1
|
Roig-Genoves JV, García-Giménez JL, Mena-Molla S. A miRNA-based epigenetic molecular clock for biological skin-age prediction. Arch Dermatol Res 2024; 316:326. [PMID: 38822910 PMCID: PMC11144124 DOI: 10.1007/s00403-024-03129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
Skin aging is one of the visible characteristics of the aging process in humans. In recent years, different biological clocks have been generated based on protein or epigenetic markers, but few have focused on biological age in the skin. Arrest the aging process or even being able to restore an organism from an older to a younger stage is one of the main challenges in the last 20 years in biomedical research. We have implemented several machine learning models, including regression and classification algorithms, in order to create an epigenetic molecular clock based on miRNA expression profiles of healthy subjects to predict biological age-related to skin. Our best models are capable of classifying skin samples according to age groups (18-28; 29-39; 40-50; 51-60 or 61-83 years old) with an accuracy of 80% or predict age with a mean absolute error of 10.89 years using the expression levels of 1856 unique miRNAs. Our results suggest that this kind of epigenetic clocks arises as a promising tool with several applications in the pharmaco-cosmetic industry.
Collapse
Affiliation(s)
| | - José Luis García-Giménez
- Consortium Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, 46010, Spain
- INCLIVA Health Research Institute, INCLIVA, Valencia, 46010, Spain
- EpiDisease S.L (Spin-off from the CIBER-ISCIII), Parc Científic de la Universitat de Valencia, Paterna, 46980, Spain
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Spain
| | - Salvador Mena-Molla
- INCLIVA Health Research Institute, INCLIVA, Valencia, 46010, Spain.
- EpiDisease S.L (Spin-off from the CIBER-ISCIII), Parc Científic de la Universitat de Valencia, Paterna, 46980, Spain.
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjassot, 46100, Spain.
| |
Collapse
|
2
|
Wang M, Yang M, Liang S, Wang N, Wang Y, Sambou ML, Qin N, Zhu M, Wang C, Jiang Y, Dai J. Association between sleep traits and biological aging risk: a Mendelian randomization study based on 157 227 cases and 179 332 controls. Sleep 2024; 47:zsad299. [PMID: 37982786 DOI: 10.1093/sleep/zsad299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/23/2023] [Indexed: 11/21/2023] Open
Abstract
STUDY OBJECTIVES To investigate whether sleep traits are associated with the risk of biological aging using a case-control design with Mendelian randomization (MR) analyses. METHODS We studied 336 559 participants in the UK Biobank cohort, including 157 227 cases of accelerated biological aging and 179 332 controls. PhenoAge, derived from clinical traits, estimated biological ages, and the discrepancies from chronological age were defined as age accelerations (PhenoAgeAccel). Sleep behaviors were assessed with a standardized questionnaire. propensity score matching matched control participants to age-accelerated participants, and a conditional multivariable logistic regression model estimated odds ratio (OR) and 95% confidence intervals (95% CI). Causal relationships between sleep traits and PhenoAgeAccel were explored using linear and nonlinear MR methods. RESULTS A U-shaped association was found between sleep duration and PhenoAgeAccel risk. Short sleepers had a 7% higher risk (OR = 1.07; 95% CI: 1.03 to 1.11), while long sleepers had an 18% higher risk (OR = 1.18; 95% CI: 1.15 to 1.22), compared to normal sleepers (6-8 hours/day). Evening chronotype was linked to higher PhenoAgeAccel risk than morning chronotype (OR = 1.14; 95% CI: 1.10 to 1.18), while no significant associations were found for insomnia or snoring. Morning chronotype had a protective effect on PhenoAgeAccel risk (OR = 0.87, 95% CI: 0.79 to 0.95) per linear MR analysis. Genetically predicted sleep duration showed a U-shaped relationship with PhenoAgeAccel, suggesting a nonlinear association (pnonlinear < 0.001). CONCLUSIONS The study suggests that improving sleep can slow biological aging, highlighting the importance of optimizing sleep as an intervention to mitigate aging's adverse effects.
Collapse
Affiliation(s)
- Mei Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Meiqi Yang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shuang Liang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Nanxi Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yifan Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Muhammed Lamin Sambou
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Na Qin
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Genomic Science and Precision Medicine Institute, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Meng Zhu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Genomic Science and Precision Medicine Institute, Gusu School, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Wang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Genomic Science and Precision Medicine Institute, Gusu School, Nanjing Medical University, Nanjing 211166, China
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Yue Jiang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Genomic Science and Precision Medicine Institute, Gusu School, Nanjing Medical University, Nanjing 211166, China
- Nanjing Yike Population Health Research Institute, Nanjing 211166, China
| | - Juncheng Dai
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine and China International Cooperation Center for Environment and Human Health, Genomic Science and Precision Medicine Institute, Gusu School, Nanjing Medical University, Nanjing 211166, China
- Nanjing Yike Population Health Research Institute, Nanjing 211166, China
| |
Collapse
|
3
|
Lyons CE, Razzoli M, Bartolomucci A. The impact of life stress on hallmarks of aging and accelerated senescence: Connections in sickness and in health. Neurosci Biobehav Rev 2023; 153:105359. [PMID: 37586578 PMCID: PMC10592082 DOI: 10.1016/j.neubiorev.2023.105359] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/03/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
Chronic stress is a risk factor for numerous aging-related diseases and has been shown to shorten lifespan in humans and other social mammals. Yet how life stress causes such a vast range of diseases is still largely unclear. In recent years, the impact of stress on health and aging has been increasingly associated with the dysregulation of the so-called hallmarks of aging. These are basic biological mechanisms that influence intrinsic cellular functions and whose alteration can lead to accelerated aging. Here, we review correlational and experimental literature (primarily focusing on evidence from humans and murine models) on the contribution of life stress - particularly stress derived from adverse social environments - to trigger hallmarks of aging, including cellular senescence, sterile inflammation, telomere shortening, production of reactive oxygen species, DNA damage, and epigenetic changes. We also evaluate the validity of stress-induced senescence and accelerated aging as an etiopathological proposition. Finally, we highlight current gaps of knowledge and future directions for the field, and discuss perspectives for translational geroscience.
Collapse
Affiliation(s)
- Carey E Lyons
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Maria Razzoli
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA
| | - Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, USA; Department of Medicine and Surgery, University of Parma, Parma, Italy.
| |
Collapse
|
4
|
Takahashi M, Fukazawa M, Tahara Y, Kim HK, Tanisawa K, Ito T, Nakaoka T, Higuchi M, Shibata S. Association between circadian clock gene expressions and meal timing in young and older adults. Chronobiol Int 2023; 40:1235-1243. [PMID: 37722714 DOI: 10.1080/07420528.2023.2256855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 09/03/2023] [Indexed: 09/20/2023]
Abstract
Ageing is associated with a decline in circadian clock systems, which correlates with the development of ageing-associated diseases. Chrononutrition is a field of chronobiology that examines the relationship between the timing of meal/nutrition and circadian clock systems. Although there is growing evidence regarding the role of chrononutrition in the prevention of lifestyle and ageing-related diseases, the optimal timing of meal intake to regulate the circadian clock in humans remains unknown. In this study, we investigated the relationship between clock gene expression and meal timing in young and older adults. In this cross-sectional study, we enrolled 51 healthy young men and 35 healthy older men (age, mean±standard deviation: 24 ± 4 and 70 ± 4 y, respectively). Under daily living conditions, beard follicle cells were collected at 4-h intervals over a 24-h period to evaluate clock gene expression. Participants were asked to record the timing of habitual sleep and wake-up, breakfast, lunch, and dinner. From these data, we calculated "From bedtime to breakfast time," "From wake up to first meal time," and "From dinner to bed time." NR1D1 and PER3 expressions in older adults at 06:00 h were significantly higher than those in young adults (P = 0.001). There were significant differences in the peak time for NR1D2 (P = 0.003) and PER3 (P = 0.049) expression between young and older adults. "From bedtime to breakfast time" was significantly longer in older adults than in young adults. In contrast, "From dinner to bed time" was significantly shorter in older adults than in young adults. Moreover, higher rhythmicity of NR1D1 correlated with longer "From bedtime to breakfast time" (r = -0.470, P = 0.002) and shorter "From wake up to first meal time" in young adults (r = 0.302, P = 0.032). Higher rhythmicity of PER3 correlated with longer "From bedtime to breakfast time" in older adults (r = -0.342, P = 0.045). These results suggest that the peak time of clock gene expression in older adults may be phase-advanced compared to that in young adults. In addition, a longer fasting duration from bedtime to breakfast in both young and older adults and earlier intake of meals after waking up in young adults may correlate with robust clock gene expression rhythms.
Collapse
Affiliation(s)
- Masaki Takahashi
- Institute for Liberal Arts, Tokyo Institute of Technology, Tokyo, Japan
| | - Mayuko Fukazawa
- Faculty of Science and Engineering, Waseda University, Shinjuku, Japan
| | - Yu Tahara
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hyeon-Ki Kim
- Department of Physical Activity Research, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kumpei Tanisawa
- Faculty of Sports Sciences, Waseda University, Tokorozawa, Japan
| | - Tomoko Ito
- Department of Food and Nutrition, Tokyo Kasei University, Tokyo, Japan
| | - Takashi Nakaoka
- Japan Organization of Occupational Health and Safety, Kawasaki, Japan
| | - Mitsuru Higuchi
- Faculty of Sports Sciences, Waseda University, Tokorozawa, Japan
| | - Shigenobu Shibata
- Faculty of Science and Engineering, Waseda University, Shinjuku, Japan
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
Disentangling the Complexity of Nutrition, Frailty and Gut Microbial Pathways during Aging: A Focus on Hippuric Acid. Nutrients 2023; 15:nu15051138. [PMID: 36904138 PMCID: PMC10005077 DOI: 10.3390/nu15051138] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023] Open
Abstract
Hippuric acid (HA) is a metabolite resulting from the hepatic glycine conjugation of benzoic acid (BA) or from the gut bacterial metabolism of phenylalanine. BA is generally produced by gut microbial metabolic pathways after the ingestion of foods of vegetal origin rich in polyphenolic compounds, namely, chlorogenic acids or epicatechins. It can also be present in foods, either naturally or artificially added as a preservative. The plasma and urine HA levels have been used in nutritional research for estimating the habitual fruit and vegetable intake, especially in children and in patients with metabolic diseases. HA has also been proposed as a biomarker of aging, since its levels in the plasma and urine can be influenced by the presence of several age-related conditions, including frailty, sarcopenia and cognitive impairment. Subjects with physical frailty generally exhibit reduced plasma and urine levels of HA, despite the fact that HA excretion tends to increase with aging. Conversely, subjects with chronic kidney disease exhibit reduced HA clearance, with HA retention that may exert toxic effects on the circulation, brain and kidneys. With regard to older patients with frailty and multimorbidity, interpreting the HA levels in the plasma and urine may result particularly challenging because HA is at the crossroads between diet, gut microbiota, liver and kidney function. Although these considerations may not make HA the ideal biomarker of aging trajectories, the study of its metabolism and clearance in older subjects may provide valuable information for disentangling the complex interaction between diet, gut microbiota, frailty and multimorbidity.
Collapse
|
6
|
Erickson ML, Allen JM, Beavers DP, Collins LM, Davidson KW, Erickson KI, Esser KA, Hesselink MKC, Moreau KL, Laber EB, Peterson CA, Peterson CM, Reusch JE, Thyfault JP, Youngstedt SD, Zierath JR, Goodpaster BH, LeBrasseur NK, Buford TW, Sparks LM. Understanding heterogeneity of responses to, and optimizing clinical efficacy of, exercise training in older adults: NIH NIA Workshop summary. GeroScience 2022; 45:569-589. [PMID: 36242693 PMCID: PMC9886780 DOI: 10.1007/s11357-022-00668-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 02/03/2023] Open
Abstract
Exercise is a cornerstone of preventive medicine and a promising strategy to intervene on the biology of aging. Variation in the response to exercise is a widely accepted concept that dates back to the 1980s with classic genetic studies identifying sequence variations as modifiers of the VO2max response to training. Since that time, the literature of exercise response variance has been populated with retrospective analyses of existing datasets that are limited by a lack of statistical power from technical error of the measurements and small sample sizes, as well as diffuse outcomes, very few of which have included older adults. Prospective studies that are appropriately designed to interrogate exercise response variation in key outcomes identified a priori and inclusive of individuals over the age of 70 are long overdue. Understanding the underlying intrinsic (e.g., genetics and epigenetics) and extrinsic (e.g., medication use, diet, chronic disease) factors that determine robust versus poor responses to various exercise factors will be used to improve exercise prescription to target the pillars of aging and optimize the clinical efficacy of exercise training in older adults. This review summarizes the proceedings of the NIA-sponsored workshop entitled, "Understanding Heterogeneity of Responses to, and Optimizing Clinical Efficacy of, Exercise Training in Older Adults" and highlights the importance and current state of exercise response variation research, particularly in older adults, prevailing challenges, and future directions.
Collapse
Affiliation(s)
- Melissa L Erickson
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL, 32804, USA
| | - Jacob M Allen
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Daniel P Beavers
- Department of Statistical Sciences, Wake Forest University, Winston-Salem, NC, USA
| | - Linda M Collins
- Department of Social and Behavioral Sciences, New York University, New York, NY, USA
| | - Karina W Davidson
- Institute of Health System Science, Feinstein Institutes for Medical Research, Northwell Health, New York, NY, USA
| | - Kirk I Erickson
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL, 32804, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Matthijs K C Hesselink
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Kerrie L Moreau
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric B Laber
- Department of Statistical Sciences, Duke University, Durham, NC, USA
| | - Charlotte A Peterson
- Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, USA
| | - Courtney M Peterson
- Department of Nutritional Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jane E Reusch
- Department of Medicine, Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KN, USA
| | - Shawn D Youngstedt
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bret H Goodpaster
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL, 32804, USA
| | - Nathan K LeBrasseur
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Thomas W Buford
- Department of Medicine, University of Alabama at Birmingham, 1313 13th St. S., Birmingham, AL, 35244, USA.
- Birmingham/Atlanta VA GRECC, Birmingham VA Medical Center, Birmingham, AL, USA.
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, 301 E Princeton St, Orlando, FL, 32804, USA.
| |
Collapse
|
7
|
Vasilopoulou MA, Gioran A, Theodoropoulou M, Koutsaviti A, Roussis V, Ioannou E, Chondrogianni N. Healthspan improvement and anti-aggregation effects induced by a marine-derived structural proteasome activator. Redox Biol 2022; 56:102462. [PMID: 36095970 PMCID: PMC9482115 DOI: 10.1016/j.redox.2022.102462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 11/15/2022] Open
Abstract
Proteasome activation has been shown to promote cellular and organismal healthspan and to protect against aggregation-related conditions, such as Alzheimer's disease (AD). Various natural compounds have been described for their proteasome activating properties but scarce data exist on marine metabolites that often possess unique chemical structures, exhibiting pronounced bioactivities with novel mechanisms of action. In this study, we have identified for the first time a marine structural proteasome activator, namely (1R,3E,6R,7Z,11S,12S)-dolabella-3,7,18-trien-6,17-olide (DBTO). DBTO activates the 20S proteasome complex in cell-free assays but also in cellulo. Continuous supplementation of human primary fibroblasts with DBTO throughout their cellular lifespan confers an improved healthspan while ameliorated health status is also observed in wild type (wt) Caenorhabditis elegans (C. elegans) nematodes supplemented with DBTO. Furthermore, treatment of various AD nematode models, as well as of human cells of neuronal origin challenged with exogenously added Aβ peptide, with DBTO results in enhanced protection against Aβ-induced proteotoxicity. In total, our results reveal the first structural proteasome activator derived from the marine ecosystem and highlight its potential as a compound that might be used for healthspan maintenance and preventive strategies against proteinopathies, such as AD. (1R,3E,6R,7Z,11S,12S)-dolabella-3,7,18-trien-6,17-olide (DBTO) is a structural proteasome activator. DBTO is the first identified marine structural proteasome activator. DBTO positively modulates cellular healthspan and organismal health status. DBTO confers protection against Aβ-induced proteotoxicity.
Collapse
|
8
|
Senotherapeutics in Cancer and HIV. Cells 2022; 11:cells11071222. [PMID: 35406785 PMCID: PMC8997781 DOI: 10.3390/cells11071222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022] Open
Abstract
Cellular senescence is a stress-response mechanism that contributes to homeostasis maintenance, playing a beneficial role during embryogenesis and in normal adult organisms. In contrast, chronic senescence activation may be responsible for other events such as age-related disorders, HIV and cancer development. Cellular senescence activation can be triggered by different insults. Regardless of the inducer, there are several phenotypes generally shared among senescent cells: cell division arrest, an aberrant shape, increased size, high granularity because of increased numbers of lysosomes and vacuoles, apoptosis resistance, defective metabolism and some chromatin alterations. Senescent cells constitute an important area for research due to their contributions to the pathogenesis of different diseases such as frailty, sarcopenia and aging-related diseases, including cancer and HIV infection, which show an accelerated aging. Hence, a new pharmacological category of treatments called senotherapeutics is under development. This group includes senolytic drugs that selectively attack senescent cells and senostatic drugs that suppress SASP factor delivery, inhibiting senescent cell development. These new drugs can have positive therapeutic effects on aging-related disorders and act in cancer as antitumor drugs, avoiding the undesired effects of senescent cells such as those from SASP. Here, we review senotherapeutics and how they might affect cancer and HIV disease, two very different aging-related diseases, and review some compounds acting as senolytics in clinical trials.
Collapse
|
9
|
Cesari M, Azzolino D, LeBrasseur NK, Whitson H, Rooks D, Sourdet S, Angioni D, Fielding RA, Vellas B, Rolland Y, Andrieu S, Leheudre MA, Barcons N, Beliën A, de Souto Barreto P, Delannoy C, John G, Robledo LMG, Hwee D, Mariani J, Reshma M, Morley J, Pereira S, Erin Q, Michelle R, Rueda R, Tarasenko L, Tourette C, Van Maanen R, Waters DL. Resilience: Biological Basis and Clinical Significance - A Perspective Report from the International Conference on Frailty and Sarcopenia Research (ICFSR) Task Force. J Frailty Aging 2022; 11:342-347. [PMID: 36346720 PMCID: PMC9589704 DOI: 10.14283/jfa.2022.62] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Resilience is a construct receiving growing attention from the scientific community in geriatrics and gerontology. Older adults show extremely heterogeneous (and often unpredictable) responses to stressors. Such heterogeneity can (at least partly) be explained by differences in resilience (i.e., the capacity of the organism to cope with stressors). The International Conference on Frailty and Sarcopenia Research (ICFSR) Task Force met in Boston (MA,USA) on April 20, 2022 to discuss the biological and clinical significance of resilience in older adults. The identification of persons with low resilience and the prompt intervention in this at-risk population may be critical to develop and implement preventive strategies against adverse events. Unfortunately, to date, it is still challenging to capture resilience, especially due to its dynamic nature encompassing biological, clinical, subjective, and socioeconomic factors. Opportunities to dynamically measure resilience were discussed during the ICFSR Task Force meeting, emphasizing potential biomarkers and areas of intervention. This article reports the results of the meeting and may serve to support future actions in the field.
Collapse
Affiliation(s)
- Matteo Cesari
- Geriatric Unit, IRCCS Istituti Clinici Scientifici Maugeri, University of Milan, Via Camaldoli 64, 20138 Milano, Italy
| | - D. Azzolino
- Geriatric Unit, IRCCS Istituti Clinici Scientifici Maugeri, University of Milan, Via Camaldoli 64, 20138 Milano, Italy
| | - N. K. LeBrasseur
- Robert and Arlene Kodod Center on Aging, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, USA
| | - H. Whitson
- Duke University School of Medicine & Durham VA Medical Center, Durham, USA
| | - D. Rooks
- Translational Medicine, Novartis Institutes for Biomedical Research Inc., Cambridge, USA
| | - S. Sourdet
- Gérontopôle de Toulouse, Centre Hospitalier-Universitaire de Toulouse, Inserm 1295, Université de Toulouse, Toulouse, France
| | - D. Angioni
- Gérontopôle de Toulouse, Centre Hospitalier-Universitaire de Toulouse, Inserm 1295, Université de Toulouse, Toulouse, France
| | - R. A. Fielding
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA, Human Nutrition Research Center on Aging at Tufts University, Boston, MA USA
| | - B. Vellas
- Gérontopôle de Toulouse, Centre Hospitalier-Universitaire de Toulouse, Inserm 1295, Université de Toulouse, Toulouse, France
| | - Y. Rolland
- Gérontopôle de Toulouse, Centre Hospitalier-Universitaire de Toulouse, Inserm 1295, Université de Toulouse, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Carroll JE, Prather AA. Sleep and Biological Aging: A Short Review. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2021; 18:159-164. [PMID: 34901521 DOI: 10.1016/j.coemr.2021.03.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Obtaining healthy quantity and quality of sleep is a key to optimal mental and physical health, and cumulative evidence points to a role of sleep loss and sleep disturbances as a contributor to early disease onset and shortened survival. We propose that the molecular underpinnings that drive this risk are key drivers of the biological aging process, including altering metabolism, promoting damage, failure in repair and restoration machinery, leaving lasting impacts on cellular health, telomere loss, cellular senescence, and ultimately system failure. Our premise is that biological aging machinery is altered by sleep, and in the current short review we highlight the existing literature that links sleep with aging biology thought to drive age-related disease and shorten lifespan.
Collapse
Affiliation(s)
- Judith E Carroll
- Cousins Center for Psychoneuroimmunology, Department of Psychiatry and Biobehavioral Sciences, Jane & Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles
| | - Aric A Prather
- Department of Psychiatry, Weill Institute for Neuroscience, University of California, San Francisco
| |
Collapse
|
11
|
Keller A, Temple T, Sayanjali B, Mihaylova MM. Metabolic Regulation of Stem Cells in Aging. CURRENT STEM CELL REPORTS 2021; 7:72-84. [PMID: 35251892 PMCID: PMC8893351 DOI: 10.1007/s40778-021-00186-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW From invertebrates to vertebrates, the ability to sense nutrient availability is critical for survival. Complex organisms have evolved numerous signaling pathways to sense nutrients and dietary fluctuations, which influence many cellular processes. Although both overabundance and extreme depletion of nutrients can lead to deleterious effects, dietary restriction without malnutrition can increase lifespan and promote overall health in many model organisms. In this review, we focus on age-dependent changes in stem cell metabolism and dietary interventions used to modulate stem cell function in aging. RECENT FINDINGS Over the last half-century, seminal studies have illustrated that dietary restriction confers beneficial effects on longevity in many model organisms. Many researchers have now turned to dissecting the molecular mechanisms by which these diets affect aging at the cellular level. One subpopulation of cells of particular interest are adult stem cells, the most regenerative cells of the body. It is generally accepted that the regenerative capacity of stem cells declines with age, and while the metabolic requirements of each vary across tissues, the ability of dietary interventions to influence stem cell function is striking. SUMMARY In this review, we will focus primarily on how metabolism plays a role in adult stem cell homeostasis with respect to aging, with particular emphasis on intestinal stem cells while also touching on hematopoietic, skeletal muscle, and neural stem cells. We will also discuss key metabolic signaling pathways influenced by both dietary restriction and the aging process, and will examine their role in improving tissue homeostasis and lifespan. Understanding the mechanisms behind the metabolic needs of stem cells will help bridge the divide between a basic science interpretation of stem cell function and a whole-organism view of nutrition, thereby providing insight into potential dietary or therapeutic interventions.
Collapse
Affiliation(s)
- Andrea Keller
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| | - Tyus Temple
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| | - Behnam Sayanjali
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Maria M. Mihaylova
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, Wexner Medical Center, Arthur G. James Cancer Hospital, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
12
|
Age-Related Changes in Bone-Marrow Mesenchymal Stem Cells. Cells 2021; 10:cells10061273. [PMID: 34063923 PMCID: PMC8223980 DOI: 10.3390/cells10061273] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
The use of stem cells is part of a strategy for the treatment of a large number of diseases. However, the source of the original stem cells for use is extremely important and determines their therapeutic potential. Mesenchymal stromal cells (MSC) have proven their therapeutic effectiveness when used in a number of pathological models. However, it remains an open question whether the chronological age of the donor organism affects the effectiveness of the use of MSC. The asymmetric division of stem cells, the result of which is some residential stem cells acquiring a non-senile phenotype, means that stem cells possess an intrinsic ability to preserve juvenile characteristics, implying an absence or at least remarkable retardation of senescence in stem cells. To test whether residential MSC senesce, we evaluated the physiological changes in the MSC from old rats, with a further comparison of the neuroprotective properties of MSC from young and old animals in a model of traumatic brain injury. We found that, while the effect of administration of MSC on lesion volume was minimal, functional recovery was remarkable, with the highest effect assigned to fetal cells; the lowest effect was recorded for cells isolated from adult rats and postnatal cells, having intermediate potency. MSC from the young rats were characterized by a faster growth than adult MSC, correlating with levels of proliferating cell nuclear antigen (PCNA). However, there were no differences in respiratory activity of MSC from young and old rats, but young cells showed much higher glucose utilization than old ones. Autophagy flux was almost the same in both types of cells, but there were remarkable ultrastructural differences in old and young cells.
Collapse
|
13
|
Blasimme A. The plasticity of ageing and the rediscovery of ground-state prevention. HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2021; 43:67. [PMID: 33948779 PMCID: PMC8096726 DOI: 10.1007/s40656-021-00414-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/07/2021] [Indexed: 05/05/2023]
Abstract
In this paper, I present an emerging explanatory framework about ageing and care. In particular, I focus on how, in contrast to most classical accounts of ageing, biomedicine today construes the ageing process as a modifiable trajectory. This framing turns ageing from a stage of inexorable decline into the focus of preventive strategies, harnessing the functional plasticity of the ageing organism. I illustrate this shift by focusing on studies of the demographic dynamics in human population, observations of ageing as an intraspecifically heterogenous phenotype, and the experimental manipulation of longevity, in both model organisms and humans. I suggest that such an explanatory framework about ageing creates the epistemological conditions for the rise of a peculiar form of prevention that does not aim to address a specific condition. Rather it seeks to stall the age-related accumulation of molecular damage and functional deficits, boosting individual resilience against age-related decline. I call this preventive paradigm "ground-state prevention." While new, ground-state prevention bears conceptual resemblance to forms of medical wisdom prominent in classic Galenic medicine, as well as in the Renaissance period.
Collapse
Affiliation(s)
- Alessandro Blasimme
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland.
| |
Collapse
|
14
|
Sholl J. Can aging research generate a theory of health? HISTORY AND PHILOSOPHY OF THE LIFE SCIENCES 2021; 43:45. [PMID: 33768353 DOI: 10.1007/s40656-021-00402-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/12/2021] [Indexed: 05/21/2023]
Abstract
While aging research and policy aim to promote 'health' at all ages, there remains no convincing explanation of what this 'health' is. In this paper, I investigate whether we can find, implicit within the sciences of aging, a way to know what health is and how to measure it, i.e. a theory of health. To answer this, I start from scientific descriptions of aging and its modulators and then try to develop some generalizations about 'health' implicit within this research. After discussing some of the core aspects of aging and the ways in which certain models describe spatial and temporal features specific to both aging and healthy phenotypes, I then extract, explicate, and evaluate one potential construct of health in these models. This suggests a theory of health based on the landscape of optimized phenotypic trajectories. I conclude by considering why it matters for more candidate theories to be proposed and evaluated by philosophers and scientists alike.
Collapse
Affiliation(s)
- Jonathan Sholl
- University of Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, 33000, Bordeaux, France.
| |
Collapse
|
15
|
Abstract
Thanks to advances in modern medicine over the past century, the world’s population has experienced a marked increase in longevity. However, disparities exist that lead to groups with both shorter lifespan and significantly diminished health, especially in the aged. Unequal access to proper nutrition, healthcare services, and information to make informed health and nutrition decisions all contribute to these concerns. This in turn has hastened the ageing process in some and adversely affected others’ ability to age healthfully. Many in developing as well as developed societies are plagued with the dichotomy of simultaneous calorie excess and nutrient inadequacy. This has resulted in mental and physical deterioration, increased non-communicable disease rates, lost productivity and quality of life, and increased medical costs. While adequate nutrition is fundamental to good health, it remains unclear what impact various dietary interventions may have on improving healthspan and quality of life with age. With a rapidly ageing global population, there is an urgent need for innovative approaches to health promotion as individual’s age. Successful research, education, and interventions should include the development of both qualitative and quantitative biomarkers and other tools which can measure improvements in physiological integrity throughout life. Data-driven health policy shifts should be aimed at reducing the socio-economic inequalities that lead to premature ageing. A framework for progress has been proposed and published by the World Health Organization in its Global Strategy and Action Plan on Ageing and Health. This symposium focused on the impact of nutrition on this framework, stressing the need to better understand an individual’s balance of intrinsic capacity and functional abilities at various life stages, and the impact this balance has on their mental and physical health in the environments they inhabit.
Collapse
|
16
|
Capurso C, Bellanti F, Lo Buglio A, Vendemiale G. The Mediterranean Diet Slows Down the Progression of Aging and Helps to Prevent the Onset of Frailty: A Narrative Review. Nutrients 2019; 12:nu12010035. [PMID: 31877702 PMCID: PMC7019245 DOI: 10.3390/nu12010035] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 02/05/2023] Open
Abstract
The aging population is rapidly increasing all over the world. This results in significant implications for the planning and provision of health and social care. Aging is physiologically characterized by a decrease in lean mass, bone mineral density and, to a lesser extent, fat mass. The onset of sarcopenia leads to weakness and a further decrease in physical activity. An insufficient protein intake, which we often observe in patients of advanced age, certainly accelerates the progression of sarcopenia. In addition, many other factors (e.g., insulin resistance, impaired protein digestion and absorption of amino acids) reduce the stimulation of muscle protein synthesis in the elderly, even if the protein intake is adequate. Inadequate intake of foods can also cause micronutrient deficiencies that contribute to the development of frailty. We know that a healthy eating style in middle age predisposes to so-called "healthy and successful" aging, which is the condition of the absence of serious chronic diseases or of an important decline in cognitive or physical functions, or mental health. The Mediterranean diet is recognized to be a "healthy food" dietary pattern; high adherence to this dietary pattern is associated with a lower incidence of chronic diseases and lower physical impairment in old age. The aim of our review was to analyze observational studies (cohort and case-control studies) that investigated the effects of following a healthy diet, and especially the effect of adherence to a Mediterranean diet (MD), on the progression of aging and on onset of frailty.
Collapse
|
17
|
Chellappa K, Brinkman JA, Mukherjee S, Morrison M, Alotaibi MI, Carbajal KA, Alhadeff AL, Perron IJ, Yao R, Purdy CS, DeFelice DM, Wakai MH, Tomasiewicz J, Lin A, Meyer E, Peng Y, Arriola Apelo SI, Puglielli L, Betley JN, Paschos GK, Baur JA, Lamming DW. Hypothalamic mTORC2 is essential for metabolic health and longevity. Aging Cell 2019; 18:e13014. [PMID: 31373126 PMCID: PMC6718533 DOI: 10.1111/acel.13014] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/26/2019] [Accepted: 07/03/2019] [Indexed: 12/16/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is an evolutionarily conserved protein kinase that regulates growth and metabolism. mTOR is found in two protein complexes, mTORC1 and mTORC2, that have distinct components and substrates and are both inhibited by rapamycin, a macrolide drug that robustly extends lifespan in multiple species including worms and mice. Although the beneficial effect of rapamycin on longevity is generally attributed to reduced mTORC1 signaling, disruption of mTORC2 signaling can also influence the longevity of worms, either positively or negatively depending on the temperature and food source. Here, we show that loss of hypothalamic mTORC2 signaling in mice decreases activity level, increases the set point for adiposity, and renders the animals susceptible to diet-induced obesity. Hypothalamic mTORC2 signaling normally increases with age, and mice lacking this pathway display higher fat mass and impaired glucose homeostasis throughout life, become more frail with age, and have decreased overall survival. We conclude that hypothalamic mTORC2 is essential for the normal metabolic health, fitness, and lifespan of mice. Our results have implications for the use of mTORC2-inhibiting pharmaceuticals in the treatment of brain cancer and diseases of aging.
Collapse
Affiliation(s)
- Karthikeyani Chellappa
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Jacqueline A. Brinkman
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
| | - Sarmistha Mukherjee
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Mark Morrison
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
| | - Mohammed I. Alotaibi
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Endocrinology and Reproductive Physiology Graduate Training ProgramUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Kathryn A. Carbajal
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
| | - Amber L. Alhadeff
- Department of Biology, School of Arts and SciencesUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Isaac J. Perron
- Center for Sleep and Circadian Neurobiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Rebecca Yao
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Cole S. Purdy
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Denise M. DeFelice
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Matthew H. Wakai
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
| | - Jay Tomasiewicz
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Amy Lin
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Emma Meyer
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Yajing Peng
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Sebastian I. Arriola Apelo
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Luigi Puglielli
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - J. Nicholas Betley
- Department of Biology, School of Arts and SciencesUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Georgios K. Paschos
- Center for Sleep and Circadian Neurobiology, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
- The Institute for Translational Medicine and Therapeutics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Joseph A. Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Dudley W. Lamming
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWIUSA
- William S. Middleton Memorial Veterans HospitalMadisonWIUSA
- Endocrinology and Reproductive Physiology Graduate Training ProgramUniversity of Wisconsin‐MadisonMadisonWIUSA
| |
Collapse
|
18
|
Schafer MJ, Mazula DL, Brown AK, White TA, Atkinson E, Pearsall VM, Aversa Z, Verzosa GC, Smith LA, Matveyenko A, Miller JD, LeBrasseur NK. Late-life time-restricted feeding and exercise differentially alter healthspan in obesity. Aging Cell 2019; 18:e12966. [PMID: 31111669 PMCID: PMC6612646 DOI: 10.1111/acel.12966] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/09/2019] [Accepted: 04/18/2019] [Indexed: 01/03/2023] Open
Abstract
Aging and obesity increase multimorbidity and disability risk, and determining interventions for reversing healthspan decline is a critical public health priority. Exercise and time‐restricted feeding (TRF) benefit multiple health parameters when initiated in early life, but their efficacy and safety when initiated at older ages are uncertain. Here, we tested the effects of exercise versus TRF in diet‐induced obese, aged mice from 20 to 24 months of age. We characterized healthspan across key domains: body composition, physical, metabolic, and cardiovascular function, activity of daily living (ADL) behavior, and pathology. We demonstrate that both exercise and TRF improved aspects of body composition. Exercise uniquely benefited physical function, and TRF uniquely benefited metabolism, ADL behavior, and circulating indicators of liver pathology. No adverse outcomes were observed in exercised mice, but in contrast, lean mass and cardiovascular maladaptations were observed following TRF. Through a composite index of benefits and risks, we conclude the net healthspan benefits afforded by exercise are more favorable than those of TRF. Extrapolating to obese older adults, exercise is a safe and effective option for healthspan improvement, but additional comprehensive studies are warranted before recommending TRF.
Collapse
Affiliation(s)
- Marissa J. Schafer
- Robert and Arlene Kogod Center on Aging Mayo Clinic Rochester Minnesota
- Department of Physical Medicine and Rehabilitation Mayo Clinic Rochester Minnesota
| | - Daniel L. Mazula
- Robert and Arlene Kogod Center on Aging Mayo Clinic Rochester Minnesota
| | - Ashley K. Brown
- Robert and Arlene Kogod Center on Aging Mayo Clinic Rochester Minnesota
| | - Thomas A. White
- Robert and Arlene Kogod Center on Aging Mayo Clinic Rochester Minnesota
| | - Elizabeth Atkinson
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research Mayo Clinic Rochester Minnesota
| | | | - Zaira Aversa
- Robert and Arlene Kogod Center on Aging Mayo Clinic Rochester Minnesota
- Department of Physical Medicine and Rehabilitation Mayo Clinic Rochester Minnesota
| | | | | | - Aleksey Matveyenko
- Department of Physiology and Biomedical Engineering Mayo Clinic Rochester Minnesota
| | - Jordan D. Miller
- Robert and Arlene Kogod Center on Aging Mayo Clinic Rochester Minnesota
- Department of Surgery Mayo Clinic Rochester Minnesota
| | - Nathan K. LeBrasseur
- Robert and Arlene Kogod Center on Aging Mayo Clinic Rochester Minnesota
- Department of Physical Medicine and Rehabilitation Mayo Clinic Rochester Minnesota
| |
Collapse
|
19
|
Paleri S, Tham JLM, Jin D, Chan YS, Wright C, Baradi A, Whitbourn RJ, Adams HSL, Palmer SC. Transcatheter aortic valve implantation for severe aortic stenosis in the Australian regional population. Aust J Rural Health 2019; 27:229-236. [PMID: 31074928 DOI: 10.1111/ajr.12508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2019] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To compare clinical and functional outcomes of regional and urban patients after transcatheter aortic valve implantation for severe aortic stenosis. METHODS Data were collected at patient follow-up post-transcatheter aortic valve implantation at 30 days and 12 months. Patients were stratified by residential postcodes into remoteness areas using the Australian Statistical Geography Standard. DESIGN Retrospective cohort study. SETTING Single-centre tertiary referral hospital. PARTICIPANTS Patients undergoing transcatheter aortic valve implantation (n = 142) from 2009 to 2018 were analysed, with 77 patients (54.2%) residing in regional Victoria and New South Wales. MAIN OUTCOME MEASURES Procedural success, adverse event rates, readmission rates, mortality rates, loss to follow-up and functional improvement. RESULTS Patients residing in regional areas had a lower mean age (81.8 vs 83.7 years) and proportion of Stage 4 or 5 chronic kidney disease (1.3% vs 9.2%), compared with urban patients. Procedural characteristics and immediate post-procedural outcomes were similar between both groups. There was no statistically significant difference in mortality, readmission rates or loss to follow-up between the two cohorts. Regional patients demonstrated poorer rates of functional improvement at 30 days (50.7% vs 67.7%); however, this difference was not sustained at 12 months (79.2% vs 71.0%). Frailty was demonstrated to be an independent predictor of poor 30-day functional improvement. CONCLUSION Regional patients treated with transcatheter aortic valve implantation for severe aortic stenosis have non-inferior 30-day and 12-month outcomes, when compared with urban patients. Frailty is a predictor of poor functional improvement post-transcatheter aortic valve implantation.
Collapse
Affiliation(s)
- Sarang Paleri
- Department of Cardiology, St. Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Jodie Li-Mei Tham
- Department of Cardiology, St. Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia.,Department of Medicine, The University of Melbourne, Fitzroy, Victoria, Australia
| | - David Jin
- Department of Cardiology, St. Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Yee Sen Chan
- Department of Cardiology, St. Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Christine Wright
- Department of Cardiology, St. Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Arul Baradi
- Department of Cardiology, St. Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Robert J Whitbourn
- Department of Cardiology, St. Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Heath S L Adams
- Department of Cardiology, St. Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia.,Faculty of Health Science, University of Tasmania, Hobart, Tasmania, Australia
| | - Sonny C Palmer
- Department of Cardiology, St. Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia.,Department of Medicine, The University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
20
|
LeBrasseur NK. Physical Resilience: Opportunities and Challenges in Translation. J Gerontol A Biol Sci Med Sci 2019; 72:978-979. [PMID: 28475693 DOI: 10.1093/gerona/glx028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/08/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nathan K LeBrasseur
- Robert & Arlene Kogod Center on Aging, Department of Physical Medicine & Rehabilitation and Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
21
|
Abstract
Exceptional longevity represents an extreme phenotype. Current centenarians are survivors of a cohort who display delayed onset of age-related diseases and/or resistance to otherwise lethal illnesses occurring earlier in life. Characteristics of aging are heterogeneous, even among long-lived individuals. Associations between specific clinical or genetic biomarkers exist, but there is unlikely to be a single biomarker predictive of long life. Careful observations in the oldest old offer some empirical strategies that favor increased health span and life span, with implications for compression of disability, identification and implementation of lifestyle behaviors that promote independence, identification and measurement of more reliable markers associated with longevity, better guidance for appropriate health screenings, and promotion of anticipatory health discussions in the setting of more accurate prognostication. Comprehensive PubMed literature searches were performed, with an unbiased focus on mechanisms of longevity. Overall, the aggregate literature supports that the basis for exceptional longevity is multifactorial and involves disparate combinations of genes, environment, resiliency, and chance, all of which are influenced by culture and geography.
Collapse
Affiliation(s)
- Robert J Pignolo
- Division of Geriatric Medicine and Gerontology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
22
|
Myrianthopoulos V, Evangelou K, Vasileiou PVS, Cooks T, Vassilakopoulos TP, Pangalis GA, Kouloukoussa M, Kittas C, Georgakilas AG, Gorgoulis VG. Senescence and senotherapeutics: a new field in cancer therapy. Pharmacol Ther 2018; 193:31-49. [PMID: 30121319 DOI: 10.1016/j.pharmthera.2018.08.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a stress response mechanism ensuring homeostasis. Its temporal activation during embryonic development or normal adult life is linked with beneficial properties. In contrast, persistent (chronic) senescence seems to exert detrimental effects fostering aging and age-related disorders, such as cancer. Due to the lack of a reliable marker able to detect senescence in vivo, its precise impact in age-related diseases is to a large extent still undetermined. A novel reagent termed GL13 (SenTraGorTM) that we developed, allowing senescence recognition in any type of biological material, emerges as a powerful tool to study the phenomenon of senescence in vivo. Exploiting the advantages of this novel methodological approach, scientists will be able to detect and connect senescence with aggressive behavior in human malignancies, such as tolerance to chemotherapy in classical Hodgkin Lymphoma and Langerhans Cell Histiocytosis. The latter depicts the importance of developing the new and rapidly expanding field of senotherapeutic agents targeting and driving to cell death senescent cells. We discuss in detail the current progress of this exciting area of senotherapeutics and suggest its future perspectives and applications.
Collapse
Affiliation(s)
- Vassilios Myrianthopoulos
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Division of Pharmaceutical Chemistry, School of Pharmacy, National and Kapodistrian University of Athens, Greece; PharmaInformatics Unit, Athena Research Center, Greece
| | - Konstantinos Evangelou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Department of Anatomy-Histology-Embryology, Medical School, University of Ioannina, Ioannina, Greece
| | - Panagiotis V S Vasileiou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Theodoros P Vassilakopoulos
- Department of Haematology and Bone Marrow Transplantation, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Myrsini Kouloukoussa
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Museum of Anthropology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Kittas
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece.
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK; Biomedical Research Foundation, Academy of Athens, Athens, Greece.
| |
Collapse
|
23
|
Logan S, Owen D, Chen S, Chen WJ, Ungvari Z, Farley J, Csiszar A, Sharpe A, Loos M, Koopmans B, Richardson A, Sonntag WE. Simultaneous assessment of cognitive function, circadian rhythm, and spontaneous activity in aging mice. GeroScience 2018; 40:123-137. [PMID: 29687240 DOI: 10.1007/s11357-018-0019-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/11/2018] [Indexed: 12/27/2022] Open
Abstract
Cognitive function declines substantially with age in both humans and animal models. In humans, this decline is associated with decreases in independence and quality of life. Although the methodology for analysis of cognitive function in human models is relatively well established, similar analyses in animal models have many technical issues (e.g., unintended experimenter bias, motivational issues, stress, and testing during the light phase of the light dark cycle) that limit interpretation of the results. These caveats, and others, potentially bias the interpretation of studies in rodents and prevent the application of current tests of learning and memory as part of an overall healthspan assessment in rodent models of aging. The goal of this study was to establish the methodology to assess cognitive function in aging animals that addresses many of these concerns. Here, we use a food reward-based discrimination procedure with minimal stress in C57Bl/6J male mice at 6, 21, and 27 months of age, followed by a reversal task to assess behavioral flexibility. Importantly, the procedures minimize issues related to between-experimenter confounds and are conducted during both the dark and light phases of the light dark cycle in a home-cage setting. During cognitive testing, we were able to assess multiple measures of spontaneous movement and diurnal activity in young and aged mice including, distance moved, velocity, and acceleration over a 90-h period. Both initial discrimination and reversal learning significantly decreased with age and, similar to rats and humans, not all old mice demonstrated impairments in learning with age. These results permitted classification of animals based on their cognitive status. Analysis of movement parameters indicated decreases in distance moved as well as velocity and acceleration with increasing age. Based on these data, we developed preliminary models indicating, as in humans, a close relationship exists between age-related movement parameters and cognitive ability. Our results provide a reliable method for assessing cognitive performance with minimal stress and simultaneously provide key information on movement and diurnal activity. These methods represent a novel approach to developing non-invasive healthspan measures in rodent models that allow standardization across laboratories.
Collapse
Affiliation(s)
- Sreemathi Logan
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10TH Street, SLY-BRC 1303, Oklahoma City, OK, 73104, USA.
| | - Daniel Owen
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10TH Street, SLY-BRC 1303, Oklahoma City, OK, 73104, USA
| | - Sixia Chen
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Wei-Jen Chen
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Zoltan Ungvari
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10TH Street, SLY-BRC 1303, Oklahoma City, OK, 73104, USA
| | - Julie Farley
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10TH Street, SLY-BRC 1303, Oklahoma City, OK, 73104, USA
| | - Anna Csiszar
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10TH Street, SLY-BRC 1303, Oklahoma City, OK, 73104, USA
| | - Amanda Sharpe
- College of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Maarten Loos
- Sylics (Synaptologics BV), Amsterdam, The Netherlands
| | | | - Arlan Richardson
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10TH Street, SLY-BRC 1303, Oklahoma City, OK, 73104, USA
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10TH Street, SLY-BRC 1303, Oklahoma City, OK, 73104, USA
| |
Collapse
|
24
|
Aging and Intermittent Fasting Impact on Transcriptional Regulation and Physiological Responses of Adult Drosophila Neuronal and Muscle Tissues. Int J Mol Sci 2018; 19:ijms19041140. [PMID: 29642630 PMCID: PMC5979431 DOI: 10.3390/ijms19041140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/21/2022] Open
Abstract
The progressive decline of the nervous system, including protein aggregate formation, reflects the subtle dysregulation of multiple functional pathways. Our previous work has shown intermittent fasting (IF) enhances longevity, maintains adult behaviors and reduces aggregates, in part, by promoting autophagic function in the aging Drosophila brain. To clarify the impact that IF-treatment has upon aging, we used high throughput RNA-sequencing technology to examine the changing transcriptome in adult Drosophila tissues. Principle component analysis (PCA) and other analyses showed ~1200 age-related transcriptional differences in head and muscle tissues, with few genes having matching expression patterns. Pathway components showing age-dependent expression differences were involved with stress response, metabolic, neural and chromatin remodeling functions. Middle-aged tissues also showed a significant increase in transcriptional drift-variance (TD), which in the CNS included multiple proteolytic pathway components. Overall, IF-treatment had a demonstrably positive impact on aged transcriptomes, partly ameliorating both fold and variance changes. Consistent with these findings, aged IF-treated flies displayed more youthful metabolic, behavioral and basal proteolytic profiles that closely correlated with transcriptional alterations to key components. These results indicate that even modest dietary changes can have therapeutic consequences, slowing the progressive decline of multiple cellular systems, including proteostasis in the aging nervous system.
Collapse
|
25
|
Targeting Mitochondria to Counteract Age-Related Cellular Dysfunction. Genes (Basel) 2018; 9:genes9030165. [PMID: 29547561 PMCID: PMC5867886 DOI: 10.3390/genes9030165] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/02/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023] Open
Abstract
Senescence is related to the loss of cellular homeostasis and functions, which leads to a progressive decline in physiological ability and to aging-associated diseases. Since mitochondria are essential to energy supply, cell differentiation, cell cycle control, intracellular signaling and Ca2+ sequestration, fine-tuning mitochondrial activity appropriately, is a tightrope walk during aging. For instance, the mitochondrial oxidative phosphorylation (OXPHOS) ensures a supply of adenosine triphosphate (ATP), but is also the main source of potentially harmful levels of reactive oxygen species (ROS). Moreover, mitochondrial function is strongly linked to mitochondrial Ca2+ homeostasis and mitochondrial shape, which undergo various alterations during aging. Since mitochondria play such a critical role in an organism’s process of aging, they also offer promising targets for manipulation of senescent cellular functions. Accordingly, interventions delaying the onset of age-associated disorders involve the manipulation of mitochondrial function, including caloric restriction (CR) or exercise, as well as drugs, such as metformin, aspirin, and polyphenols. In this review, we discuss mitochondria’s role in and impact on cellular aging and their potential to serve as a target for therapeutic interventions against age-related cellular dysfunction.
Collapse
|
26
|
Faye C, McGowan JC, Denny CA, David DJ. Neurobiological Mechanisms of Stress Resilience and Implications for the Aged Population. Curr Neuropharmacol 2018; 16:234-270. [PMID: 28820053 PMCID: PMC5843978 DOI: 10.2174/1570159x15666170818095105] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/25/2017] [Accepted: 07/27/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Stress is a common reaction to an environmental adversity, but a dysregulation of the stress response can lead to psychiatric illnesses such as major depressive disorder (MDD), post-traumatic stress disorder (PTSD), and anxiety disorders. Yet, not all individuals exposed to stress will develop psychiatric disorders; those with enhanced stress resilience mechanisms have the ability to adapt successfully to stress without developing persistent psychopathology. Notably, the potential to enhance stress resilience in at-risk populations may prevent the onset of stress-induced psychiatric disorders. This novel idea has prompted a number of studies probing the mechanisms of stress resilience and how it can be manipulated. METHODS Here, we review the neurobiological factors underlying stress resilience, with particular focus on the serotoninergic (5-HT), glutamatergic, and γ-Aminobutyric acid (GABA) systems, as well as the hypothalamic-pituitary axis (HPA) in rodents and in humans. Finally, we discuss stress resiliency in the context of aging, as the likelihood of mood disorders increases in older adults. RESULTS Interestingly, increased resiliency has been shown to slow aging and improved overall health and quality of life. Research in the neurobiology of stress resilience, particularly throughout the aging process, is a nascent, yet, burgeoning field. CONCLUSION Overall, we consider the possible methods that may be used to induce resilient phenotypes, prophylactically in at-risk populations, such as in military personnel or in older MDD patients. Research in the mechanisms of stress resilience may not only elucidate novel targets for antidepressant treatments, but also provide novel insight about how to prevent these debilitating disorders from developing.
Collapse
Affiliation(s)
- Charlène Faye
- CESP/UMR-S 1178, Univ. Paris-Sud, Fac Pharmacie, Inserm, Université Paris-Saclay, 92296 Chatenay-Malabry, France
| | - Josephine C. McGowan
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY, USA
| | - Christine A. Denny
- Department of Psychiatry, Columbia University, New York, NY, USA
- Division of Integrative Neuroscience, New York State Psychiatric Institute/Research Foundation for Mental Hygiene, Inc., New York, NY, USA
| | - Denis J. David
- CESP/UMR-S 1178, Univ. Paris-Sud, Fac Pharmacie, Inserm, Université Paris-Saclay, 92296 Chatenay-Malabry, France
| |
Collapse
|
27
|
Tello-Padilla MF, Perez-Gonzalez AY, Canizal-García M, González-Hernández JC, Cortes-Rojo C, Olivares-Marin IK, Madrigal-Perez LA. Glutathione levels influence chronological life span ofSaccharomyces cerevisiaein a glucose-dependent manner. Yeast 2018; 35:387-396. [DOI: 10.1002/yea.3302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Mayra Fabiola Tello-Padilla
- Laboratorio de Biotecnología Microbiana, Instituto Tecnológico Superior de Ciudad Hidalgo; Av. Ing. Carlos Rojas Gutiérrez #2120 Ciudad Hidalgo Michoacán 61100 México
| | - Alejandra Yudid Perez-Gonzalez
- Laboratorio de Biotecnología Microbiana, Instituto Tecnológico Superior de Ciudad Hidalgo; Av. Ing. Carlos Rojas Gutiérrez #2120 Ciudad Hidalgo Michoacán 61100 México
| | - Melina Canizal-García
- Laboratorio de Biotecnología Microbiana, Instituto Tecnológico Superior de Ciudad Hidalgo; Av. Ing. Carlos Rojas Gutiérrez #2120 Ciudad Hidalgo Michoacán 61100 México
| | - Juan Carlos González-Hernández
- Laboratorio de Bioquímica del Instituto Tecnológico de Morelia; Av. Tecnológico de Morelia Morelia Michoacán 58030 México
| | - Christian Cortes-Rojo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo; Morelia Michoacán 58120 México
| | | | - Luis Alberto Madrigal-Perez
- Laboratorio de Biotecnología Microbiana, Instituto Tecnológico Superior de Ciudad Hidalgo; Av. Ing. Carlos Rojas Gutiérrez #2120 Ciudad Hidalgo Michoacán 61100 México
| |
Collapse
|
28
|
Eissenberg JC. Hungering for Immortality. MISSOURI MEDICINE 2018; 115:12-17. [PMID: 30228670 PMCID: PMC6139805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Beyond avoiding risky behavior-smoking, substance abuse, obesity-and embracing healthy habits like exercise, a balanced diet, and non-obese body weight, are there things we each do today to significantly extend our lifespan? Caloric restriction is the only behavioral intervention consistently shown to extend both mean and maximal lifespan across a wide range of species. In most cases, the lifespan extension is accompanied by a marked delay in the onset of age-associated disease and infirmity.
Collapse
Affiliation(s)
- Joel C. Eissenberg
- Joel C. Eissenberg, PhD, is a Professor and Associate Dean for Research, Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine
| |
Collapse
|
29
|
Kotajarvi BR, Schafer MJ, Atkinson EJ, Traynor MM, Bruce CJ, Greason KL, Suri RM, Miller JD, LeBrasseur NK. The Impact of Frailty on Patient-Centered Outcomes Following Aortic Valve Replacement. J Gerontol A Biol Sci Med Sci 2017; 72:917-921. [PMID: 28329140 DOI: 10.1093/gerona/glx038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/22/2017] [Indexed: 11/12/2022] Open
Abstract
Background Frailty confers risk for surgical morbidity and mortality. Whether patient-reported measures of health, well-being, or quality of life respond differently to surgery in non-frail and frail individuals is unknown. Methods Older adults with severe aortic stenosis presenting for surgery were assessed for frailty using Cardiovascular Health Study Criteria. Patient-reported measures of functional capacity (Duke Activity Status Index [DASI]), physical and mental health (Medical Outcomes Study Short Form-Physical and Mental Component Scales [SF-12 PCS and SF-12 MCS, respectively]), well-being (linear analogue self-assessment [LASA]), and quality of life (LASA) were administered before and 3 months after surgery. Results Of 103 participants (mean age of 80.6 years), 54 were frail. Frail participants had lower baseline DASI, SF-12 PCS, SF-12 MCS, physical well-being, and quality of life scores than non-frail participants. At follow-up, frail participants showed significant improvement in physical function, with DASI and SF-12 PCS scores improving by 50% and 14%, respectively. Non-frail subjects did not significantly improve in these measures. SF-12 MCS scores also improved to a greater extent in frail compared to non-frail participants (3.6 vs < 1 point). Furthermore, the frail participants improved to a greater extent than non-frail participants in physical well-being (21.6 vs 7.1 points) and quality of life measures (25.1 vs 8.7 points). Conclusions Frailty is prevalent in older adults with severe aortic stenosis and is associated with poor physical and mental function, physical well-being, and quality of life. In response to surgery, frail participants exhibited greater improvement in these patient-centered outcomes than non-frail peers.
Collapse
Affiliation(s)
- Brian R Kotajarvi
- Center for Clinical and Translational Sciences, Mayo Clinic, Rochester, Minnesota
| | - Marissa J Schafer
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | | | - Megan M Traynor
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota
| | - Charles J Bruce
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota
| | - Kevin L Greason
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota
| | - Rakesh M Suri
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota
| | - Jordan D Miller
- Department of Cardiovascular Surgery, Mayo Clinic, Rochester, Minnesota
| | - Nathan K LeBrasseur
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota.,Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
30
|
Gomez-Cabrera MC, Garcia-Valles R, Rodriguez-Mañas L, Garcia-Garcia FJ, Olaso-Gonzalez G, Salvador-Pascual A, Tarazona-Santabalbina FJ, Viña J. A New Frailty Score for Experimental Animals Based on the Clinical Phenotype: Inactivity as a Model of Frailty. J Gerontol A Biol Sci Med Sci 2017; 72:885-891. [PMID: 28329258 DOI: 10.1093/gerona/glw337] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/29/2016] [Indexed: 01/01/2023] Open
Abstract
The development of animal models to study human frailty is important to test interventions to be translated to the clinical practice. The aim of this work was to develop a score for frailty in experimental animals based in the human frailty phenotype. We also tested the effect of physical inactivity in the development of frailty as determined by our score. Male C57Bl/6J mice, individually caged, were randomly assigned to one of two groups: sedentary (inactive) or spontaneous wheel-runners. We compared the sedentary versus the active lifestyle in terms of frailty by evaluating the clinical criteria used in humans: unintentional weight loss; poor endurance (running time); slowness (running speed); weakness (grip strength), and low activity level (motor coordination) at five different ages: 17, 20, 23, 26 and 28 months of age. Each criterion had a designated cut-off point to identify the mice with the lowest performance. Lifelong spontaneous exercise significantly retards frailty. On the contrary sedentary animals become frail as they age. Thus, physical inactivity is a model of frailty in experimental animals. Our frailty score provides a tool to evaluate interventions in mice prior to translating them to clinical practice.
Collapse
Affiliation(s)
- Mari Carmen Gomez-Cabrera
- Department of Physiology, University of Valencia, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Spain
| | - Rebeca Garcia-Valles
- Department of Physiology, University of Valencia, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Spain
| | - Leocadio Rodriguez-Mañas
- Servicio de Geriatría, Hospital Universitario de Getafe, Ministerio de Sanidad y Consumo, Madrid, Spain. Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF), Instituto de Salud Carlos III
| | | | - Gloria Olaso-Gonzalez
- Department of Physiology, University of Valencia, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Spain
| | - Andrea Salvador-Pascual
- Department of Physiology, University of Valencia, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Spain
| | - Francisco Jose Tarazona-Santabalbina
- Department of Geriatric Medicine, Hospital Universitario de la Ribera, Alzira, Spain.,Faculty of Nursing and Medicine, Catholic University of Valencia San Vicente Mártir, Spain
| | - Jose Viña
- Department of Physiology, University of Valencia, Fundación Investigación Hospital Clínico Universitario/INCLIVA, Spain
| |
Collapse
|
31
|
Antiaging Effect of Metformin on Brain in Naturally Aged and Accelerated Senescence Model of Rat. Rejuvenation Res 2017; 20:173-182. [DOI: 10.1089/rej.2016.1883] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
32
|
Plaza-Zabala A, Sierra-Torre V, Sierra A. Autophagy and Microglia: Novel Partners in Neurodegeneration and Aging. Int J Mol Sci 2017; 18:E598. [PMID: 28282924 PMCID: PMC5372614 DOI: 10.3390/ijms18030598] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 02/28/2017] [Accepted: 03/05/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy is emerging as a core regulator of Central Nervous System (CNS) aging and neurodegeneration. In the brain, it has mostly been studied in neurons, where the delivery of toxic molecules and organelles to the lysosome by autophagy is crucial for neuronal health and survival. However, we propose that the (dys)regulation of autophagy in microglia also affects innate immune functions such as phagocytosis and inflammation, which in turn contribute to the pathophysiology of aging and neurodegenerative diseases. Herein, we first describe the basic concepts of autophagy and its regulation, discuss key aspects for its accurate monitoring at the experimental level, and summarize the evidence linking autophagy impairment to CNS senescence and disease. We focus on acute, chronic, and autoimmunity-mediated neurodegeneration, including ischemia/stroke, Alzheimer's, Parkinson's, and Huntington's diseases, and multiple sclerosis. Next, we describe the actual and potential impact of autophagy on microglial phagocytic and inflammatory function. Thus, we provide evidence of how autophagy may affect microglial phagocytosis of apoptotic cells, amyloid-β, synaptic material, and myelin debris, and regulate the progression of age-associated neurodegenerative diseases. We also discuss data linking autophagy to the regulation of the microglial inflammatory phenotype, which is known to contribute to age-related brain dysfunction. Overall, we update the current knowledge of autophagy and microglia, and highlight as yet unexplored mechanisms whereby autophagy in microglia may contribute to CNS disease and senescence.
Collapse
Affiliation(s)
| | | | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, 48170 Zamudio, Spain.
- Department of Neurosciences, University of the Basque Country EHU/UPV, 48940 Leioa, Spain.
- Ikerbasque Foundation, 48013 Bilbao, Spain.
| |
Collapse
|