escudero LM, Díaz-Martín J, López-Barneo J, Pascual A. Age-mediated transcriptomic changes in adult mouse substantia nigra. PLoS One 2013; 8:e62456. [PMID: 23638090 PMCID: PMC3640071 DOI: 10.1371/journal.pone.0062456] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/21/2013] [Indexed: 11/30/2022] Open
Abstract
Substantia nigra pars compacta (SNpc) is highly sensitive to normal aging and selectively degenerates in Parkinson's disease (PD). Until now, molecular mechanisms behind SNpc aging have not been fully investigated using high throughput techniques. Here, we show early signs of aging in SNpc, which are more evident than in ventral tegmental area (VTA), a region adjacent to SNpc but less affected in PD. Aging-associated early changes in transcriptome were investigated comparing late middle-aged (18 months old) to young (2 months old) mice in both SNpc and VTA. A meta-analysis of published microarray studies allowed us to generate a common “transcriptional signature” of the aged (≥ 24 months old) mouse brain. SNpc of late-middle aged mice shared characteristics with the transcriptional signature, suggesting an accelerated aging in SNpc. Age-dependent changes in gene expression specific to SNpc were also observed, which were related to neuronal functions and inflammation. Future studies could greatly help determine the contribution of these changes to SNpc aging. These data help understand the processes underlying SNpc aging and their potential contribution to age-related disorders like PD.
Collapse
Affiliation(s)
- Lin Gao
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- * E-mail: (LG); (AP)
| | - María Hidalgo-Figueroa
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Luis M. Escudero
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Juan Díaz-Martín
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - José López-Barneo
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- * E-mail: (LG); (AP)
| |
Collapse
|
20
|
Maternal separation with early weaning: a rodent model providing novel insights into neglect associated developmental deficits. Dev Psychopathol 2013; 24:1401-16. [PMID: 23062306 DOI: 10.1017/s095457941200079x] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Child neglect is the most prevalent form of child maltreatment in the United States, and poses a serious public health concern. Children who survive such episodes go on to experience long-lasting psychological and behavioral problems, including higher rates of post-traumatic stress disorder symptoms, depression, alcohol and drug abuse, attention-deficit/hyperactivity disorder, and cognitive deficits. To date, most research into the causes of these life-long problems has focused on well-established targets such as stress responsive systems, including the hypothalamus-pituitary-adrenal axis. Using the maternal separation and early weaning model, we have attempted to provide comprehensive molecular profiling of a model of early-life neglect in an organism amenable to genomic manipulation: the mouse. In this article, we report new findings generated with this model using chromatin immunoprecipitation sequencing, diffuse tensor magnetic resonance imaging, and behavioral analyses. We also review the validity of the maternal separation and early weaning model, which reflects behavioral deficits observed in neglected humans including hyperactivity, anxiety, and attentional deficits. Finally, we summarize the molecular characterization of these animals, including RNA profiling and label-free proteomics, which highlight protein translation and myelination as novel pathways of interest.
Collapse
|
21
|
Huffman K. The developing, aging neocortex: how genetics and epigenetics influence early developmental patterning and age-related change. Front Genet 2012; 3:212. [PMID: 23087707 PMCID: PMC3473232 DOI: 10.3389/fgene.2012.00212] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/26/2012] [Indexed: 11/13/2022] Open
Abstract
A hallmark of mammalian development is the generation of functional subdivisions within the nervous system. In humans, this regionalization creates a complex system that regulates behavior, cognition, memory, and emotion. During development, specification of neocortical tissue that leads to functional sensory and motor regions results from an interplay between cortically intrinsic, molecular processes, such as gene expression, and extrinsic processes regulated by sensory input. Cortical specification in mice occurs pre- and perinatally, when gene expression is robust and various anatomical distinctions are observed alongside an emergence of physiological function. After patterning, gene expression continues to shift and axonal connections mature into an adult form. The function of adult cortical gene expression may be to maintain neocortical subdivisions that were established during early patterning. As some changes in neocortical gene expression have been observed past early development into late adulthood, gene expression may also play a role in the altered neocortical function observed in age-related cognitive decline and brain dysfunction. This review provides a discussion of how neocortical gene expression and specific patterns of neocortical sensori-motor axonal connections develop and change throughout the lifespan of the animal. We posit that a role of neocortical gene expression in neocortex is to regulate plasticity mechanisms that impact critical periods for sensory and motor plasticity in aging. We describe results from several studies in aging brain that detail changes in gene expression that may relate to microstructural changes observed in brain anatomy. We discuss the role of altered glucocorticoid signaling in age-related cognitive and functional decline, as well as how aging in the brain may result from immune system activation. We describe how caloric restriction or reduction of oxidative stress may ameliorate effects of aging on the brain.
Collapse
Affiliation(s)
- Kelly Huffman
- Department of Psychology, University of California Riverside, CA, USA
| |
Collapse
|