1
|
Zhang Z, Yang R, Zi Z, Liu B. A new clinical age of aging research. Trends Endocrinol Metab 2024:S1043-2760(24)00223-6. [PMID: 39227191 DOI: 10.1016/j.tem.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024]
Abstract
Aging is a major risk factor for a variety of diseases, thus, translation of aging research into practical applications is driven by the unmet need for existing clinical therapeutic options. Basic and translational research efforts are converging at a critical stage, yielding insights into how fundamental aging mechanisms are used to identify promising geroprotectors or therapeutics. This review highlights several research areas from a clinical perspective, including senescent cell targeting, alleviation of inflammaging, and optimization of metabolism with endogenous metabolites or precursors. Refining our understanding of these key areas, especially from the clinical angle, may help us to better understand and attenuate aging processes and improve overall health outcomes.
Collapse
Affiliation(s)
- Zhen Zhang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518055, China
| | - Renlei Yang
- Department of Plastic Surgery, Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Zhike Zi
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen 518055, China.
| |
Collapse
|
2
|
Dideriksen K, Reitelseder S, Boesen AP, Zillmer M, Agergaard J, Kjaer M, Holm L. Lower basal and postprandial muscle protein synthesis after 2 weeks single-leg immobilization in older men: No protective effect of anti-inflammatory medication. Physiol Rep 2024; 12:e15958. [PMID: 38406891 PMCID: PMC10895449 DOI: 10.14814/phy2.15958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024] Open
Abstract
Muscle inactivity may reduce basal and postprandial muscle protein synthesis (MPS) rates in humans. Anti-inflammatory treatment alleviates the MPS impairments in younger individuals. The present study explored the influence of nonsteroidal anti-inflammatory drugs (NSAIDs) upon MPS during a period of inactivity in older humans. Eighteen men (age 60-80 years) were allocated to ibuprofen (1200 mg/day, Ibu) or control (Plc) groups. One lower limb was cast immobilized for 2 weeks. Postabsorptive and postprandial MPS was measured before and after the immobilization by L-[ring-13 C6 ]-phenylalanine infusion. The protein expression of select anabolic signaling molecules was investigated by western blot. Basal (0.038 ± 0.002%/h and 0.039 ± 0.005%/h, Plc and Ibu, respectively) and postprandial (0.064 ± 0.004%/h and 0.067 ± 0.010%/h, Plc and Ibu, respectively) MPS rate were higher pre-immobilization compared to basal (0.019 ± 0.005%/h and 0.020 ± 0.010%/h, Plc and Ibu, respectively) and postprandial (0.033 ± 0.005%/h and 0.037 ± 0.006%/h, Plc and Ibu, respectively) MPS rate post-immobilization (p < 0.001). NSAID treatment did not affect the suppression of MPS (p > 0.05). The anabolic signaling were in general reduced after immobilization (p < 0.05). These changes were unaffected by NSAID treatment (p > 0.05). Basal and postprandial MPS dropped markedly after 2 weeks of lower limb immobilization. NSAID treatment neither influenced the reduction in MPS nor the anabolic signaling after immobilization in healthy older individuals.
Collapse
Affiliation(s)
- K Dideriksen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - S Reitelseder
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Institute of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A P Boesen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - M Zillmer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - J Agergaard
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - M Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - L Holm
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Institute of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Fountain WA, Naruse M, Claiborne A, Trappe S, Trappe TA. Controlling Inflammation Improves Aging Skeletal Muscle Health. Exerc Sport Sci Rev 2023; 51:51-56. [PMID: 36722844 PMCID: PMC10033374 DOI: 10.1249/jes.0000000000000313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chronic inflammation is associated with a decline in aging skeletal muscle health. Inflammation also seems to interfere with the beneficial skeletal muscle adaptations conferred by exercise training in older individuals. We hypothesize that the cyclooxygenase pathway is partially responsible for this negative inflammatory influence on aging skeletal muscle health and plasticity.
Collapse
|
4
|
Grgic J. No Pain, No Gain? Examining the Influence of Ibuprofen Consumption on Muscle Hypertrophy. Strength Cond J 2022. [DOI: 10.1519/ssc.0000000000000747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Bass JJ, Hardy EJO, Inns TB, Wilkinson DJ, Piasecki M, Morris RH, Spicer A, Sale C, Smith K, Atherton PJ, Phillips BE. Atrophy Resistant vs. Atrophy Susceptible Skeletal Muscles: "aRaS" as a Novel Experimental Paradigm to Study the Mechanisms of Human Disuse Atrophy. Front Physiol 2021; 12:653060. [PMID: 34017264 PMCID: PMC8129522 DOI: 10.3389/fphys.2021.653060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/01/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Disuse atrophy (DA) describes inactivity-induced skeletal muscle loss, through incompletely defined mechanisms. An intriguing observation is that individual muscles exhibit differing degrees of atrophy, despite exhibiting similar anatomical function/locations. We aimed to develop an innovative experimental paradigm to investigate Atrophy Resistant tibialis anterior (TA) and Atrophy Susceptible medial gastrocnemius (MG) muscles (aRaS) with a future view of uncovering central mechanisms. METHOD Seven healthy young men (22 ± 1 year) underwent 15 days unilateral leg immobilisation (ULI). Participants had a single leg immobilised using a knee brace and air-boot to fix the leg (75° knee flexion) and ankle in place. Dual-energy X-ray absorptiometry (DXA), MRI and ultrasound scans of the lower leg were taken before and after the immobilisation period to determine changes in muscle mass. Techniques were developed for conchotome and microneedle TA/MG muscle biopsies following immobilisation (both limbs), and preliminary fibre typing analyses was conducted. RESULTS TA/MG muscles displayed comparable fibre type distribution of predominantly type I fibres (TA 67 ± 7%, MG 63 ± 5%). Following 15 days immobilisation, MG muscle volume (-2.8 ± 1.4%, p < 0.05) and muscle thickness decreased (-12.9 ± 1.6%, p < 0.01), with a positive correlation between changes in muscle volume and thickness (R2 = 0.31, p = 0.038). Importantly, both TA muscle volume and thickness remained unchanged. CONCLUSION The use of this unique "aRaS" paradigm provides an effective and convenient means by which to study the mechanistic basis of divergent DA susceptibility in humans, which may facilitate new mechanistic insights, and by extension, mitigation of skeletal muscle atrophy during human DA.
Collapse
Affiliation(s)
- Joseph J. Bass
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
| | - Edward J. O. Hardy
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
- Department of Surgery and Anaesthetics, Royal Derby Hospital, Derby, United Kingdom
| | - Thomas B. Inns
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
| | - Daniel J. Wilkinson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
| | - Mathew Piasecki
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
| | - Robert H. Morris
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Abi Spicer
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Craig Sale
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, Nottingham Trent University, Nottingham, United Kingdom
| | - Ken Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
| | - Philip J. Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
- Philip J. Atherton,
| | - Bethan E. Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research and National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre (BRC), University of Nottingham, Nottingham, United Kingdom
- *Correspondence: Bethan E. Phillips,
| |
Collapse
|
6
|
Karlsen A, Cullum CK, Norheim KL, Scheel FU, Zinglersen AH, Vahlgren J, Schjerling P, Kjaer M, Mackey AL. Neuromuscular Electrical Stimulation Preserves Leg Lean Mass in Geriatric Patients. Med Sci Sports Exerc 2020; 52:773-784. [PMID: 31688649 DOI: 10.1249/mss.0000000000002191] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AIM This study aimed to examine changes in lean mass during hospitalization in geriatric patients and the effect of muscle activation by neuromuscular electrical stimulation. METHODS Thirteen patients (69-94 yr) at a geriatric ward completed tests at hospital admission (days 2-3) and discharge (days 8-10). One leg received daily stimulation of the knee extensors, whereas the other leg served as a control leg. Lean mass was evaluated by dual-energy x-ray absorptiometry scans and muscle thickness by ultrasound scans. Muscle biopsies were collected from both legs at admission and discharge in nine patients and analyzed for fiber size, satellite cell number, and activation and expression of genes associated with muscle protein synthesis and breakdown, connective tissue, and cellular stress. RESULTS The relative decline in leg lean mass and midthigh region lean mass was larger in the control (-2.8% ± 1.5%) versus the stimulated leg (-0.5% ± 1.4%, P < 0.05). Although there were no changes in fiber size or satellite cell number, the mRNA data revealed that, compared with control, the stimulation resulted in a downregulation of myostatin (P < 0.05) and a similar trend for MAFbx (P = 0.099), together with an upregulation of Collagen I (P < 0.001), TenascinC (P < 0.001), CD68 (P < 0.01), and Ki67 (P < 0.05) mRNA. CONCLUSION These findings demonstrate a moderate decline in leg lean mass during a hospital stay in geriatric patients, whereas leg lean mass was preserved with daily neuromuscular electrical muscle activation. At the cellular level, the stimulation had a clear influence on suppression of atrophy signaling pathways in parallel with a stimulation of connective tissue and cellular remodeling processes.
Collapse
|
7
|
Karlsen A, Mackey AL, Suetta C, Kjaer M. What is the impact of acute inflammation on muscle performance in geriatric patients? Exp Gerontol 2020; 138:111008. [DOI: 10.1016/j.exger.2020.111008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 01/08/2023]
|
8
|
Endo Y, Nourmahnad A, Sinha I. Optimizing Skeletal Muscle Anabolic Response to Resistance Training in Aging. Front Physiol 2020; 11:874. [PMID: 32792984 PMCID: PMC7390896 DOI: 10.3389/fphys.2020.00874] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Loss of muscle mass and strength with aging, also termed sarcopenia, results in a loss of mobility and independence. Exercise, particularly resistance training, has proven to be beneficial in counteracting the aging-associated loss of skeletal muscle mass and function. However, the anabolic response to exercise in old age is not as robust, with blunted improvements in muscle size, strength, and function in comparison to younger individuals. This review provides an overview of several physiological changes which may contribute to age-related loss of muscle mass and decreased anabolism in response to resistance training in the elderly. Additionally, the following supplemental therapies with potential to synergize with resistance training to increase muscle mass are discussed: nutrition, creatine, anti-inflammatory drugs, testosterone, and growth hormone (GH). Although these interventions hold some promise, further research is necessary to optimize the response to exercise in elderly patients.
Collapse
Affiliation(s)
- Yori Endo
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Atousa Nourmahnad
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Indranil Sinha
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Harvard Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Cambridge, MA, United States
| |
Collapse
|
9
|
Camargo LDR, Doneda D, Oliveira VR. Whey protein ingestion in elderly diet and the association with physical, performance and clinical outcomes. Exp Gerontol 2020; 137:110936. [PMID: 32289487 DOI: 10.1016/j.exger.2020.110936] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/12/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022]
Abstract
Nutrition is critical to the health of the elderly, since most of them have a deficiency in key nutrient. The use of whey protein may be a food strategy to increase protein intake. The objective of this work was to evaluate the ingestion of whey protein for the elderly and the association with physical performance and clinical outcomes. A systematic review was conducted in order to find papers that shed some light in the correlation between whey protein and the elderly. INCLUSION CRITERIA population: elderly; intervention: use of whey protein when compared to control group; outcome: related to health, nutrition, or quality of life. DATABASE PubMed, with papers published in the last 5 years. SEARCH STRATEGY (elder OR senior OR elderly OR aging OR aged OR old OR older) AND (whey OR "whey protein"). 35 papers were selected of which 22 had a physical performance outcome and 13 had clinical outcomes. Studies indicate that whey protein supplements promote protein synthesis in the elderly, improving muscle performance and aerobic capacity, protecting against sarcopenia and reducing the risk for falls. In the papers studied, the age group considered to be elderly was ≥65 years in 27 papers and ≥60 years in the other 8 papers. Whey protein also appears to contribute to improved health, recovery from disease, prevention of cardiovascular and metabolic risks, and hepatic steatosis complications. Data suggest that whey protein supplements may be promising for the health improvement of the elderly.
Collapse
Affiliation(s)
- Liziane da Rosa Camargo
- Postgraduate Program in Biomedical Geronthology in the Pontifical Catholic University of Rio Grande do Sul, Brazil
| | - Divair Doneda
- Nutritionist, Medicine College, Federal University of Rio Grande do Sul
| | - Viviani Ruffo Oliveira
- Nutrition Department, Postgraduate Program in Food, Nutrition and Health, Federal University of Rio Grande do Sul, Brazil.
| |
Collapse
|
10
|
Leuchtmann AB, Handschin C. Pharmacological targeting of age-related changes in skeletal muscle tissue. Pharmacol Res 2020; 154:104191. [PMID: 30844535 PMCID: PMC7100900 DOI: 10.1016/j.phrs.2019.02.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/25/2022]
Abstract
Sarcopenia, the age-related loss of skeletal muscle mass and function, increases the risk of developing chronic diseases in older individuals and is a strong predictor of disability and death. Because of the ongoing demographic transition, age-related muscle weakness is responsible for an alarming and increasing contribution to health care costs in Western countries. Exercise-based interventions are most successful in preventing the decline in skeletal muscle mass and in preserving or ameliorating functional capacities with increasing age. However, other treatment options are still scarce. In this review, we explore currently applied nutritional and pharmacological approaches to mitigate age-related muscle wasting, and discuss potential future therapeutic avenues.
Collapse
Affiliation(s)
- Aurel B Leuchtmann
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| | - Christoph Handschin
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland.
| |
Collapse
|
11
|
Muscle protein breakdown is impaired during immobilization compared to during a subsequent retraining period in older men: no effect of anti-inflammatory medication. Pflugers Arch 2020; 472:281-292. [PMID: 32025814 PMCID: PMC7035225 DOI: 10.1007/s00424-020-02353-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/29/2019] [Accepted: 01/26/2020] [Indexed: 12/25/2022]
Abstract
Muscle inactivity reduces muscle protein synthesis (MPS), whereas a subsequent period of rehabilitation resistance training (retraining) increases MPS. However, less is known regarding muscle protein breakdown (MPB) during such conditions. Furthermore, nonsteroidal anti-inflammatory drugs (NSAIDs) may have a dampening effect on MPB during periods of inactivity in older individuals. Thus, we measured the average MPB, by use of the deuterated water methodology, during an immobilization period and a subsequent retraining period in older individuals with and without NSAID treatment. Eighteen men (60–80 years: range) were randomly assigned to ibuprofen (1200 mg/d, Ibu) or placebo (Plc). One lower limb was immobilized in a cast for 2 weeks and retrained for 2 weeks, and 2 × 20 g of whey protein was ingested daily during both periods. Besides MPB, the protein expression of different muscle degradation signaling molecules was investigated. MPB was lower during immobilization compared to retraining (p < 0.01). NSAID treatment did not affect the MPB rate during immobilization or retraining (p > 0.05). The protein expression of muscle degradation signaling molecules changed during the study intervention but were unaffected by NSAID treatment. The finding that MPB was lower during immobilization than during retraining indicates that an increased MPB may play an important role in the muscle protein remodeling processes taking place within the initial retraining period. Moreover, NSAID treatment did not significantly influence the MPB rate during 2 weeks of lower limb immobilization or during 2 weeks of subsequent retraining in older individuals.
Collapse
|
12
|
Holm L, Dideriksen K, Nielsen RH, Doessing S, Bechshoeft RL, Højfeldt G, Moberg M, Blomstrand E, Reitelseder S, van Hall G. An exploration of the methods to determine the protein-specific synthesis and breakdown rates in vivo in humans. Physiol Rep 2019; 7:e14143. [PMID: 31496135 PMCID: PMC6732504 DOI: 10.14814/phy2.14143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/02/2023] Open
Abstract
The present study explores the methods to determine human in vivo protein-specific myofibrillar and collagenous connective tissue protein fractional synthesis and breakdown rates. We found that in human myofibrillar proteins, the protein-bound tracer disappearance method to determine the protein fractional breakdown rate (FBR) (via 2 H2 O ingestion, endogenous labeling of 2 H-alanine that is incorporated into proteins, and FBR quantified by its disappearance from these proteins) has a comparable intrasubject reproducibility (range: 0.09-53.5%) as the established direct-essential amino acid, here L-ring-13 C6 -phenylalanine, incorporation method to determine the muscle protein fractional synthesis rate (FSR) (range: 2.8-56.2%). Further, the determination of the protein breakdown in a protein structure with complex post-translational processing and maturation, exemplified by human tendon tissue, was not achieved in this experimentation, but more investigation is encouraged to reveal the possibility. Finally, we found that muscle protein FBR measured with an essential amino acid tracer prelabeling is inappropriate presumably because of significant and prolonged intracellular recycling, which also may become a significant limitation for determination of the myofibrillar FSR when repeated infusion trials are completed in the same participants.
Collapse
Affiliation(s)
- Lars Holm
- Institute of Sports Medicine and Department of Orthopedic Surgery MBispebjerg HospitalCopenhagenDenmark
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- School of Sport, Exercise and Rehabilitation SciencesUniversity of BirminghamBirminghamUnited Kingdom
| | - Kasper Dideriksen
- Institute of Sports Medicine and Department of Orthopedic Surgery MBispebjerg HospitalCopenhagenDenmark
| | - Rie H. Nielsen
- Institute of Sports Medicine and Department of Orthopedic Surgery MBispebjerg HospitalCopenhagenDenmark
| | - Simon Doessing
- Institute of Sports Medicine and Department of Orthopedic Surgery MBispebjerg HospitalCopenhagenDenmark
| | - Rasmus L. Bechshoeft
- Institute of Sports Medicine and Department of Orthopedic Surgery MBispebjerg HospitalCopenhagenDenmark
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Grith Højfeldt
- Institute of Sports Medicine and Department of Orthopedic Surgery MBispebjerg HospitalCopenhagenDenmark
| | - Marcus Moberg
- Aastrand LaboratorySwedish School of Sport and Health SciencesStockholmSweden
| | - Eva Blomstrand
- Aastrand LaboratorySwedish School of Sport and Health SciencesStockholmSweden
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Søren Reitelseder
- Institute of Sports Medicine and Department of Orthopedic Surgery MBispebjerg HospitalCopenhagenDenmark
| | - Gerrit van Hall
- Department of Biomedical SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Clinical Metabolomics Core FacilityDepartment of Clinical Biochemistry, RigshospitaletCopenhagenDenmark
| |
Collapse
|
13
|
Kemp PR, Griffiths M, Polkey MI. Muscle wasting in the presence of disease, why is it so variable? Biol Rev Camb Philos Soc 2018; 94:1038-1055. [PMID: 30588725 DOI: 10.1111/brv.12489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/22/2018] [Accepted: 11/27/2018] [Indexed: 12/16/2022]
Abstract
Skeletal muscle wasting is a common clinical feature of many chronic diseases and also occurs in response to single acute events. The accompanying loss of strength can lead to significant disability, increased care needs and have profound negative effects on quality of life. As muscle is the most abundant source of amino acids in the body, it appears to function as a buffer for fuel and substrates that can be used to repair damage elsewhere and to feed the immune system. In essence, the fundamentals of muscle wasting are simple: less muscle is made than is broken down. However, although well-described mechanisms modulate muscle protein turnover, significant individual differences in the amount of muscle lost in the presence of a given severity of disease complicate the understanding of underlying mechanisms and suggest that individuals have different sensitivities to signals for muscle loss. Furthermore, the rate at which muscle protein is turned over under normal conditions means that clinically significant muscle loss can occur with changes in the rate of protein synthesis and/or breakdown that are too small to be measurable. Consequently, the changes in expression of factors regulating muscle turnover required to cause a decline in muscle mass are small and, except in cases of rapid wasting, there is no consistent pattern of change in the expression of factors that regulate muscle mass. MicroRNAs are fine tuners of cell phenotype and are therefore ideally suited to cause the subtle changes in proteome required to tilt the balance between synthesis and degradation in a way that causes clinically significant wasting. Herein we present a model in which muscle loss as a consequence of disease in non-muscle tissue is modulated by a set of microRNAs, the muscle expression of which is associated with severity of disease in the non-muscle tissue. These microRNAs alter fundamental biological processes including the synthesis of ribosomes and mitochondria leading to reduced protein synthesis and increased protein breakdown, thereby freeing amino acids from the muscle. We argue that the variability in muscle loss observed in the human population arises from at least two sources. The first is from pre-existing or disease-induced variation in the expression of microRNAs controlling the sensitivity of muscle to the atrophic signal and the second is from the expression of microRNAs from imprinted loci (i.e. only expressed from the maternally or paternally inherited allele) and may control the rate of myonuclear recruitment. In the absence of disease, these factors do not correlate with muscle mass, since there is no challenge to the established balance. However, in the presence of such a challenge, these microRNAs determine the rate of decline for a given disease severity. Together these mechanisms provide novel insight into the loss of muscle mass and its variation in the human population. The involvement of imprinted loci also suggests that genes that regulate early development also contribute to the ability of individuals to resist muscle loss in response to disease.
Collapse
Affiliation(s)
- Paul R Kemp
- National Heart & Lung Institute, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Mark Griffiths
- National Heart & Lung Institute, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Michael I Polkey
- National Institute for Health Research Respiratory Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust and Imperial College London, Sydney Street, London SW3 6NP, U.K
| |
Collapse
|
14
|
Jackman SR, Brook MS, Pulsford RM, Cockcroft EJ, Campbell MI, Rankin D, Atherton P, Smith K, Bowtell JL. Tart cherry concentrate does not enhance muscle protein synthesis response to exercise and protein in healthy older men. Exp Gerontol 2018; 110:202-208. [PMID: 29890270 DOI: 10.1016/j.exger.2018.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/30/2018] [Accepted: 06/07/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND Oxidative stress and inflammation may contribute to anabolic resistance in response to protein and exercise in older adults. We investigated whether consumption of montmorency cherry concentrate (MCC) increased anabolic sensitivity to protein ingestion and resistance exercise in healthy older men. METHODS Sixteen healthy older men were randomized to receive MCC (60 mL·d-1) or placebo (PLA) for two weeks, after baseline measures in week 1. During week 3, participants consumed 10 g whey protein·d-1 and completed three bouts of unilateral leg resistance exercise (4 × 8-10 repetitions at 80% 1RM). Participants consumed a bolus (150 mL) and weekly (50 mL) doses of deuterated water. Body water 2H enrichment was measured in saliva and vastus lateralis biopsies were taken from the non-exercised leg after weeks 1, 2 and 3, and the exercised leg after week 3, to measure tracer incorporation at rest, in response to protein and protein + exercise. RESULTS Myofibrillar protein synthesis increased in response to exercise + protein compared to rest (p < 0.05) in both groups, but there was no added effect of supplement (MCC: 1.79 ± 0.75 EX vs 1.15 ± 0.40 rest; PLA: 2.22 ± 0.54 vs 1.21 ± 0.18; all %·d-1). Muscle total NFĸB protein was decreased with exercise and protein in MCC (NFĸB: -20.7 ± 17.5%) but increased in PLA (NFĸB: 17.8 ± 31.3%, p = 0.073). CONCLUSION Short-term MCC ingestion does not affect the anabolic response to protein and exercise in healthy, relatively active, older men, despite MCC ingestion attenuating expression of proteins involved in the muscle inflammatory response to exercise, which may influence the chronic training response.
Collapse
Affiliation(s)
- Sarah R Jackman
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Matthew S Brook
- Medical Research Council-Arthritis Research United Kingdom Centre of Excellence for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, United Kingdom
| | - Richard M Pulsford
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Emma J Cockcroft
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Matthew I Campbell
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Debbie Rankin
- Medical Research Council-Arthritis Research United Kingdom Centre of Excellence for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, United Kingdom
| | - Philip Atherton
- Medical Research Council-Arthritis Research United Kingdom Centre of Excellence for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, United Kingdom
| | - Kenneth Smith
- Medical Research Council-Arthritis Research United Kingdom Centre of Excellence for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, United Kingdom
| | - Joanna L Bowtell
- Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
15
|
Kneppers A, Leermakers P, Pansters N, Backx E, Gosker H, van Loon L, Schols A, Langen R, Verdijk L. Coordinated regulation of skeletal muscle mass and metabolic plasticity during recovery from disuse. FASEB J 2018; 33:1288-1298. [PMID: 30133324 DOI: 10.1096/fj.201701403rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Skeletal muscle regeneration after disuse is essential for muscle maintenance and involves the regulation of both mass- and metabolic plasticity-related processes. However, the relation between these processes during recovery from disuse remains unclear. In this study, we explored the potential interrelationship between the molecular regulation of muscle mass and oxidative metabolism during recovery from disuse. Molecular profiles were measured in biopsies from the vastus lateralis of healthy men after 1-leg cast immobilization and after 1 wk reloading, and in mouse gastrocnemius obtained before and after hindlimb suspension and during reloading (RL-1, -2, -3, -5, and -8 d). Cluster analysis of the human recovery response revealed correlations between myogenesis and autophagy markers in 2 clusters, which were distinguished by the presence of markers of early myogenesis, autophagosome formation, and mitochondrial turnover vs. markers of late myogenesis, autophagy initiation, and mitochondrial mass. In line with these findings, an early transient increase in B-cell lymphoma-2 interacting protein-3 and sequestosome-1 protein, and GABA type A receptor-associated protein like-1 protein and mRNA and a late increase in myomaker and myosin heavy chain-8 mRNA, microtubule-associated protein 1 light chain 3-II:I ratio, and FUN14 domain-containing-1 mRNA and protein were observed in mice. In summary, the regulatory profiles of protein, mitochondrial, and myonuclear turnover are correlated and temporally associated, suggesting a coordinated regulation of muscle mass- and oxidative metabolism-related processes during recovery from disuse.-Kneppers, A., Leermakers, P., Pansters, N., Backx, E., Gosker, H., van Loon, L., Schols, A., Langen, R., Verdijk, L. Coordinated regulation of skeletal muscle mass and metabolic plasticity during recovery from disuse.
Collapse
Affiliation(s)
- Anita Kneppers
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands; and
| | - Pieter Leermakers
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands; and
| | - Nicholas Pansters
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands; and
| | - Evelien Backx
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Harry Gosker
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands; and
| | - Luc van Loon
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Annemie Schols
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands; and
| | - Ramon Langen
- Department of Respiratory Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands; and
| | - Lex Verdijk
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
16
|
Norheim KL. Changes in muscle mass during acute short-term hospitalization of elderly patients: A mini-review. TRANSLATIONAL SPORTS MEDICINE 2018. [DOI: 10.1002/tsm2.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- K. L. Norheim
- Department of Health Science and Technology; Physical Activity and Human Performance Group; SMI; Aalborg University; Aalborg Denmark
| |
Collapse
|
17
|
Koike TE, Watanabe AY, Kodama FY, Ozaki GAT, Castoldi RC, Garcia TA, Camargo RCT, Camargo Filho JCS. PHYSICAL EXERCISE AFTER IMMOBILIZATION OF SKELETAL MUSCLE OF ADULT AND AGED RATS. REV BRAS MED ESPORTE 2018. [DOI: 10.1590/1517-869220182401172423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ABSTRACT Introduction: Immobilization is a treatment technique often used to reduce pain and prevent worsening of the injury. However, it promotes harmful effects on musculoskeletal tissue, resulting in a marked loss of muscle function, which may be aggravated in the elderly. Physical exercise is an important intervention to mitigate these harmful effects. Objective: To analyze possible morphometric changes in the gastrocnemius muscle of rats after immobilization and remobilization with physical exercise. Methods: Fifty-six rats were divided into adult (A) and aged (E) groups and subdivided into adult and aged control (AC and EC), immobilized (AI and EI), free remobilized (AIF and EIF), and remobilized through physical exercise (AIE and EIE). The hind limbs were immobilized with the gastrocnemius muscle in a shortened position for a period of seven days, except for the control group. The exercise protocol consisted of five swimming sessions, once per day (25 minutes/session). The animals were euthanized by administration of an overdose of ketamine hydrochloride plus xylazine hydrochloride, followed by sample collection and preparation of hematoxylin and eosin slides. Measurements of the smallest diameter of 120 muscle fibers of each animal were taken with software NIS-Elements D3.0 - SP7 - Nikon® instruments Inc., NY, USA. Results: There was a significant reduction in the mean fiber diameter in the AI (38.43 µm ± 4.20; p=0.01) and AIF (36.97 µm ± 3.41; p<0.01) groups compared to AC (45.39 µm ± 3.41) and in the EI (42.26 µm ± 4.39; p<0.01), EIF (36.00 µm ± 4.15; p<0.01), and EIE (41.86 µm ± 4.95; p<0.01) groups compared to the EC (51.37 µm ± 3.86) group. The data showed that exercise was able to restore muscle trophism in the adult groups; however, none of the protocols has succeeded in aged rats. Conclusion: Immobilization in the shortened position induced muscle atrophy and physical exercise was effective in restoring muscular trophism only in adult animals. Level of Evidence I; Therapeutic studies - Investigating the Results of Treatment.
Collapse
Affiliation(s)
- Tatiana Emy Koike
- Universidade Estadual de São Paulo “Julio de Mesquita Filho”, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Norheim KL, Bautmans I, Kjaer M. Handgrip strength shows no improvements in geriatric patients with persistent inflammation during hospitalization. Exp Gerontol 2017; 99:115-119. [DOI: 10.1016/j.exger.2017.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/14/2017] [Accepted: 10/04/2017] [Indexed: 12/22/2022]
|
19
|
Oh J, Sinha I, Tan KY, Rosner B, Dreyfuss JM, Gjata O, Tran P, Shoelson SE, Wagers AJ. Age-associated NF-κB signaling in myofibers alters the satellite cell niche and re-strains muscle stem cell function. Aging (Albany NY) 2017; 8:2871-2896. [PMID: 27852976 PMCID: PMC5191876 DOI: 10.18632/aging.101098] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/25/2016] [Indexed: 12/23/2022]
Abstract
Skeletal muscle is a highly regenerative tissue, but muscle repair potential is increasingly compromised with advancing age. In this study, we demonstrate that increased NF-κB activity in aged muscle fibers contributes to diminished myogenic potential of their associated satellite cells. We further examine the impact of genetic modulation of NF-κB signaling in muscle satellite cells or myofibers on recovery after damage. These studies reveal that NF-κB activity in differentiated myofibers is sufficient to drive dysfunction of muscle regenerative cells via cell-non-autonomous mechanisms. Inhibition of NF-κB, or its downstream target Phospholipase A2, in myofibers rescued muscle regenerative potential in aged muscle. Moreover, systemic administration of sodium salicylate, an FDA-approved NF-κB inhibitor, decreased inflammatory gene expression and improved repair in aged muscle. Together, these studies identify a unique NF-κB regulated, non-cell autonomous mechanism by which stem cell function is linked to lipid signaling and homeostasis, and provide important new targets to stimulate muscle repair in aged individuals.
Collapse
Affiliation(s)
- Juhyun Oh
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, MA 02138, USA.,Joslin Diabetes Center, Boston, MA 02215, USA.,Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| | - Indranil Sinha
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, MA 02138, USA.,Joslin Diabetes Center, Boston, MA 02215, USA.,Division of Plastic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kah Yong Tan
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, MA 02138, USA.,Joslin Diabetes Center, Boston, MA 02215, USA
| | - Bernard Rosner
- Department of Biostatistics, Harvard School of Public Health, MA 02115, USA
| | - Jonathan M Dreyfuss
- Joslin Diabetes Center, Boston, MA 02215, USA.,Department of Biomedical Engineering, Boston University, Boston 02215, USA
| | - Ornela Gjata
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - Peter Tran
- Joslin Diabetes Center, Boston, MA 02215, USA
| | - Steven E Shoelson
- Joslin Diabetes Center, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Amy J Wagers
- Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Cambridge, MA 02138, USA.,Joslin Diabetes Center, Boston, MA 02215, USA.,Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
20
|
Duchesne E, Dufresne SS, Dumont NA. Impact of Inflammation and Anti-inflammatory Modalities on Skeletal Muscle Healing: From Fundamental Research to the Clinic. Phys Ther 2017; 97:807-817. [PMID: 28789470 DOI: 10.1093/ptj/pzx056] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 05/12/2017] [Indexed: 02/07/2023]
Abstract
Anti-inflammatory modalities are commonly used for the treatment of various musculoskeletal injuries. Although inflammation was originally believed to interfere with skeletal muscle regeneration, several recent studies have highlighted the beneficial effects of inflammatory cells on muscle healing. This discrepancy is attributable to an evolving understanding of the complex inflammatory process. To better appreciate the paradoxical roles of inflammation, clinicians must have a better comprehension of the fundamental mechanisms regulating the inflammatory response. In this perspective article, cellular, animal, and human studies were analyzed to summarize recent knowledge regarding the impact of inflammation on muscle regeneration in acute or chronic conditions. The effect of anti-inflammatory drugs on the treatment of various muscle injuries was also considered. Overall, this work aims to summarize the current state of the literature on the inflammatory process associated with muscle healing in order to give clinicians the necessary tools to have a more efficient and evidence-based approach to the treatment of muscle injuries and disorders.
Collapse
Affiliation(s)
- Elise Duchesne
- Département des Sciences de la Santé, Université du Québec à Chicoutimi, Saguenay, Quebec, Canada; and Groupe de Recherche Interdisciplinaire sur les Maladies Neuromusculaires, Centre Intégré Universitaire de Santé et de Services Sociaux du Saguenay-Lac-St-Jean, Saguenay, Quebec, Canada
| | - Sébastien S Dufresne
- Département des Sciences de la Santé, Université du Québec à Chicoutimi, Saguenay, Quebec, Canada; and CHU de Québec Research Center, Quebec City, Quebec, Canada; and Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Nicolas A Dumont
- Musculoskeletal Diseases and Rehabilitation Department, Ste-Justine Hospital Research Center, Montreal, Quebec, Canada; and Department of Rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
21
|
Dideriksen K, Boesen AP, Reitelseder S, Couppé C, Svensson R, Schjerling P, Magnusson SP, Holm L, Kjaer M. Tendon collagen synthesis declines with immobilization in elderly humans: no effect of anti-inflammatory medication. J Appl Physiol (1985) 2017; 122:273-282. [DOI: 10.1152/japplphysiol.00809.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/23/2016] [Accepted: 12/01/2016] [Indexed: 01/23/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are used as pain killers during periods of unloading caused by traumatic occurrences or diseases. However, it is unknown how tendon protein turnover and mechanical properties respond to unloading and subsequent reloading in elderly humans, and whether NSAID treatment would affect the tendon adaptations during such periods. Thus we studied human patellar tendon protein synthesis and mechanical properties during immobilization and subsequent rehabilitating resistance training and the influence of NSAIDs upon these parameters. Nineteen men (range 60–80 yr) were randomly assigned to NSAIDs (ibuprofen 1,200 mg/day; Ibu) or placebo (Plc). One lower limb was immobilized in a cast for 2 wk and retrained for 6 wk. Tendon collagen protein synthesis, mechanical properties, size, expression of genes related to collagen turnover and remodeling, and signal intensity (from magnetic resonance imaging) were investigated. Tendon collagen synthesis decreased ( P < 0.001), whereas tendon mechanical properties and size were generally unchanged with immobilization, and NSAIDs did not influence this. Matrix metalloproteinase-2 mRNA tended to increase ( P < 0.1) after immobilization in both groups, whereas scleraxis mRNA decreased with inactivity in the Plc group only ( P < 0.05). In elderly human tendons, collagen protein synthesis decreased after 2 wk of immobilization, whereas tendon stiffness and modulus were only marginally reduced, and NSAIDs had no influence upon this. This indicates an importance of mechanical loading for maintenance of tendon collagen turnover. However, reduced collagen production induced by short-term unloading may only marginally affect tendon mechanical properties in elderly individuals.NEW & NOTEWORTHY In elderly humans, 2 wk of inactivity reduces tendon collagen protein synthesis, while tendon stiffness and modulus are only marginally reduced, and NSAID treatment does not affect this. This indicates that mechanical loading is important for maintenance of tendon collagen turnover and that changes in collagen turnover induced by short-term immobilization may only have minor impact on the internal structures that are essential for mechanical properties in elderly tendons.
Collapse
Affiliation(s)
- Kasper Dideriksen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Anders P. Boesen
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Søren Reitelseder
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Institute of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; and
| | - Christian Couppé
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Department of Physical Therapy, Musculoskeletal Rehabilitation Research Unit, Bispebjerg Hospital, Denmark
| | - Rene Svensson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - S. Peter Magnusson
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Department of Physical Therapy, Musculoskeletal Rehabilitation Research Unit, Bispebjerg Hospital, Denmark
| | - Lars Holm
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
- Institute of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; and
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| |
Collapse
|