1
|
Copeland PV, Trotman ML, Kang HJ, McNeil CJ, Dalton BH. Vestibular control of standing balance following 24 h of sleep deprivation. Exp Brain Res 2024; 242:2545-2556. [PMID: 39287791 DOI: 10.1007/s00221-024-06918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/31/2024] [Indexed: 09/19/2024]
Abstract
Sleep deprivation alters cognitive and sensorimotor function, but its effects on the control of standing balance are inconclusive. The vestibular system is critical for standing balance, and is modified by sleep deprivation; however, how sleep deprivation affects vestibular-evoked balance responses is unknown. Thus, this study aimed to examine the effect of 24 h of sleep deprivation on the vestibular control of standing balance. During both a well-rested (i.e., control) and sleep deprivation condition, nine females completed two 90-s trials of bilateral, binaural stochastic electrical vestibular stimulation (EVS) and two 120-s trials of quiet stance on a force plate. Quiet stance performance was assessed by center of pressure displacement parameters. Mediolateral ground reaction force (ML force) and surface electromyography (EMG) of the right medial gastrocnemius (MG) were sampled simultaneously with the EVS signal to quantify vestibular control of balance within the frequency (gain and coherence) and time (cumulant density) domains. Twenty-four hours of sleep deprivation did not affect quiet stance performance. Sleep deprivation also had limited effect on EVS-MG EMG and EVS-ML Force coherence (less than control at 8-10.5 Hz, greater at ~ 16 Hz); however, gain of EVS-MG EMG (< 8, 11-24 Hz) and EVS-ML force (0.5-9 Hz) was greater for sleep deprivation than control. Sleep deprivation did not alter peak-to-peak amplitude of EVS-MG EMG (p = 0.51) or EVS-ML force (p = 0.06) cumulant density function responses. Despite no effect on quiet stance parameters, the observed increase in vestibular-evoked balance response gain suggests 24-h sleep deprivation may lead to greater sensitivity of the central nervous system when transforming vestibular-driven signals for standing balance control.
Collapse
Affiliation(s)
- Paige V Copeland
- School of Health and Exercise Sciences, Faculty of Health and Social Development, The University of British Columbia Okanagan, ART 360 (Arts Building), 1147 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - Megan L Trotman
- School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Hogun J Kang
- School of Health and Exercise Sciences, Faculty of Health and Social Development, The University of British Columbia Okanagan, ART 360 (Arts Building), 1147 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - Chris J McNeil
- School of Health and Exercise Sciences, Faculty of Health and Social Development, The University of British Columbia Okanagan, ART 360 (Arts Building), 1147 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - Brian H Dalton
- School of Health and Exercise Sciences, Faculty of Health and Social Development, The University of British Columbia Okanagan, ART 360 (Arts Building), 1147 Research Road, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
2
|
Debenham MIB, Bruce CB, McNeil CJ, Dalton BH. The effects of four hours of normobaric hypoxia on the vestibular control of balance. Exp Brain Res 2024; 242:2419-2432. [PMID: 39147911 DOI: 10.1007/s00221-024-06905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024]
Abstract
Whole-body vestibular-evoked balance responses decrease following ~ 55 min of normobaric hypoxia. It is unclear how longer durations of hypoxia affect the vestibular control of balance at the muscle and whole-body levels. This study examined how four hours of normobaric hypoxia influenced the vestibular control of balance. Fifteen participants (4 females; 11 males) stood on a force plate with vision occluded and head rotated rightward while subjected to three blocks of binaural, bipolar stochastic electrical vestibular stimulation (EVS; 0-25 Hz, root mean square amplitude = 1.1 mA) consisting of two, 90-s trials. The relationship between EVS and anteroposterior (AP) forces or medial gastrocnemius (MG) electromyography (EMG) was estimated in the time and frequency domains at baseline (BL; 0.21 fraction of inspired oxygen-FIO2) and following two (H2) and four (H4) hours of normobaric hypoxia (0.11 FIO2). The EVS-MG EMG short-latency peak and peak-to-peak amplitudes were smaller than BL at H2 and H4, but the medium-latency peak amplitude was only lower at H4. The EVS-AP force medium-latency peak amplitude was lower than BL at H4, but the short-latency peak and peak-to-amplitudes were unchanged. The EVS-MG EMG coherence and gain were reduced compared to BL at H2 and H4 across multiple frequencies ≥ 7 Hz, whereas EVS-AP force coherence was blunted at H4 (≤ 4 Hz), but gain was unaffected. Overall, the central nervous system's response to vestibular-driven signals during quiet standing was decreased for up to four hours of normobaric hypoxia, and vestibular-evoked responses recorded within postural muscles may be more sensitive than the whole-body response.
Collapse
Affiliation(s)
- M I B Debenham
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, The University of British Columbia, Okanagan Campus, 1147 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - C B Bruce
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, The University of British Columbia, Okanagan Campus, 1147 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - C J McNeil
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, The University of British Columbia, Okanagan Campus, 1147 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - B H Dalton
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, The University of British Columbia, Okanagan Campus, 1147 Research Road, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
3
|
Nissi J, Kangasmaa O, Kataja J, Bouisset N, Laakso I. In vivoand dosimetric investigation on electrical vestibular stimulation with frequency- and amplitude-modulated currents. J Neural Eng 2024; 21:046038. [PMID: 39029488 DOI: 10.1088/1741-2552/ad658f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/19/2024] [Indexed: 07/21/2024]
Abstract
Objective. Normal function of the vestibular system can be disturbed using a noninvasive technique called electrical vestibular stimulation (EVS), which alters a person's sense of balance and causes false sensations of movement. EVS has been widely used to study the function of the vestibular system, and it has recently gained interest as a therapeutic tool to improve postural stability and help those suffering from vestibular dysfunction. Yet, understanding of how EVS stimulates the vestibular system, the current intensity needed to produce an effect and the frequencies at which it occurs have remained unclear.Approach. The effect of EVS on postural sway was examined in five participants using sinusoidal alternating current with time-varying amplitude from 0 to 1.5 mA and frequency from 0.1 to 10 Hz for three electrode configurations. Dosimetry of the current flow inside the head was conducted using anatomically realistic computational models created individually for each subject based on magnetic resonance imaging data. An estimate for the minimal field strength capable of affecting the vestibular system was calculated with the finite element method.Main results. Bipolar EVS at frequencies up to 10 Hz caused harmonic full-body swaying, and the frequency of the sway was the same as that of the stimulation current. The size of the sway was amplified by increasing the current intensity. Dosimetry modeling indicated that, for 0.2 mA current, the average electric field strength in the vestibular system was approximately 10-30 mV m-1, depending on the electrode montage. The size of the measured postural sway was proportional to the montage-specific electric field strength in the vestibular system.Significance. The results provide insight to EVS's working mechanisms and improve its potential as a tool to study the sense of balance.
Collapse
Affiliation(s)
- Janita Nissi
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Otto Kangasmaa
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Juhani Kataja
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Nicolas Bouisset
- Human Threshold Research Group, Lawson Health Research Institute, London, ON, Canada
- School of Kinesiology, Western University, London, ON, Canada
| | - Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
- Aalto Neuroimaging, Aalto University, Espoo, Finland
| |
Collapse
|
4
|
Foulger LH, Charlton JM, Blouin JS. Real-world characterization of vestibular contributions during locomotion. Front Hum Neurosci 2024; 17:1329097. [PMID: 38259335 PMCID: PMC10800732 DOI: 10.3389/fnhum.2023.1329097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction The vestibular system, which encodes our head movement in space, plays an important role in maintaining our balance as we navigate the environment. While in-laboratory research demonstrates that the vestibular system exerts a context-dependent influence on the control of balance during locomotion, differences in whole-body and head kinematics between indoor treadmill and real-world locomotion challenge the generalizability of these findings. Thus, the goal of this study was to characterize vestibular-evoked balance responses in the real world using a fully portable system. Methods While experiencing stochastic electrical vestibular stimulation (0-20 Hz, amplitude peak ± 4.5 mA, root mean square 1.25 mA) and wearing inertial measurement units (IMUs) on the head, low back, and ankles, 10 participants walked outside at 52 steps/minute (∼0.4 m/s) and 78 steps/minute (∼0.8 m/s). We calculated time-dependent coherence (a measure of correlation in the frequency domain) between the applied stimulus and the mediolateral back, right ankle, and left ankle linear accelerations to infer the vestibular control of balance during locomotion. Results In all participants, we observed vestibular-evoked balance responses. These responses exhibited phasic modulation across the stride cycle, peaking during the middle of the single-leg stance in the back and during the stance phase for the ankles. Coherence decreased with increasing locomotor cadence and speed, as observed in both bootstrapped coherence differences (p < 0.01) and peak coherence (low back: 0.23 ± 0.07 vs. 0.16 ± 0.14, p = 0.021; right ankle: 0.38 ± 0.12 vs. 0.25 ± 0.10, p < 0.001; left ankle: 0.33 ± 0.09 vs. 0.21 ± 0.09, p < 0.001). Discussion These results replicate previous in-laboratory studies, thus providing further insight into the vestibular control of balance during naturalistic movements and validating the use of this portable system as a method to characterize real-world vestibular responses. This study will help support future work that seeks to better understand how the vestibular system contributes to balance in variable real-world environments.
Collapse
Affiliation(s)
- Liam H. Foulger
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Jesse M. Charlton
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Jean-Sébastien Blouin
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
- Institute for Computing, Information and Cognitive Systems, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Khajuria A, Sharma R, Joshi D. EEG Dynamics of Locomotion and Balancing: Solution to Neuro-Rehabilitation. Clin EEG Neurosci 2024; 55:143-163. [PMID: 36052404 DOI: 10.1177/15500594221123690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The past decade has witnessed tremendous growth in analyzing the cortical representation of human locomotion and balance using Electroencephalography (EEG). With the advanced developments in miniaturized electronics, wireless brain recording systems have been developed for mobile recordings, such as in locomotion. In this review, the cortical dynamics during locomotion are presented with extensive focus on motor imagery, and employing the treadmill as a tool for performing different locomotion tasks. Further, the studies that examine the cortical dynamics during balancing, focusing on two types of balancing tasks, ie, static and dynamic, with the challenges in sensory inputs and cognition (dual-task), are presented. Moreover, the current literature demonstrates the advancements in signal processing methods to detect and remove the artifacts from EEG signals. Prior studies show the electrocortical sources in the anterior cingulate, posterior parietal, and sensorimotor cortex was found to be activated during locomotion. The event-related potential has been observed to increase in the fronto-central region for a wide range of balance tasks. The advanced knowledge of cortical dynamics during mobility can benefit various application areas such as neuroprosthetics and gait/balance rehabilitation. This review will be beneficial for the development of neuroprostheses, and rehabilitation devices for patients suffering from movement or neurological disorders.
Collapse
Affiliation(s)
- Aayushi Khajuria
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Richa Sharma
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Deepak Joshi
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Department of Biomedical Engineering, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
6
|
Abbariki F, Mikhail Y, Hamadjida A, Charron J, Mac-Thiong JM, Barthélemy D. Effect of galvanic vestibular stimulation applied at the onset of stance on muscular activity and gait cycle duration in healthy individuals. Front Neural Circuits 2023; 16:1065647. [PMID: 36845254 PMCID: PMC9946991 DOI: 10.3389/fncir.2022.1065647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/28/2022] [Indexed: 02/11/2023] Open
Abstract
Locomotion requires the complex involvement of the spinal and supraspinal systems. So far, the role of vestibular input in gait has been assessed mainly with respect to gait stability. The noninvasive technique of galvanic vestibular stimulation (GVS) has been reported to decrease gait variability and increase gait speed, but the extent of its effect on spatiotemporal gait parameters is not fully known. Objective: Characterize vestibular responses during gait and determine the influence of GVS on cycle duration in healthy young participants. Methods: Fifteen right-handed individuals participated in the study. Electromyography (EMG) recordings of the bilateral soleus (SOL) and tibialis anterior muscles (TA) were performed. First, to determine stimulation intensity, an accelerometer placed on the vertex recorded the amplitude of the head tilts evoked by the GVS (1-4 mA, 200 ms) to establish a motor threshold (T). Second, while participants walked on a treadmill, GVS was applied at the onset of the stance phase during the treadmill gait with an intensity of 1 and 1.5 T with the cathode behind the right (RCathode) or left ear (LCathode). EMG traces were rectified, averaged (n = 30 stimuli), and analyzed. Latency, duration, and amplitude of vestibular responses as well as the mean duration of the gait cycles were measured. Results: GVS mainly induced long-latency responses in the right SOL, right TA and left TA. Only short-latency responses were triggered in the left SOL. Responses in the right SOL, left SOL and left TA were polarity dependent, being facilitatory with RCathode and inhibitory with LCathode, whereas responses in the right TA remained facilitatory regardless of the polarity. With the RCathode configuration, the stimulated cycle was prolonged compared with the control cycle at both 1 and 1.5 T, due to prolonged left SOL and TA EMG bursts, but no change was observed in right SOL and TA. With LCathode, GVS did not modify the cycle duration. Conclusion: During gait, a brief, low-intensity GVS pulse delivered at the right stance onset induced mainly long-latency polarity-dependent responses. Furthermore, a RCathode configuration increased the duration of the stimulated gait cycle by prolonging EMG activity on the anodic side. A similar approach could be explored to influence gait symmetry in individuals with neurological impairment.
Collapse
Affiliation(s)
- Faezeh Abbariki
- School of Rehabilitation, Université de Montréal, Montreal, QC, Canada
- Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR) and Centre Intégré Universitaire en Santé et Services Sociaux (CIUSSS) du Centre-Sud-de-l’Île-de-Montréal, Montreal, QC, Canada
| | - Youstina Mikhail
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Adjia Hamadjida
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Department of Live Science, Higher Teacher Training College of Bertoua, University of Bertoua, Bertoua, Cameroon
| | - Jonathan Charron
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jean-Marc Mac-Thiong
- Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Centre Intégré Universitaire en Santé et Services Sociaux du nord de l’île de Montréal (CIUSSS NIM), Hôpital du Sacré-coeur de Montréal (HSCM), Montréal, QC, Canada
| | - Dorothy Barthélemy
- School of Rehabilitation, Université de Montréal, Montreal, QC, Canada
- Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR) and Centre Intégré Universitaire en Santé et Services Sociaux (CIUSSS) du Centre-Sud-de-l’Île-de-Montréal, Montreal, QC, Canada
- Centre Intégré Universitaire en Santé et Services Sociaux du nord de l’île de Montréal (CIUSSS NIM), Hôpital du Sacré-coeur de Montréal (HSCM), Montréal, QC, Canada
| |
Collapse
|
7
|
Debenham MIB, Kang HJ, Cheung SS, Dalton BH. The influence of reduced foot dorsum cutaneous sensitivity on the vestibular control of balance. Eur J Appl Physiol 2023; 123:65-79. [PMID: 36169737 DOI: 10.1007/s00421-022-05043-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 09/03/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Foot sole cooling increases vestibular-evoked balance responses, but less is known about foot dorsum temperature alterations. The purpose was to determine whether decreasing cutaneous receptor sensitivity via foot dorsum cooling modulates the vestibular control of balance. METHODS Eighteen participants (9 males; 9 females) stood quietly on a force plate with feet together, eyes closed, and head rotated leftward during 4, 90-s trials (2 control; 2 cooled) of continuous electrical vestibular stimulation (EVS). Icepacks placed on the dorsum of both feet for 15 min induced cooling and remained throughout the EVS trials. Monofilament testing was performed at multiple locations before and after cooling to determine tactile detection thresholds. T-type thermocouples monitored skin temperature over the tibialis anterior, soleus, foot dorsum and arch of the right leg. Vestibular-evoked balance responses were characterized using time (cumulant density) and frequency (coherence and gain) domain analyses to determine the relationship between the EVS input and motor output (anteroposterior force-AP force; right medial gastrocnemius electromyography-MG EMG). RESULTS Skin temperature of the foot dorsum and arch decreased ~ 70 and 15%, respectively during cooling (p < 0.05), but was unaltered at other locations (p ≥ 0.10). Detection thresholds for the foot dorsum increased following cooling (p < 0.05). Surprisingly, cooling reduced EVS-AP force and EVS-MG EMG coherence and gain at multiple frequencies, and peak-to-peak amplitude compared to control (p < 0.05). CONCLUSION Our results indicate that vestibular-driven balance responses are reduced following foot dorsum cooling, likely owing to alterations in cutaneous mechanoreceptor sensitivity and subsequent alterations in the transformation of vestibular cues for balance control.
Collapse
Affiliation(s)
- Mathew I B Debenham
- Sensorimotor Physiology and Integrative Neuromechanics Lab, Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Hogun J Kang
- Sensorimotor Physiology and Integrative Neuromechanics Lab, Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada
| | - Stephen S Cheung
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Brian H Dalton
- Sensorimotor Physiology and Integrative Neuromechanics Lab, Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia Okanagan, Kelowna, BC, Canada.
| |
Collapse
|
8
|
Debenham MIB, Grantham TDA, Smirl JD, Foster GE, Dalton BH. The effects of acute normobaric hypoxia on vestibular-evoked balance responses in humans. J Vestib Res 2023; 33:31-49. [PMID: 36530112 DOI: 10.3233/ves-220075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Hypoxia influences standing balance and vestibular function. OBJECTIVE The purpose here was to investigate the effect of hypoxia on the vestibular control of balance. METHODS Twenty participants (10 males; 10 females) were tested over two days (normobaric hypoxia and normoxia). Participants stood on a force plate (head rotated leftward) and experienced random, continuous electrical vestibular stimulation (EVS) during trials of eyes open (EO) and closed (EC) at baseline (BL), after 5 (H1), 30 (H2) and 55-min (H3) of hypoxia, and 10-min into normoxic recovery (NR). Vestibular-evoked balance responses were quantified using cumulant density, coherence, and gain functions between EVS and anteroposterior forces. RESULTS Oxyhemoglobin saturation, end-tidal oxygen and carbon dioxide decreased for H1-3 compared to BL; however, end-tidal carbon dioxide remained reduced at NR with EC (p≤0.003). EVS-AP force peak-to-peak amplitude was lower at H3 and NR than at BL (p≤0.01). At multiple frequencies, EVS-AP force coherence and gain estimates were lower at H3 and NR than BL for females; however, this was only observed for coherence for males. CONCLUSIONS Overall, vestibular-evoked balance responses are blunted following normobaric hypoxia >30 min, which persists into NR and may contribute to the reported increases in postural sway.
Collapse
Affiliation(s)
- M I B Debenham
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - T D A Grantham
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - J D Smirl
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - G E Foster
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - B H Dalton
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
9
|
Nguyen TT, Kang JJ, Oh SY. Thresholds for vestibular and cutaneous perception and oculomotor response induced by galvanic vestibular stimulation. Front Neurol 2022; 13:955088. [PMID: 36034303 PMCID: PMC9413160 DOI: 10.3389/fneur.2022.955088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/18/2022] [Indexed: 12/04/2022] Open
Abstract
Objectives In this study, the specific threshold intensities and response characteristics of galvanic vestibular stimulation (GVS) on vestibular (conscious) and cutaneous (detrimental) perception as well as oculomotor nystagmus (reflex) were determined. Methods The threshold intensities for vestibular and cutaneous perception and oculomotor response induced by GVS were determined in 25 right-handed healthy subjects (32.6 ± 7.2 years of age; 56% female). The subjects were seated upright, and eye movements were recorded while a direct GVS current was applied with paradigms of cathode on the right and anode on the left (CRAL) and also cathode on the left and anode on the right (CLAR). Results Subjects experienced dizziness, sense of spinning, or fall tendency, which was more frequently directed to the cathode (76%) than the anode (24%, p < 0.001, chi-square one-variable test) at mean current greater than 0.98 ± 0.29 mA (mean vestibular threshold). The current also triggered a more frequent mild tingling sensation at the cathode (56%) than the anode (30%) or on both sides (14%; p = 0.001, chi-square one-variable test) when above the mean cutaneous threshold of 0.9 ± 0.29 mA. Above the mean oculomotor threshold of 1.61 ± 0.35 mA, combined horizontal and torsional nystagmus was more frequent toward the cathode (86%) than toward the anode (p < 0.001, chi-square one-variable test). The mean oculomotor threshold was significantly higher than both the vestibular (p < 0.001, Mann–Whitney U-test) and cutaneous (p < 0.001, Mann–Whitney U-test) thresholds, which were comparable (p = 0.317, Mann–Whitney U-test). There was no significant disparity in these specific thresholds between the two GVS paradigms. The vestibular threshold was significantly higher in males than in females [1 (0.5–1.25) mA vs. 0.75 (0.625–1.125) mA, Z = −2.241, p = 0.025, Mann–Whitney U-test]. However, the thresholds of cutaneous perception and oculomotor response did not differ by sex. Conclusion The findings indicate that thresholds for vestibular and somatosensory perception are lower than the oculomotor threshold. Therefore, a strategy to reduce GVS current intensity to the level of vestibular or somatosensory perception threshold could elicit beneficial vestibular effects while avoiding undesirable effects such as oculomotor consequences.
Collapse
Affiliation(s)
- Thanh Tin Nguyen
- Jeonbuk National University College of Medicine, Jeonju, South Korea
- Department of Neurology, Jeonbuk National University Hospital and School of Medicine, Jeonju, South Korea
- Department of Pharmacology, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Jin-Ju Kang
- Department of Neurology, Jeonbuk National University Hospital and School of Medicine, Jeonju, South Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Sun-Young Oh
- Jeonbuk National University College of Medicine, Jeonju, South Korea
- Department of Neurology, Jeonbuk National University Hospital and School of Medicine, Jeonju, South Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
- *Correspondence: Sun-Young Oh
| |
Collapse
|
10
|
Mitsutake T, Taniguchi T, Nakazono H, Yoshizuka H, Sakamoto M. Effects of Noisy Galvanic Vestibular Stimulation on the Muscle Activity and Joint Movements in Different Standing Postures Conditions. Front Hum Neurosci 2022; 16:891669. [PMID: 35721349 PMCID: PMC9202802 DOI: 10.3389/fnhum.2022.891669] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/11/2022] [Indexed: 11/15/2022] Open
Abstract
Objective Noisy galvanic vestibular stimulation (nGVS) is an effective method for stabilizing posture; however, little is known regarding the detailed muscle activity and joint movement in the standing posture. This study aimed to clarify the changes in the lower limb muscle activity and joint angular velocity by nGVS intervention using the simultaneous assessment method of inertial measurement units and surface electromyography (EMG). Methods Seventeen healthy participants were assessed for their physical responses under four conditions (standing on a firm surface with eyes-open/eyes-closed, and a foam surface with eyes-open/eyes-closed) without stimulation (baseline) and with stimulation (sham or nGVS). Noise stimuli were applied for 30 s at a level below the perceptual threshold. The body control response was evaluated using EMG activity and angular velocity of the lower limbs. Result Regarding the change from baseline for each parameter, there was a significant interactive effect of EMG activity in the muscle type × intervention and EMG activity and angular velocity in the condition × intervention. Post hoc analysis revealed that the angular velocity was significantly decreased in the abduction-adduction direction in the standing on a foam surface with eyes-closed condition compared to that with eyes-open in the nGVS intervention. Conclusion Our results suggest that nGVS altered physical responses in different standing postural conditions. The present study is exploratory and therefore the evidence should be investigated in future studies specifically target those muscle activities and joint motion parameters.
Collapse
Affiliation(s)
- Tsubasa Mitsutake
- Department of Physical Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
- *Correspondence: Tsubasa Mitsutake
| | - Takanori Taniguchi
- Department of Physical Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Hisato Nakazono
- Department of Occupational Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Hisayoshi Yoshizuka
- Department of Physical Therapy, Faculty of Medical Science, Fukuoka International University of Health and Welfare, Fukuoka, Japan
| | - Maiko Sakamoto
- Faculty of Medicine, Education and Research Center for Community Medicine, Saga University, Saga, Japan
| |
Collapse
|
11
|
Papavasileiou A, Mademli L, Hatzitaki V, Patikas DA. Electromyographic responses to unexpected Achilles tendon vibration-induced perturbations during standing in young and older people. Exp Brain Res 2022; 240:1017-1027. [PMID: 35171309 DOI: 10.1007/s00221-022-06309-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
This study aimed to investigate age-related differences in electromyographic (EMG) responses to unexpected Achilles tendon vibration (ATV) perturbations while standing blindfold. ATV with variable and random duration (12-15 s) and rest periods (20-24 s) was applied on 18 young and 16 older volunteers. The anterior/posterior center of pressure (CoP) and the soleus (SOL) and tibialis anterior (TA) EMG were analyzed for 1 s before and 8 s after the ATV onset and offset. ATV induced a posterior shift of CoP in both groups, with more pronounced shift in the older group. During ATV onset, the older group demonstrated less SOL and more TA EMG increase compared to the young group. During the first 0.5 s of ATV offset, SOL EMG was decreased in both age groups, while TA showed a burst of EMG activity that was greater in the older group. No difference in the latencies of EMG peaks or valleys was observed between the groups. It is concluded that ATV induces greater posterior CoP shift in older adults, and they adopt a recovery strategy, characterized by a decreased SOL activation and an increased TA activation. These differences are possibly attributed to the increased fear of falling, decreased limits of stability and reduced capacity of older people to reweight their sensory inflow when proprioception is distorted.
Collapse
Affiliation(s)
- Anastasia Papavasileiou
- School of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, 62110, Ag. Ioannis, Serres, Greece
| | - Lida Mademli
- School of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, 62110, Ag. Ioannis, Serres, Greece
| | - Vassilia Hatzitaki
- School of Physical Education and Sport Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios A Patikas
- School of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, 62110, Ag. Ioannis, Serres, Greece.
| |
Collapse
|
12
|
Ha PL, Peters WB, McGeehan MA, Dalton BH. Age-related reduction in peak power and increased postural displacement variability are related to enhanced vestibular-evoked balance responses in females. Exp Gerontol 2022; 160:111670. [PMID: 35026336 DOI: 10.1016/j.exger.2021.111670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 11/04/2022]
Abstract
Adult aging is associated with reductions in muscle function and standing balance control. However, whether sensorimotor function adapts to maintain upright posture in the presence of age-related muscle weakness is unclear. The purpose was to determine whether vestibular control of balance is altered in older compared to younger females and whether vestibular-evoked balance responses are related to muscle power. Eight young (22.6 ± 1.8 years) and eight older (69.7 ± 6.7 years) females stood quietly on a force plate, while subjected to random, continuous electrical vestibular stimulation (EVS; 0-20 Hz, root mean square amplitude: 1.13 mA). Medial gastrocnemius (MG) and tibialis anterior (TA) surface electromyography (EMG) and force plate anterior-posterior (AP) forces were sampled and associated with the EVS signal in the frequency and time domains. Knee extensor function was evaluated using a Biodex multi-joint dynamometer. The weaker, less powerful older females exhibited a 99 and 42% greater medium-latency peak amplitude for the TA and AP force (p < 0.05), respectively, but no other differences were detected for short- and medium-latency peak amplitudes. The TA (<10 Hz) and MG (<4 Hz) EVS-EMG coherence and EVS-AP force coherence (<2 Hz) was greater in older females than young. A strong correlation was detected for AP force medium-latency peak amplitude with center of pressure displacement variability (r = 0.75; p < 0.05) and TA medium-latency peak amplitude (r = 0.86; p < 0.05). Power was negatively correlated with AP force medium-latency peak amplitude (r = -0.47; p < 0.05). Taken together, an increased vestibular control of balance may compensate for an age-related reduction in power and accompanies greater postural instability in older females than young.
Collapse
Affiliation(s)
- Phuong L Ha
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada
| | - Wendy B Peters
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Michael A McGeehan
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Brian H Dalton
- School of Health and Exercise Sciences, University of British Columbia Okanagan, Kelowna, British Columbia, Canada; Department of Human Physiology, University of Oregon, Eugene, OR, United States.
| |
Collapse
|
13
|
Minamisawa T, Chiba N, Suzuki E. Association of bilateral lower limb coordination while standing with body sway control and aging. Somatosens Mot Res 2021; 38:294-302. [PMID: 34496708 DOI: 10.1080/08990220.2021.1973402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE Coordinated movements of both lower limbs may be a clinically important indicator of motor control during quiet standing. From a neurological point of view, it is known that extensive coupling of muscles must be coordinated an upright posture. However, movement coordination between the lower limbs is the final motor output, is unknown. In this study, we focussed on the ground reaction force (GRF) vector and clarified the time and frequency characteristics of the force vectors of both lower limbs. MATERIALS AND METHODS A total of 16 healthy young adults and 18 healthy older adults participated and placed each bare foot on one of two force plates to measure the GRF vectors (i.e., anteroposterior, mediolateral, and vertical) of each lower limb and determine the centre of mass (COM) acceleration in the anteroposterior direction (COMacc). Characteristics of the coordination of both lower limbs during movements were analysed using coherence analysis and cross-correlation function analysis (CCF). RESULTS The coherence levels of the force vectors of both lower limbs were higher in all three directions and significantly increased in the older adults. CCF analysis showed that the force vectors of both lower limbs were negatively correlated at the zero-time lag. Moreover, a weak correlation was observed between COMacc and coherence values. CONCLUSIONS The assessment of bilateral lower limb connectivity using force vectors can be used as an evaluation method to reflect changes in the ability to control bipedal standing during ageing.
Collapse
Affiliation(s)
- Tadayoshi Minamisawa
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Noboru Chiba
- Department of Occupational Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| | - Eizaburo Suzuki
- Department of Physical Therapy, Yamagata Prefectural University of Health Sciences, Yamagata, Japan
| |
Collapse
|
14
|
Banman CJ, Schneider KJ, Cluff T, Peters RM. Altered Vestibular Balance Function in Combat Sport Athletes. J Neurotrauma 2021; 38:2291-2300. [PMID: 33752455 DOI: 10.1089/neu.2020.7432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Combat sports pose a risk for accumulative injuries to the nervous system, yet fighters have remained an understudied population. Here, our purpose was to determine whether repetitive blows to the head have an effect on vestibular balance reflexes in combat sports athletes. We compared lower-limb muscle responses evoked with electrical vestibular stimuluation (EVS) between fighters (boxing/muay thai) and non-fighter controls. Each participant received stochastic vestibular stimulation (0-25 Hz, ±3 mA) over their mastoid processes while they stood relaxed with their head to the left or right. Surface electromyography was recorded from the medial gastrocnemius and soleus muscles bilaterally. Short and medium latency response (SLR/MLR) peaks were significantly delayed in the fighter group compared to controls. SLR and MLR peak amplitudes were also significantly lower in fighters. Fighter-estimated cumulative repetitive head impact (RHI) events demonstrated strong positive correlations with the timing of SLR and MLR peaks. Cumulative RHI events also negatively correlated with peak MLR amplitude and response gain at frequencies above 5 Hz. Our results provide evidence of a progressive vestibular impairment in combat sports athletes, potentially resulting from blows to the head accumulated in sparring practice and competitive bouts throughout their careers. Taken together, EVS-based vestibular assessments may provide a valuable clinical diagnostic tool and help better inform "return-to-play" and career-length decisions for not only combat sports athletes, but potentially other populations at risk of RHIs.
Collapse
Affiliation(s)
- Christopher J Banman
- Faculty of Kinesiology, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Kathryn J Schneider
- Faculty of Kinesiology, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute for Child and Maternal Health, Cumming School of Medicine, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Medicine Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Evidence Sport and Spinal Therapy, Calgary, Alberta, Canada
| | - Tyler Cluff
- Faculty of Kinesiology, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Ryan M Peters
- Faculty of Kinesiology, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
15
|
Wagner AR, Akinsola O, Chaudhari AMW, Bigelow KE, Merfeld DM. Measuring Vestibular Contributions to Age-Related Balance Impairment: A Review. Front Neurol 2021; 12:635305. [PMID: 33633678 PMCID: PMC7900546 DOI: 10.3389/fneur.2021.635305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Aging is associated with progressive declines in both the vestibular and human balance systems. While vestibular lesions certainly contribute to imbalance, the specific contributions of age-related vestibular declines to age-related balance impairment is poorly understood. This gap in knowledge results from the absence of a standardized method for measuring age-related changes to the vestibular balance pathways. The purpose of this manuscript is to provide an overview of the existing body of literature as it pertains to the methods currently used to infer vestibular contributions to age-related imbalance.
Collapse
Affiliation(s)
- Andrew R. Wagner
- School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, United States
- Department of Otolaryngology—Head and Neck Surgery, The Ohio State University, Columbus, OH, United States
| | - Olaoluwa Akinsola
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States
| | - Ajit M. W. Chaudhari
- School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, United States
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States
| | - Kimberly E. Bigelow
- Department of Mechanical and Aerospace Engineering, University of Dayton, Dayton, OH, United States
| | - Daniel M. Merfeld
- School of Health and Rehabilitation Science, The Ohio State University, Columbus, OH, United States
- Department of Otolaryngology—Head and Neck Surgery, The Ohio State University, Columbus, OH, United States
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
16
|
Analysis of Vertical Micro Acceleration While Standing Reveals Age-Related Changes. Geriatrics (Basel) 2020; 5:geriatrics5040105. [PMID: 33353168 PMCID: PMC7768362 DOI: 10.3390/geriatrics5040105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 11/24/2022] Open
Abstract
In this study, we investigated the fluctuation characteristics of micro vertical acceleration of center of mass (vCOMacc) in standing and examined the usefulness of vCOMacc as an aging marker for standing control abilities. Sixteen young and 18 older adults participated in this experiment. Data for vCOMacc were calculated as the vertical ground reaction force value divided by each participant’s body mass using a force plate. The COMacc frequency structure was determined using the continuous wavelet transform to analyze the relative frequency characteristics. For time domain analysis, we determined the root mean square (RMS) and maximum amplitude (MA) of the integrated power spectral density. We also analyzed the correlation between vCOMacc and lower limb muscle activity. The relative frequency band of vCOMacc was higher in older than young adults, and the time domain indicators were sufficient to distinguish the effects of aging. Regarding the relationship between vCOMacc during standing and muscle activity, a correlation was found with the soleus muscle in young adults, while it was moderately correlated with the gastrocnemius muscle in older adults. The cause of vCOM may be related to differences in muscle activity, and vCOMacc may be utilized to more easily assess the effects of aging in standing control.
Collapse
|
17
|
Agrawal Y, Merfeld DM, Horak FB, Redfern MS, Manor B, Westlake KP, Holstein GR, Smith PF, Bhatt T, Bohnen NI, Lipsitz LA. Aging, Vestibular Function, and Balance: Proceedings of a National Institute on Aging/National Institute on Deafness and Other Communication Disorders Workshop. J Gerontol A Biol Sci Med Sci 2020; 75:2471-2480. [PMID: 32617555 PMCID: PMC7662183 DOI: 10.1093/gerona/glaa097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Indexed: 12/27/2022] Open
Abstract
Balance impairment and falls are among the most prevalent and morbid conditions affecting older adults. A critical contributor to balance and gait function is the vestibular system; however, there remain substantial knowledge gaps regarding age-related vestibular loss and its contribution to balance impairment and falls in older adults. Given these knowledge gaps, the National Institute on Aging and the National Institute on Deafness and Other Communication Disorders convened a multidisciplinary workshop in April 2019 that brought together experts from a wide array of disciplines, such as vestibular physiology, neuroscience, movement science, rehabilitation, and geriatrics. The goal of the workshop was to identify key knowledge gaps on vestibular function and balance control in older adults and develop a research agenda to make substantial advancements in the field. This article provides a report of the proceedings of this workshop. Three key questions emerged from the workshop, specifically: (i) How does aging impact vestibular function?; (ii) How do we know what is the contribution of age-related vestibular impairment to an older adult's balance problem?; and more broadly, (iii) Can we develop a nosology of balance impairments in older adults that can guide clinical practice? For each of these key questions, the current knowledge is reviewed, and the critical knowledge gaps and research strategies to address them are discussed. This document outlines an ambitious 5- to 10-year research agenda for increasing knowledge related to vestibular impairment and balance control in older adults, with the ultimate goal of linking this knowledge to more effective treatment.
Collapse
Affiliation(s)
- Yuri Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel M Merfeld
- Department of Otolaryngology-Head and Neck Surgery, Ohio State University, Columbus
| | - Fay B Horak
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland
| | - Mark S Redfern
- Department of Bioengineering, University of Pittsburgh, Pennsylvania
- Department of Otolaryngology, University of Pittsburgh, Pennsylvania
| | - Brad Manor
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | | | - Gay R Holstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paul F Smith
- Department of Pharmacology and Toxicology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand, Dunedin, New Zealand
| | - Tanvi Bhatt
- Department of Physical Therapy, University of Illinois at Chicago
| | - Nicolaas I Bohnen
- Department of Neurology, University of Michigan, Ann Arbor
- Department of Radiology, University of Michigan, Ann Arbor
| | - Lewis A Lipsitz
- Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Mildren RL, Schmidt ME, Eschelmuller G, Carpenter MG, Blouin JS, Inglis JT. Influence of age on the frequency characteristics of the soleus muscle response to Achilles tendon vibration during standing. J Physiol 2020; 598:5231-5243. [PMID: 32822066 DOI: 10.1113/jp280324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Proprioceptive sensory information from the ankle joint is critical for the control of upright posture and balance. We examined the influence of age (n = 54 healthy adults, 20-82 years old) on lower limb muscle responses to proprioceptive perturbations evoked by Achilles tendon vibration during standing. The frequency bandwidth of the muscle response became narrower, and the gain (the muscle response relative to the stimulus) and scaling (increases in response amplitude with increases in stimulus amplitude) decreased with age. Mechanics of the muscle-tendon unit (mechanical admittance) did not differ with age during standing, and thus probably did not mediate the age-related changes observed in soleus muscle responses to vibration. These findings add to our understanding of how altered proprioceptive responses may contribute to impaired mobility and falls with ageing. ABSTRACT Proprioceptive information from the ankle joint plays an important role in the control of upright posture and balance. Ageing influences many components of the sensorimotor system, which leads to poor mobility and falls. However, little is known about the influence of age on the characteristics of short latency muscle responses to proprioceptive stimuli during standing across frequencies that are encoded by muscle spindles. We examined the frequency characteristics of the soleus muscle response to noisy (10-115 Hz) Achilles tendon vibration during standing in 54 healthy adults across a broad age range (20-82 years). The results showed the frequency bandwidth of the soleus response (vibration-electromyography coherence) became progressively narrower with ageing. Coherence was significantly lower in middle-aged relative to young adults between ∼7-11 and 28-62 Hz, lower in older relative to middle-aged adults between ∼30-50 Hz and lower in older relative to young adults between ∼7-64 Hz. Muscle response gain was similar between age groups at low frequencies, although gain was lower in older relative to young adults between ∼28-54 Hz. Across the age range, the response amplitude (peak-to-peak cross-covariance) and the scaling of the response with stimulus amplitude were both negatively correlated with age. Muscle-tendon mechanics (admittance) did not differ with age, suggesting this did not mediate differences in soleus responses. Our findings suggest there is a progressive change in the soleus response to proprioceptive stimuli with ageing during standing, which could contribute to poorer mobility and falls.
Collapse
Affiliation(s)
- Robyn L Mildren
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Margot E Schmidt
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Gregg Eschelmuller
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Mark G Carpenter
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,International Collaboration on Repair Discoveries, Vancouver, BC, Canada
| | - Jean-Sébastien Blouin
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Institute for Computing, Information and Cognitive Systems, University of British Columbia, Vancouver, BC, Canada
| | - J Timothy Inglis
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,International Collaboration on Repair Discoveries, Vancouver, BC, Canada
| |
Collapse
|
19
|
Modulation of vestibular-evoked responses prior to simple and complex arm movements. Exp Brain Res 2020; 238:869-881. [PMID: 32157327 DOI: 10.1007/s00221-020-05760-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/21/2020] [Indexed: 10/24/2022]
Abstract
During destabilizing, voluntary arm movements, the vestibular system provides sensory cues related to head motion that are necessary to preserve upright balance. Although sensorimotor processing increases in accordance with task complexity during the preparation phase of reaching, it is unclear whether vestibular signals are also enhanced when maintaining postural control prior to the execution of a voluntary movement. To probe whether vestibular cues are a component of complexity-related increases in sensorimotor processing during movement preparation, vestibular-evoked responses to stochastic (0-25 Hz; root mean square = 1 mA) binaural, bipolar electrical vestibular stimulation (EVS) were examined. These responses were assessed using cumulant density function estimates in the upper and lower limbs prior to ballistic arm movements of varying complexity in both standing (experiment 1) and seated (experiment 2) conditions. In experiment 1, EVS-electromyography (EMG) cumulant density estimates surpassed 95% confidence intervals for biceps and triceps brachii, as well as the left and right medial gastrocnemius. For the latter two muscles, the responses were enhanced 10-18% with increased movement complexity. In experiment 2, the EVS-EMG cumulant density estimates also surpassed 95% confidence intervals in the upper limb, confirming the presence of vestibular-evoked responses while seated; however, the amplitude was significantly less than standing. This study demonstrates the vestibular system contributes to postural stability during the preparation phase of reaching. As such, vestibular-driven signals may be used to update an internal model for upcoming reaching tasks or to prepare for imminent postural disturbances.
Collapse
|
20
|
Dlugaiczyk J, Gensberger KD, Straka H. Galvanic vestibular stimulation: from basic concepts to clinical applications. J Neurophysiol 2019; 121:2237-2255. [DOI: 10.1152/jn.00035.2019] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Galvanic vestibular stimulation (GVS) plays an important role in the quest to understand sensory signal processing in the vestibular system under normal and pathological conditions. It has become a highly relevant tool to probe neuronal computations and to assist in the differentiation and treatment of vestibular syndromes. Following its accidental discovery, GVS became a diagnostic tool that generates eye movements in the absence of head/body motion. With the possibility to record extracellular and intracellular spikes, GVS became an indispensable method to activate or block the discharge in vestibular nerve fibers by cathodal and anodal currents, respectively. Bernie Cohen, in his attempt to decipher vestibular signal processing, has used this method in a number of hallmark studies that have added to our present knowledge, such as the link between selective electrical stimulation of semicircular canal nerves and the generation of directionally corresponding eye movements. His achievements paved the way for other major milestones including the differential recruitment order of vestibular fibers for cathodal and anodal currents, pronounced discharge adaptation of irregularly firing afferents, potential activation of hair cells, and fiber type-specific activation of central circuits. Previous disputes about the structural substrate for GVS are resolved by integrating knowledge of ion channel-related response dynamics of afferents, fiber type-specific innervation patterns, and central convergence and integration of semicircular canal and otolith signals. On the basis of solid knowledge of the methodology, specific waveforms of GVS are currently used in clinical diagnosis and patient treatment, such as vestibular implants and noisy galvanic stimulation.
Collapse
Affiliation(s)
- Julia Dlugaiczyk
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Hans Straka
- Department Biology II, Ludwig-Maximilians-Universität München, Planegg, Germany
| |
Collapse
|
21
|
Arntz AI, van der Putte DAM, Jonker ZD, Hauwert CM, Frens MA, Forbes PA. The Vestibular Drive for Balance Control Is Dependent on Multiple Sensory Cues of Gravity. Front Physiol 2019; 10:476. [PMID: 31114504 PMCID: PMC6503156 DOI: 10.3389/fphys.2019.00476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/04/2019] [Indexed: 11/24/2022] Open
Abstract
Vestibular signals, which encode head movement in space as well as orientation relative to gravity, contribute to the ongoing muscle activity required to stand. The strength of this vestibular contribution changes with the presence and quality of sensory cues of balance. Here we investigate whether the vestibular drive for standing balance also depends on different sensory cues of gravity by examining vestibular-evoked muscle responses when independently varying load and gravity conditions. Standing subjects were braced by a backboard structure that limited whole-body sway to the sagittal plane while load and vestibular cues of gravity were manipulated by: (a) loading the body downward at 1.5 and 2 times body weight (i.e., load cues), and/or (b) exposing subjects to brief periods (20 s) of micro- (<0.05 g) and hyper-gravity (∼1.8 g) during parabolic flights (i.e., vestibular cues). A stochastic electrical vestibular stimulus (0–25 Hz) delivered during these tasks evoked a vestibular-error signal and corrective muscles responses that were used to assess the vestibular drive to standing balance. With additional load, the magnitude of the vestibular-evoked muscle responses progressively increased, however, when these responses were normalized by the ongoing muscle activity, they decreased and plateaued at 1.5 times body weight. This demonstrates that the increased muscle activity necessary to stand with additional load is accompanied a proportionally smaller increase in vestibular input. This reduction in the relative vestibular contribution to balance was also observed when we varied the vestibular cues of gravity, but only during an absence (<0.05 g) and not an excess (∼1.8 g) of gravity when compared to conditions with normal 1 g gravity signals and equivalent load signals. Despite these changes, vestibular-evoked responses were observed in all conditions, indicating that vestibular cues of balance contribute to upright standing even in the near absence of a vestibular signal of gravity (i.e., micro-gravity). Overall, these experiments provide evidence that both load and vestibular cues of gravity influence the vestibular signal processing for the control of standing balance.
Collapse
Affiliation(s)
- Anne I Arntz
- Department of Neuroscience, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - Daphne A M van der Putte
- Department of Neuroscience, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Zeb D Jonker
- Department of Neuroscience, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Rehabilitation Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands.,Rijndam Rehabilitation Centre, Rotterdam, Netherlands
| | - Christopher M Hauwert
- Department of Neuroscience, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Maarten A Frens
- Department of Neuroscience, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Patrick A Forbes
- Department of Neuroscience, Erasmus MC, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
22
|
Tisserand R, Dakin CJ, Van der Loos MH, Croft EA, Inglis TJ, Blouin JS. Down regulation of vestibular balance stabilizing mechanisms to enable transition between motor states. eLife 2018; 7:36123. [PMID: 29989550 PMCID: PMC6056236 DOI: 10.7554/elife.36123] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/30/2018] [Indexed: 11/29/2022] Open
Abstract
The neural control of transition between posture and movement encompasses the regulation of reflex-stabilizing mechanisms to enable motion. Optimal feedback theory suggests that such transitions require the disengagement of one motor control policy before the implementation of another. To test this possibility, we investigated the continuity of the vestibular control of balance during transitions between quiet standing and locomotion and between two standing postures. Healthy subjects initiated and terminated locomotion or shifted the distribution of their weight between their feet, while exposed to electrical vestibular stimuli (EVS). The relationship between EVS and ground reaction forces was quantified using time-frequency analyses. Discontinuities corresponding to null coherence periods were observed preceding the onset of movement initiation and during the step preceding locomotion termination. These results show humans interrupt the vestibular balance stabilizing mechanisms to transition between motor states, suggesting a discrete change between motor control policies, as predicted by optimal feedback theory. Crossing Abbey Road is something of a paradox in neuroscientific terms. As you stand waiting to cross, tiny movements of your body – such as those due to breathing – cause you to sway by small amounts. To prevent you from falling over, your brain makes active corrections to your posture. These posture-correcting mechanisms oppose movements such as sway and keep you standing upright. But what happens when you want to cross the road? To get you moving, your brain has two options. It could temporarily suppress the posture-correcting mechanisms. Or it could reconfigure them so that they work in a different way. The posture-correcting mechanisms rely upon sensory input from various sources. These include the vestibular system of the inner ear. The vestibular system tells the brain about the position and movement of the head in space and relative to gravity. Monitoring vestibular system activity as a person starts to move should thus reveal what is happening to the posture-correcting mechanisms. Tisserand et al. asked healthy volunteers to transition between standing still and walking, or to shift their weight from one foot to the other. At the same time, small non-painful electric currents were applied to the bones behind the volunteers' ears. These currents induced small changes in vestibular system activity. Sensors in the floor measured the forces the volunteers generated while standing or walking, thereby revealing how they adjusted their balance. The results showed that the brain suppresses its posture-correcting mechanisms before people start or stop moving. These findings have implications for robotics. They could make it easier to program robots to show smooth transitions into and out of movement. The findings are also relevant to movement disorders such as Parkinson's disease. One common symptom of this disorder is freezing of gait, in which patients suddenly feel as though their feet are glued to the ground. Understanding how the brain controls movement transitions may reveal how such symptoms arise.
Collapse
Affiliation(s)
- Romain Tisserand
- School of Kinesiology, University of British Columbia, Vancouver, Canada
| | - Christopher J Dakin
- Department of Kinesiology and Health Science, Utah State University, Logan, United States
| | - Machiel Hf Van der Loos
- Department of Mechanical Engineering, University of British Columbia, Vancouver, Canada.,Institute for Computing, Information and Cognitive Systems, University of British Columbia, Vancouver, Canada
| | | | - Timothy J Inglis
- School of Kinesiology, University of British Columbia, Vancouver, Canada.,International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Jean-Sébastien Blouin
- School of Kinesiology, University of British Columbia, Vancouver, Canada.,Institute for Computing, Information and Cognitive Systems, University of British Columbia, Vancouver, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
23
|
Forbes PA, Fice JB, Siegmund GP, Blouin JS. Electrical Vestibular Stimuli Evoke Robust Muscle Activity in Deep and Superficial Neck Muscles in Humans. Front Neurol 2018; 9:535. [PMID: 30026725 PMCID: PMC6041388 DOI: 10.3389/fneur.2018.00535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/18/2018] [Indexed: 01/01/2023] Open
Abstract
Neck muscle activity evoked by vestibular stimuli is a clinical measure for evaluating the function of the vestibular apparatus. Cervical vestibular-evoked myogenic potentials (cVEMP) are most commonly measured in the sternocleidomastoid muscle (and more recently the splenius capitis muscle) in response to air-conducted sound, bone-conducted vibration or electrical vestibular stimuli. It is currently unknown, however, whether and how other neck muscles respond to vestibular stimuli. Here we measured activity bilaterally in the sternocleidomastoid, splenius capitis, sternohyoid, semispinalis capitis, multifidus, rectus capitis posterior, and obliquus capitis inferior using indwelling electrodes in two subjects exposed to binaural bipolar electrical vestibular stimuli. All recorded neck muscles responded to the electrical vestibular stimuli (0–100 Hz) provided they were active. Furthermore, the evoked responses were inverted on either side of the neck, consistent with a coordinated contribution of all left-right muscle pairs acting as antagonists in response to the electrically-evoked vestibular error of head motion. Overall, our results suggest that, as previously observed in cat neck muscles, broad connections exist between the human vestibular system and neck motoneurons and highlight the need for future investigations to establish their neural connections.
Collapse
Affiliation(s)
- Patrick A Forbes
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, Netherlands.,Department of Biomechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - Jason B Fice
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Gunter P Siegmund
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,MEA Forensic Engineers & Scientists, Richmond, BC, Canada
| | - Jean-Sébastien Blouin
- School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.,Institute for Computing, Information and Cognitive Systems, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Degree of Functional Impairment Associated With Vestibular Hypofunction Among Older Adults With Cognitive Decline. Otol Neurotol 2018; 39:e392-e400. [DOI: 10.1097/mao.0000000000001746] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
McIntosh EI, Power GA, Dalton BH. The vestibulomyogenic balance response is elevated following high-intensity lengthening contractions of the lower limb. Neurosci Lett 2018; 675:120-126. [PMID: 29596981 DOI: 10.1016/j.neulet.2018.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 02/28/2018] [Accepted: 03/25/2018] [Indexed: 10/17/2022]
Abstract
The purpose was to investigate whether exercise-induced muscle weakness of the plantar and dorsiflexors through high-intensity lengthening contractions increases the vestibulomyogenic balance response. Nine males (∼25 years) participated in three experimental testing days to evaluate the vestibular control of standing balance and neuromuscular function of the plantar and dorsiflexors pre- and post (30 min, and 1 and 7 days) high-intensity lengthening plantar and dorsiflexions. To evaluate the vestibular-evoked balance response, participants stood quietly on a force plate while exposed to continuous, random electrical vestibular stimulation (EVS) for two 90-s trials. Relationships between EVS-antero-posterior (AP) forces and EVS-medial gastrocnemius electromyography (EMG) were estimated in the frequency domain (i.e., coherence). Weakness of the right plantar and dorsiflexors were assessed using maximal voluntary contraction (MVC) torque. The lengthening contractions induced a 13 and 24% reduction in plantar and dorsiflexor MVC torque, respectively (p < 0.05) of the exercised leg, which did not recover by 1 day post. The EVS-EMG coherence increased over a range of frequencies up to 7 days post compared to pre-lengthening contractions. Conversely, EVS-AP forces coherence exhibited limited changes. The greater EVS-EMG coherence post exercise-induced muscle weakness may be a compensatory mechanism to maintain the whole-body vestibular-evoked balance response when muscle strength is reduced.
Collapse
Affiliation(s)
- Emily I McIntosh
- Department of Human Physiology, University of Oregon, Eugene, United States; Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| | - Geoffrey A Power
- Department of Human Health and Nutritional Sciences, University of Guelph, Canada
| | - Brian H Dalton
- Department of Human Physiology, University of Oregon, Eugene, United States; School of Health and Exercise Sciences, University of British Columbia, Kelowna, Canada.
| |
Collapse
|
26
|
Wallace JW, Rasman BG, Dalton BH. Vestibular-Evoked Responses Indicate a Functional Role for Intrinsic Foot Muscles During Standing Balance. Neuroscience 2018. [PMID: 29524635 DOI: 10.1016/j.neuroscience.2018.02.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Maintaining standing balance involves multisensory processing and integration to produce dynamic motor responses. Electrical vestibular stimulation (EVS) delivered over the mastoid processes can be used to explore the vestibular control of balance. The purpose of this study was to determine whether intrinsic foot muscles exhibit vestibular-evoked balance responses and to characterize the traits associated with these responses. Electromyography (EMG) of the abductor hallucis (AH), abductor digiti minimi (ADM) and medial gastrocnemius (MG) and anterior-posterior (AP) forces were sampled while quietly standing participants were subjected to a random continuous EVS signal (peak-to-peak amplitude = ±3 mA). The relationship between EVS input and motor output was characterized in both the frequency (coherence) and time (cumulant density) domains. When head orientation was rotated in yaw from left to right, the biphasic cumulant density function was inverted for all muscle (EVS-EMG) and whole-body (EVS-AP forces) balance responses. When vision was occluded, the EVS-EMG and EVS-AP forces coherence function amplitude increased at low frequencies (<2 Hz) and was accompanied by a heightened medium-latency peak amplitude for all muscles as well as the whole-body balance response (AP forces) compared to when static visual cues were present. The enhanced coherence amplitudes at lower frequencies may highlight a mechanism for the increase in postural sway from vision to occluded vision. The current findings indicate that the vestibular control of standing balance can be represented by the intrinsic foot muscles and implicate a postural role for these muscles in modulating quiet standing.
Collapse
Affiliation(s)
- Jonathan W Wallace
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Brandon G Rasman
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian H Dalton
- Department of Human Physiology, University of Oregon, Eugene, OR, United States; School of Health and Exercise Sciences, The University of British Columbia, Kelowna, British Columbia, Canada.
| |
Collapse
|
27
|
Watanabe T, Saito K, Ishida K, Tanabe S, Nojima I. Coordination of plantar flexor muscles during bipedal and unipedal stances in young and elderly adults. Exp Brain Res 2018; 236:1229-1239. [DOI: 10.1007/s00221-018-5217-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/22/2018] [Indexed: 11/30/2022]
|
28
|
The use of intermuscular coherence analysis as a novel approach to detect age-related changes on postural muscle synergy. Neurosci Lett 2017; 656:108-113. [PMID: 28732761 DOI: 10.1016/j.neulet.2017.07.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/11/2017] [Accepted: 07/17/2017] [Indexed: 11/22/2022]
Abstract
The overall goal of this study was to investigate potential adaptations brought about by the natural processes of aging on the coordination of postural muscles. Considering the progressive and non-homogeneous deterioration of sensorimotor and neuromuscular systems as the individual grows older, it was hypothesized that aging is associated with a reorganization of synergistic mechanisms controlling postural muscles. Therefore, the presence, distribution, and strength of correlated neural inputs to three posterior postural muscles were measured by intermuscular coherence estimations at a low frequency band (0-55Hz). Nine healthy young adults and thirteen healthy older adults performed ten trials of a perturbed task: bipedal stance while holding a five kg load for fifteen seconds. Estimates of intermuscular coherence for each pair of electromyographic signals (soleus and biceps femoris, soleus and erector spinae, and biceps femoris and erector spinae) were computed. Results revealed significantly stronger levels of synchronization of posterior muscles within 0-10Hz in seniors compared to young adults. In addition, seniors presented similar spectra of intermuscular coherence within 0-55Hz for all three muscle pairs analyzed. These findings provide valuable information regarding compensatory mechanisms adopted by older adults to control balance. The age-related reorganization of neural drive controlling posterior postural muscles revealing a stronger synchronization within 0-10Hz might be related to the faster body sway and muscle co-activation patterns usually observed in this population. Finally, this study supports the use of Intermuscular Coherence Analysis as a sensitive method to detect age-related changes in multi-muscle control.
Collapse
|
29
|
Dalton BH, Rasman BG, Inglis JT, Blouin J. The internal representation of head orientation differs for conscious perception and balance control. J Physiol 2017; 595:2731-2749. [PMID: 28035656 PMCID: PMC5390877 DOI: 10.1113/jp272998] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 11/12/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We tested perceived head-on-feet orientation and the direction of vestibular-evoked balance responses in passively and actively held head-turned postures. The direction of vestibular-evoked balance responses was not aligned with perceived head-on-feet orientation while maintaining prolonged passively held head-turned postures. Furthermore, static visual cues of head-on-feet orientation did not update the estimate of head posture for the balance controller. A prolonged actively held head-turned posture did not elicit a rotation in the direction of the vestibular-evoked balance response despite a significant rotation in perceived angular head posture. It is proposed that conscious perception of head posture and the transformation of vestibular signals for standing balance relying on this head posture are not dependent on the same internal representation. Rather, the balance system may operate under its own sensorimotor principles, which are partly independent from perception. ABSTRACT Vestibular signals used for balance control must be integrated with other sensorimotor cues to allow transformation of descending signals according to an internal representation of body configuration. We explored two alternative models of sensorimotor integration that propose (1) a single internal representation of head-on-feet orientation is responsible for perceived postural orientation and standing balance or (2) conscious perception and balance control are driven by separate internal representations. During three experiments, participants stood quietly while passively or actively maintaining a prolonged head-turned posture (>10 min). Throughout the trials, participants intermittently reported their perceived head angular position, and subsequently electrical vestibular stimuli were delivered to elicit whole-body balance responses. Visual recalibration of head-on-feet posture was used to determine whether static visual cues are used to update the internal representation of body configuration for perceived orientation and standing balance. All three experiments involved situations in which the vestibular-evoked balance response was not orthogonal to perceived head-on-feet orientation, regardless of the visual information provided. For prolonged head-turned postures, balance responses consistent with actual head-on-feet posture occurred only during the active condition. Our results indicate that conscious perception of head-on-feet posture and vestibular control of balance do not rely on the same internal representation, but instead treat sensorimotor cues in parallel and may arrive at different conclusions regarding head-on-feet posture. The balance system appears to bypass static visual cues of postural orientation and mainly use other sensorimotor signals of head-on-feet position to transform vestibular signals of head motion, a mechanism appropriate for most daily activities.
Collapse
Affiliation(s)
- Brian H. Dalton
- School of KinesiologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- School of Health and Exercise SciencesUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
| | - Brandon G. Rasman
- School of KinesiologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - J. Timothy Inglis
- School of KinesiologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- International Collaboration on Repair DiscoveriesUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Jean‐Sébastien Blouin
- School of KinesiologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Djavad Mowafaghian Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Institute for Computing, Information and Cognitive SystemsUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
30
|
Wittenberg E, Thompson J, Nam CS, Franz JR. Neuroimaging of Human Balance Control: A Systematic Review. Front Hum Neurosci 2017; 11:170. [PMID: 28443007 PMCID: PMC5385364 DOI: 10.3389/fnhum.2017.00170] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/22/2017] [Indexed: 12/13/2022] Open
Abstract
This review examined 83 articles using neuroimaging modalities to investigate the neural correlates underlying static and dynamic human balance control, with aims to support future mobile neuroimaging research in the balance control domain. Furthermore, this review analyzed the mobility of the neuroimaging hardware and research paradigms as well as the analytical methodology to identify and remove movement artifact in the acquired brain signal. We found that the majority of static balance control tasks utilized mechanical perturbations to invoke feet-in-place responses (27 out of 38 studies), while cognitive dual-task conditions were commonly used to challenge balance in dynamic balance control tasks (20 out of 32 studies). While frequency analysis and event related potential characteristics supported enhanced brain activation during static balance control, that in dynamic balance control studies was supported by spatial and frequency analysis. Twenty-three of the 50 studies utilizing EEG utilized independent component analysis to remove movement artifacts from the acquired brain signals. Lastly, only eight studies used truly mobile neuroimaging hardware systems. This review provides evidence to support an increase in brain activation in balance control tasks, regardless of mechanical, cognitive, or sensory challenges. Furthermore, the current body of literature demonstrates the use of advanced signal processing methodologies to analyze brain activity during movement. However, the static nature of neuroimaging hardware and conventional balance control paradigms prevent full mobility and limit our knowledge of neural mechanisms underlying balance control.
Collapse
Affiliation(s)
- Ellen Wittenberg
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State UniversityRaleigh, NC, USA
| | - Jessica Thompson
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State UniversityChapel Hill, NC, USA
| | - Chang S Nam
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State UniversityRaleigh, NC, USA
| | - Jason R Franz
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State UniversityChapel Hill, NC, USA
| |
Collapse
|
31
|
McGeehan MA, Woollacott MH, Dalton BH. Vestibular control of standing balance is enhanced with increased cognitive load. Exp Brain Res 2016; 235:1031-1040. [PMID: 28032141 DOI: 10.1007/s00221-016-4858-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
Abstract
When cognitive load is elevated during a motor task, cortical inhibition and reaction time are increased; yet, standing balance control is often unchanged. This disconnect is likely explained by compensatory mechanisms within the balance system such as increased sensitivity of the vestibulomotor pathway. This study aimed to determine the effects of increased cognitive load on the vestibular control of standing balance. Participants stood blindfolded on a force plate with their head facing left and arms relaxed at their sides for two trials while exposed to continuous electrical vestibular stimulation (EVS). Participants either stood quietly or executed a cognitive task (double-digit arithmetic). Surface electromyography (EMG) and anterior-posterior ground-body forces (APF) were measured in order to evaluate vestibular-evoked balance responses in the frequency (coherence and gain) and time (cumulant density) domains. Total distance traveled for anterior-posterior center of pressure (COP) was assessed as a metric of balance variability. Despite similar distances traveled for COP, EVS-medial gastrocnemius (MG) EMG and EVS-APF coherence and EVS-TA EMG and EVS-MG EMG gain were elevated for multiple frequencies when standing with increased cognitive load. For the time domain, medium-latency peak amplitudes increased by 13-54% for EVS-APF and EVS-EMG relationships with the cognitive task compared to without. Peak short-latency amplitudes were unchanged. These results indicate that reliance on vestibular control of balance is enhanced when cognitive load is elevated. This augmented neural strategy may act to supplement divided cortical processing resources within the balance system and compensate for the acute neuromuscular modifications associated with increased cognitive demand.
Collapse
Affiliation(s)
| | | | - Brian H Dalton
- Department of Human Physiology, University of Oregon, Eugene, OR, USA. .,Faculty of Health and Social Development, School of Health and Exercise Sciences, The University of British Columbia, Okanagan Campus, ART 360 (Arts Building) 1147 Research Road, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
32
|
Older adults demonstrate superior vestibular perception for virtual rotations. Exp Gerontol 2016; 82:50-7. [DOI: 10.1016/j.exger.2016.05.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/25/2016] [Accepted: 05/27/2016] [Indexed: 11/23/2022]
|
33
|
Hepple RT, Rice CL. Innervation and neuromuscular control in ageing skeletal muscle. J Physiol 2015; 594:1965-78. [PMID: 26437581 DOI: 10.1113/jp270561] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/28/2015] [Indexed: 12/28/2022] Open
Abstract
Changes in the neuromuscular system affecting the ageing motor unit manifest structurally as a reduction in motor unit number secondary to motor neuron loss; fibre type grouping due to repeating cycles of denervation-reinnervation; and instability of the neuromuscular junction that may be due to either or both of a gradual perturbation in postsynaptic signalling mechanisms necessary for maintenance of the endplate acetylcholine receptor clusters or a sudden process involving motor neuron death or traumatic injury to the muscle fibre. Functionally, these changes manifest as a reduction in strength and coordination that precedes a loss in muscle mass and contributes to impairments in fatigue. Regular muscle activation in postural muscles or through habitual physical activity can attenuate some of these structural and functional changes up to a point along the ageing continuum. On the other hand, regular muscle activation in advanced age (>75 years) loses its efficacy, and at least in rodents may exacerbate age-related motor neuron death. Transgenic mouse studies aimed at identifying potential mechanisms of motor unit disruptions in ageing muscle are not conclusive due to many different mechanisms converging on similar motor unit alterations, many of which phenocopy ageing muscle. Longitudinal studies of ageing models and humans will help clarify the cause and effect relationships and thus, identify relevant therapeutic targets to better preserve muscle function across the lifespan.
Collapse
Affiliation(s)
- Russell T Hepple
- Department of Kinesiology & Physical Education, McGill University, Montreal, Québec, Canada.,McGill Research Centre for Physical Activity and Health, Montreal, Québec, Canada.,Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
| | - Charles L Rice
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada.,Canadian Centre for Activity and Aging, London, Ontario, Canada.,Department of Anatomy & Cell Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
34
|
Pasma JH, Engelhart D, Maier AB, Schouten AC, van der Kooij H, Meskers CGM. Changes in sensory reweighting of proprioceptive information during standing balance with age and disease. J Neurophysiol 2015; 114:3220-33. [PMID: 26424578 DOI: 10.1152/jn.00414.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/24/2015] [Indexed: 11/22/2022] Open
Abstract
With sensory reweighting, reliable sensory information is selected over unreliable information during balance by dynamically combining this information. We used system identification techniques to show the weight and the adaptive process of weight change of proprioceptive information during standing balance with age and specific diseases. Ten healthy young subjects (aged between 20 and 30 yr) and 44 elderly subjects (aged above 65 yr) encompassing 10 healthy elderly, 10 with cataract, 10 with polyneuropathy, and 14 with impaired balance, participated in the study. During stance, proprioceptive information of the ankles was disturbed by rotation of the support surface with specific frequency content where disturbance amplitude increased over trials. Body sway and reactive ankle torque were measured to determine sensitivity functions of these responses to the disturbance amplitude. Model fits resulted in a proprioceptive weight (changing over trials), time delay, force feedback, reflexive stiffness, and damping. The proprioceptive weight was higher in healthy elderly compared with young subjects and higher in elderly subjects with cataract and with impaired balance compared with healthy elderly subjects. Proprioceptive weight decreased with increasing disturbance amplitude; decrease was similar in all groups. In all groups, the time delay was higher and the reflexive stiffness was lower compared with young or healthy elderly subjects. In conclusion, proprioceptive information is weighted more with age and in patients with cataract and impaired balance. With age and specific diseases the time delay was higher and reflexive stiffness was lower. These results illustrate the opportunity to detect the underlying cause of impaired balance in the elderly with system identification.
Collapse
Affiliation(s)
- J H Pasma
- Department of Rehabilitation Medicine, Leiden University Medical Center, Leiden, The Netherlands;
| | - D Engelhart
- Laboratory of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands
| | - A B Maier
- Section of Gerontology and Geriatrics, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - A C Schouten
- Laboratory of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands; and
| | - H van der Kooij
- Laboratory of Biomechanical Engineering, Institute for Biomedical Technology and Technical Medicine (MIRA), University of Twente, Enschede, The Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands; and
| | - C G M Meskers
- Department of Rehabilitation Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|