1
|
Wei X, Li G, Zhang ZQ. Prey life stages modulate effects of predation stress on prey lifespan, development, and reproduction in mites. INSECT SCIENCE 2023; 30:844-856. [PMID: 36271685 DOI: 10.1111/1744-7917.13124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/03/2022] [Accepted: 09/27/2022] [Indexed: 06/15/2023]
Abstract
The non-consumptive effects of predator-induced stress can influence a variety of life-history traits. Many previous studies focused only on short-term effects such as development and reproductive rates. Recent studies have showed that long-term predation stress (given during the whole life of the prey) and short-term predation stress (provided during the immature stage of the prey) could generate completely opposite results: the former could decrease lifespan, whereas the later could increase lifespan. However, it is still unclear whether the advantage is because of the short duration of exposure or the early stage of life during which exposure was exerted. Thus, in this study, the prey (Tyrophagus putrescentiae) was exposed to predation stress from the predator (Neoseiulus cucumeris) during different life stages (larva, protonymph, tritonymph, first 5 d of oviposition, the full lifespan or none of the above). The results showed that the predation stress supplied during larval and protonymphal stage delayed development, reduced fecundity and prolonged lifespan of the prey, while the stress given during tritonymphal stage only reduced lifespan slightly and the stress given during the first 5 d of oviposition did not change lifespan but reduced fecundity. This study indicated that the effects of predation stress are dependent on prey life stage and the predation stress experienced in the early life stages is important to lifespan modulation.
Collapse
Affiliation(s)
- Xiaoying Wei
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Guangyun Li
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Zhi-Qiang Zhang
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Manaaki Whenua - Landcare Research, Auckland, New Zealand
| |
Collapse
|
2
|
Stazione L, Sambucetti PD, Norry FM. Mating success at elevated temperature is associated to thermal adaptation in a set of recombinant inbred lines of Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2023; 144:104468. [PMID: 36528089 DOI: 10.1016/j.jinsphys.2022.104468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
In insects, mating ability at elevated temperature can be relevant for adaptation to heat-stressed environments and global warming. Here, we examined copulation latency (T1), copulation duration (T2), and mating frequency (T3, an index of mating success) in two related sets of recombinant inbred lines (RIL) in Drosophila melanogaster at both elevated (33 °C) and benign (25 °C) temperatures. One of these RIL sets (RIL-SH2) was shown to be consistently more resistant in both heat knockdown and heat-shock survival assays than its related set (RIL-D48) in previous studies. Negative correlations across RILs were found between T1 and T3 in this study. Flies from the heat-resistant set of RIL (RIL-SH2) were better able to mate at elevated temperature than flies from the heat-susceptible set (RIL-D48). Quantitative trait locus (QTL) mapping identified temperature-dependent QTLs for all traits (T1, T2 and T3) on all the three major chromosomes. Mating success at elevated temperature was found to be influenced by multiple QTLs. At elevated temperature, several QTLs for mating traits co-localized with QTLs that were previously associated with thermotolerance. The genetic basis for T1, T2 and T3 at the elevated temperature was found to be largely different from the genetic basis controlling the variation for mating success at benign temperature, as there was only a very low (or even null) number of QTLs overlapping across temperatures.
Collapse
Affiliation(s)
- Leonel Stazione
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA) - CONICET, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina
| | - Pablo D Sambucetti
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA) - CONICET, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina
| | - Fabian M Norry
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA) - CONICET, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina.
| |
Collapse
|
3
|
Negative genetic correlation between longevity and its hormetic extension by dietary restriction in Drosophila melanogaster. Biogerontology 2019; 21:191-201. [PMID: 31786681 DOI: 10.1007/s10522-019-09852-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/23/2019] [Indexed: 12/18/2022]
Abstract
Longevity is a highly malleable trait which is influenced by many genetic and environmental factors including nutrition. Mild stress of dietary restriction (DR) is often beneficial by extending longevity in many organisms. Here, DR-induced effects on longevity were tested for genetic variation in a set of recombinant inbred lines (RIL) in D. melanogaster. Genetic variability was significant in the longevity response following a DR-treatment across RIL, with detrimental effects in several RIL but beneficial effects in other RIL. One quantitative trait locus (QTL) was consistently significant in the middle of chromosome 2 for DR-induced changes in longevity, including hormesis (an increase in longevity by DR). Another QTL co-localized with a previously found QTL for starvation resistance in females. Several other QTL were also significant on most chromosomal arms. Longevity in controls was negatively correlated to DR effects across RIL for longevity in females, the sex showing higher DR-induced hormesis. This negative genetic correlation highlights the importance to further investigate the effects of genetic variation in the strength of DR-induced hormesis in longevity and its sex-specificity.
Collapse
|
4
|
Talyn B, Lemon R, Badoella M, Melchiorre D, Villalobos M, Elias R, Muller K, Santos M, Melchiorre E. Roundup ®, but Not Roundup-Ready ® Corn, Increases Mortality of Drosophila melanogaster. TOXICS 2019; 7:E38. [PMID: 31370250 PMCID: PMC6789507 DOI: 10.3390/toxics7030038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Genetically modified foods have become pervasive in diets of people living in the US. By far the most common genetically modified foods either tolerate herbicide application (HT) or produce endogenous insecticide (Bt). To determine whether these toxicological effects result from genetic modification per se, or from the increase in herbicide or insecticide residues present on the food, we exposed fruit flies, Drosophila melanogaster, to food containing HT corn that had been sprayed with the glyphosate-based herbicide Roundup®, HT corn that had not been sprayed with Roundup®, or Roundup® in a variety of known glyphosate concentrations and formulations. While neither lifespan nor reproductive behaviors were affected by HT corn, addition of Roundup® increased mortality with an LC50 of 7.1 g/L for males and 11.4 g/L for females after 2 days of exposure. Given the many genetic tools available, Drosophila are an excellent model system for future studies about genetic and biochemical mechanisms of glyphosate toxicity.
Collapse
Affiliation(s)
- Becky Talyn
- College of Natural Science, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA.
| | - Rachael Lemon
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Maryam Badoella
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | | | - Maryori Villalobos
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Raquel Elias
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Kelly Muller
- Chemistry and Biochemistry Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Maggie Santos
- Biology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| | - Erik Melchiorre
- Geology Department, California State University, 5500 University Parkway, San Bernardino, CA 92407, USA
| |
Collapse
|
5
|
Ross EM, Maxwell PH. Low doses of DNA damaging agents extend Saccharomyces cerevisiae chronological lifespan by promoting entry into quiescence. Exp Gerontol 2018; 108:189-200. [PMID: 29705357 PMCID: PMC5994204 DOI: 10.1016/j.exger.2018.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 04/13/2018] [Accepted: 04/26/2018] [Indexed: 01/08/2023]
Abstract
A variety of mild stresses have been shown to extend lifespan in diverse species through hormesis, which is a beneficial response to a stress or toxin that would cause a negative response at a higher exposure. Whether particular stresses induce hormesis can vary with genotype for a given species, and the underlying mechanisms of lifespan extension are only partly understood in most cases. We show that low doses of the DNA damaging or replication stress agents hydroxyurea, methyl methanesulfonate, 4-nitroquinoline 1-oxide, or Zeocin (a phleomycin derivative) lengthened chronological lifespan in Saccharomyces cerevisiae if cells were exposed during growth, but not if they were exposed during stationary phase. Treatment with these agents did not change mitochondrial activity, increase resistance to acetic acid, ethanol, or heat stress, and three of four treatments did not increase resistance to hydrogen peroxide. Stationary phase yeast populations consist of both quiescent and nonquiescent cells, and all four treatments increased the proportion of quiescent cells. Several mutant strains with deletions in genes that influence quiescence prevented Zeocin treatment from extending lifespan and from increasing the proportion of quiescent stationary phase cells. These data indicate that mild DNA damage stress can extend lifespan by promoting quiescence in the absence of mitohormesis or improved general stress responses that have been frequently associated with improved longevity in other cases of hormesis. Further study of the underlying mechanism may yield new insights into quiescence regulation that will be relevant to healthy aging.
Collapse
Affiliation(s)
- Emily M Ross
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Patrick H Maxwell
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA; Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| |
Collapse
|
6
|
Elevated extension of longevity by cyclically heat stressing a set of recombinant inbred lines of Drosophila melanogaster throughout their adult life. Biogerontology 2016; 17:883-892. [DOI: 10.1007/s10522-016-9658-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/16/2016] [Indexed: 11/25/2022]
|
7
|
Highfill CA, Reeves GA, Macdonald SJ. Genetic analysis of variation in lifespan using a multiparental advanced intercross Drosophila mapping population. BMC Genet 2016; 17:113. [PMID: 27485207 PMCID: PMC4970266 DOI: 10.1186/s12863-016-0419-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/21/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Considerable natural variation for lifespan exists within human and animal populations. Genetically dissecting this variation can elucidate the pathways and genes involved in aging, and help uncover the genetic mechanisms underlying risk for age-related diseases. Studying aging in model systems is attractive due to their relatively short lifespan, and the ability to carry out programmed crosses under environmentally-controlled conditions. Here we investigate the genetic architecture of lifespan using the Drosophila Synthetic Population Resource (DSPR), a multiparental advanced intercross mapping population. RESULTS We measured lifespan in females from 805 DSPR lines, mapping five QTL (Quantitative Trait Loci) that each contribute 4-5 % to among-line lifespan variation in the DSPR. Each of these QTL co-localizes with the position of at least one QTL mapped in 13 previous studies of lifespan variation in flies. However, given that these studies implicate >90 % of the genome in the control of lifespan, this level of overlap is unsurprising. DSPR QTL intervals harbor 11-155 protein-coding genes, and we used RNAseq on samples of young and old flies to help resolve pathways affecting lifespan, and identify potentially causative loci present within mapped QTL intervals. Broad age-related patterns of expression revealed by these data recapitulate results from previous work. For example, we see an increase in antimicrobial defense gene expression with age, and a decrease in expression of genes involved in the electron transport chain. Several genes within QTL intervals are highlighted by our RNAseq data, such as Relish, a critical immune response gene, that shows increased expression with age, and UQCR-14, a gene involved in mitochondrial electron transport, that has reduced expression in older flies. CONCLUSIONS The five QTL we isolate collectively explain a considerable fraction of the genetic variation for female lifespan in the DSPR, and implicate modest numbers of genes. In several cases the candidate loci we highlight reside in biological pathways already implicated in the control of lifespan variation. Thus, our results provide further evidence that functional genetics tests targeting these genes will be fruitful, lead to the identification of natural sequence variants contributing to lifespan variation, and help uncover the mechanisms of aging.
Collapse
Affiliation(s)
- Chad A Highfill
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
| | - G Adam Reeves
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
| | - Stuart J Macdonald
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA. .,Center for Computational Biology, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA.
| |
Collapse
|
8
|
Sambucetti P, Loeschcke V, Norry FM. Patterns of longevity and fecundity at two temperatures in a set of heat-selected recombinant inbred lines of Drosophila melanogaster. Biogerontology 2015; 16:801-10. [PMID: 26404666 DOI: 10.1007/s10522-015-9606-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/09/2015] [Indexed: 01/21/2023]
Abstract
Quantitative trait loci (QTL) were mapped for longevity and fecundity at two temperatures, 20 and 30 °C, in two sets of recombinant inbred lines (RIL) highly differing in thermotolerance. Early fecundity (EF) and longevity showed a negative association between temperatures. For instance, longevity was higher and fecundity was lower in the RIL panel showing higher life span at 30 °C. One X-linked QTL (7B3-12E) co-localized for longevity and EF at 20 °C, with one QTL allele showing a positive additive effect on longevity and a negative effect on EF. The across-RIL genetic correlation between longevity and EF was not significant within each temperature, and most QTL that affect life span have no effect on EF at each temperature. EF and longevity can mostly be genetically uncoupled in the thermotolerance-divergent RIL within each temperature as opposed to between temperatures. QTL were mostly temperature specific, although some trait-specific QTL showed possible antagonistic effects between temperatures.
Collapse
Affiliation(s)
- P Sambucetti
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - IEGEBA (CONICET-UBA), C-1428-EHA, Buenos Aires, Argentina.
| | - V Loeschcke
- Department of Bioscience, Aarhus University, Ny Munkegade 114, Building 1540, 8000, Aarhus C, Denmark
| | - F M Norry
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires - IEGEBA (CONICET-UBA), C-1428-EHA, Buenos Aires, Argentina
| |
Collapse
|
9
|
Gomez FH, Loeschcke V, Norry FM. QTL for survival to UV-C radiation in Drosophila melanogaster. Int J Radiat Biol 2012; 89:583-9. [PMID: 22788381 DOI: 10.3109/09553002.2012.711503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE The aim of this study was to investigate tolerance to UV-C (ultraviolet C, 280-100 nm) radiation in Drosophila melanogaster, implementing a quantitative trait locus (QTL) mapping approach. This is of interest to test for genetic variation in survival to UV (ultraviolet) radiation. MATERIALS AND METHODS We performed a QTL scan in D. melanogaster recombinant inbred lines (RIL) constructed from parental stocks derived from a crossing between northern and southern hemisphere populations that segregated substantial genetic variation in thermal resistance in a previous study. Here, two experimental treatments were implemented: Continuous and cyclic UV-C radiation. RESULTS Significant QTL were detected on all three major chromosomes. Among these, multiple trait composite interval mapping revealed a significant QTL in the pericentromeric region of chromosome 2, a genome region consistently implicated in thermotolerance in previous studies. CONCLUSIONS This study shows substantial genetic variation for UV-C radiation resistance in D. melanogaster, with QTL for survival to UV-C radiation generally overlapping with major thermotolerance QTL. The genetic architecture of UV-C radiation resistance appears to be more complex in continuously irradiated individuals.
Collapse
Affiliation(s)
- Federico H Gomez
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C-1428-EHA Buenos Aires, Argentina
| | | | | |
Collapse
|
10
|
Rodriguez M, Snoek LB, Riksen JAG, Bevers RP, Kammenga JE. Genetic variation for stress-response hormesis in C. elegans lifespan. Exp Gerontol 2012; 47:581-7. [PMID: 22613270 DOI: 10.1016/j.exger.2012.05.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/17/2012] [Accepted: 05/07/2012] [Indexed: 12/01/2022]
Abstract
Increased lifespan can be associated with greater resistance to many different stressors, most notably thermal stress. Such hormetic effects have also been found in C. elegans where short-term exposure to heat lengthens the lifespan. Genetic investigations have been carried out using mutation perturbations in a single genotype, the wild type Bristol N2. Yet, induced mutations do not yield insight regarding the natural genetic variation of thermal tolerance and lifespan. We investigated the genetic variation of heat-shock recovery, i.e. hormetic effects on lifespan and associated quantitative trait loci (QTL) in C. elegans. Heat-shock resulted in an 18% lifespan increase in wild type CB4856 whereas N2 did not show a lifespan elongation. Using recombinant inbred lines (RILs) derived from a cross between wild types N2 and CB4856 we found natural variation in stress-response hormesis in lifespan. Approx. 28% of the RILs displayed a hormesis effect in lifespan. We did not find any hormesis effects for total offspring. Across the RILs there was no relation between lifespan and offspring. The ability to recover from heat-shock mapped to a significant QTL on chromosome II which overlapped with a QTL for offspring under heat-shock conditions. The QTL was confirmed by introgressing relatively small CB4856 regions into chromosome II of N2. Our observations show that there is natural variation in hormetic effects on C. elegans lifespan for heat-shock and that this variation is genetically determined.
Collapse
Affiliation(s)
- Miriam Rodriguez
- Laboratory of Nematology, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Gómez FH, Norry FM. Is the number of possible QTL for asymmetry phenotypes dependent on thermal stress? J Therm Biol 2012. [DOI: 10.1016/j.jtherbio.2011.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|