1
|
Aderonmu JA, Curtze C. Levodopa-induced dyskinesia alters postural control in people with Parkinson's disease. J Biomech 2024; 177:112421. [PMID: 39608183 DOI: 10.1016/j.jbiomech.2024.112421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024]
Abstract
While levodopa is the most effective drug for symptom treatment of Parkinson's Disease (PD), its long-term use often leads to side effects such as uncontrolled involuntary movements known as levodopa-induced dyskinesia (LID). LID has been shown to increase postural sway, but the extent to which these hyperkinetic movements alter postural sway strategies has not been explored. We recruited 25 people with idiopathic PD, of which 13 exhibit clinical signs of LID, and 10 healthy older adults. Participants performed thirty-second standing trials with no added task (single-task) and with performing a cognitive dual-task, known to provoke dyskinesia. Participants with PD were tested in their practical OFF and ON states. The root-means-square (RMS) accelerations were obtained from inertial sensors attached to the lumbar, trunk, and head. Sway ratios (superior-to-inferior segment) were calculated to determine the effect of LID on postural sway strategies. Participants with LID showed greater RMS head sway, compared to those without LID and older adults. The head-to-trunk sway ratio was greater in participants with LID during the ON state or when dual-tasking. In addition, the head-to-lumbar sway ratio was greater in participants with LID in the ON state during both single- and dual-tasking. Our results reveal an altered postural control strategy in PD with LID, presenting increased sway in superior segments of the kinematic chain, leading to head instability. Unlike PD without LID and older adults, PD with LID exhibit multi-link sway in the ON state, which has important implications for measuring postural sway in the presence of dyskinesias.
Collapse
Affiliation(s)
| | - Carolin Curtze
- Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, United States.
| |
Collapse
|
2
|
Hill A, Cantú H, Côté JN, Nantel J. Reaching and stepping respond differently to medication and cueing in Parkinson's disease. Sci Rep 2024; 14:24461. [PMID: 39424838 PMCID: PMC11489650 DOI: 10.1038/s41598-024-72751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/10/2024] [Indexed: 10/21/2024] Open
Abstract
The basal ganglia contribute to internal timekeeping, and dopaminergic medication has been observed to moderate timing deficits associated with Parkinson's Disease (PD) during single joint movements. However, it is unclear whether similar effects can be observed in multi-joint movements. Twenty-five people with PD and twelve healthy peers performed repetitive reaching and stepping-in-place tasks with and without auditory cues at their self-selected maximal cadence. The PD group was measured ON and OFF medication. Reduced cadence error was found for both groups and tasks when cued, and ON PD exhibited decreased cadence compared to OFF PD. Overall timing variability was no different from controls, but differences were found in estimates of clock and motor variance using the Wing-Kristofferson model of interval timing. A medication and cueing interaction during the reaching task produced increased clock variance in uncued, ON PD. During the stepping task, clock and motor variance of the PD group were unaffected by cues, in contrast to the control group. Serial lag-one correlation was reduced in both groups for cued reaching, but was unaffected by cueing or medication in the PD group when stepping-in-place. These findings suggest that overall timing variability may not capture timing deficits in PD.
Collapse
Affiliation(s)
- Allen Hill
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Hiram Cantú
- Department of Kinesiology and Physical Education, McGill University, Montréal, QC, Canada
- Departamento de Ciencias Aliadas, Escuela de Ciencias Aliadas de La Salud, Universidad de Monterrey, Vicerrectoría de Ciencias de La Salud, San Pedro Garza García, México
- Occupational Biomechanics and Ergonomics Laboratory, Michael Feil and Ted Oberfeld/CRIR Research Centre, Jewish Rehabilitation Hospital, Laval, QC, Canada
- Centre for Interdisciplinary Research in Rehabilitation, Montréal, QC, Canada
| | - Julie N Côté
- Department of Kinesiology and Physical Education, McGill University, Montréal, QC, Canada
- Occupational Biomechanics and Ergonomics Laboratory, Michael Feil and Ted Oberfeld/CRIR Research Centre, Jewish Rehabilitation Hospital, Laval, QC, Canada
- Centre for Interdisciplinary Research in Rehabilitation, Montréal, QC, Canada
| | - Julie Nantel
- School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Zhang W, Ling Y, Chen Z, Ren K, Chen S, Huang P, Tan Y. Wearable sensor-based quantitative gait analysis in Parkinson's disease patients with different motor subtypes. NPJ Digit Med 2024; 7:169. [PMID: 38926552 PMCID: PMC11208588 DOI: 10.1038/s41746-024-01163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Gait impairments are among the most common and disabling symptoms of Parkinson's disease and worsen as the disease progresses. Early detection and diagnosis of subtype-specific gait deficits, as well as progression monitoring, can help to implement effective and preventive personalized treatment for PD patients. Yet, the gait features have not been fully studied in PD and its motor subtypes. To characterize comprehensive and objective gait alterations and to identify the potential gait biomarkers for early diagnosis, subtype differentiation, and disease severity monitoring. We analyzed gait parameters related to upper/lower limbs, trunk and lumbar, and postural transitions from 24 tremor-dominant (TD) and 20 postural instability gait difficulty (PIGD) dominant PD patients who were in early stage and 39 matched healthy controls (HC) during the Timed Up and Go test using wearable sensors. Results show: (1) Both TD and PIGD groups showed restricted backswing range in bilateral lower extremities and more affected side (MAS) arm, reduced trunk and lumbar rotation range in the coronal plane, and low turning efficiency. The receiver operating characteristic (ROC) analysis revealed these objective gait features had high discriminative value in distinguishing both PD subtypes from the HC with the area under the curve (AUC) values of 0.7~0.9 (p < 0.01). (2) Subtle but measurable gait differences existed between TD and PIGD patients before the onset of clinically apparent gait impairment. (3) Specific gait parameters were significantly associated with disease severity in TD and PIGD subtypes. Objective gait biomarkers based on wearable sensors may facilitate timely and personalized gait treatments in PD subtypes through early diagnosis, subtype differentiation, and disease severity monitoring.
Collapse
Affiliation(s)
- Weishan Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun Ling
- GYENNO SCIENCE Co., Ltd. Department of Research, Shenzhen, Guangdong, China
- HUST-GYENNO CNS Intelligent Digital Medicine Technology Center, Wuhan, China
| | - Zhonglue Chen
- GYENNO SCIENCE Co., Ltd. Department of Research, Shenzhen, Guangdong, China
- HUST-GYENNO CNS Intelligent Digital Medicine Technology Center, Wuhan, China
| | - Kang Ren
- GYENNO SCIENCE Co., Ltd. Department of Research, Shenzhen, Guangdong, China
- HUST-GYENNO CNS Intelligent Digital Medicine Technology Center, Wuhan, China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pei Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Zampogna A, Borzì L, Rinaldi D, Artusi CA, Imbalzano G, Patera M, Lopiano L, Pontieri F, Olmo G, Suppa A. Unveiling the Unpredictable in Parkinson's Disease: Sensor-Based Monitoring of Dyskinesias and Freezing of Gait in Daily Life. Bioengineering (Basel) 2024; 11:440. [PMID: 38790307 PMCID: PMC11117481 DOI: 10.3390/bioengineering11050440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Dyskinesias and freezing of gait are episodic disorders in Parkinson's disease, characterized by a fluctuating and unpredictable nature. This cross-sectional study aims to objectively monitor Parkinsonian patients experiencing dyskinesias and/or freezing of gait during activities of daily living and assess possible changes in spatiotemporal gait parameters. METHODS Seventy-one patients with Parkinson's disease (40 with dyskinesias and 33 with freezing of gait) were continuously monitored at home for a minimum of 5 days using a single wearable sensor. Dedicated machine-learning algorithms were used to categorize patients based on the occurrence of dyskinesias and freezing of gait. Additionally, specific spatiotemporal gait parameters were compared among patients with and without dyskinesias and/or freezing of gait. RESULTS The wearable sensor algorithms accurately classified patients with and without dyskinesias as well as those with and without freezing of gait based on the recorded dyskinesias and freezing of gait episodes. Standard spatiotemporal gait parameters did not differ significantly between patients with and without dyskinesias or freezing of gait. Both the time spent with dyskinesias and the number of freezing of gait episodes positively correlated with the disease severity and medication dosage. CONCLUSIONS A single inertial wearable sensor shows promise in monitoring complex, episodic movement patterns, such as dyskinesias and freezing of gait, during daily activities. This approach may help implement targeted therapeutic and preventive strategies for Parkinson's disease.
Collapse
Affiliation(s)
- Alessandro Zampogna
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.Z.); (M.P.)
- IRCCS Neuromed Institute, 86077 Pozzilli, IS, Italy
| | - Luigi Borzì
- Data Analytics and Technologies for Health Lab (ANTHEA), Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy; (L.B.); (G.O.)
| | - Domiziana Rinaldi
- Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Sapienza University of Rome, 00189 Rome, Italy; (D.R.); (F.P.)
| | - Carlo Alberto Artusi
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Torino, Italy; (C.A.A.); (G.I.); (L.L.)
- Neurology 2 Unit, A.O.U, Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Gabriele Imbalzano
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Torino, Italy; (C.A.A.); (G.I.); (L.L.)
| | - Martina Patera
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.Z.); (M.P.)
| | - Leonardo Lopiano
- Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Torino, Italy; (C.A.A.); (G.I.); (L.L.)
- Neurology 2 Unit, A.O.U, Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Francesco Pontieri
- Department of Neuroscience, Mental Health and Sense Organs (NESMOS), Sapienza University of Rome, 00189 Rome, Italy; (D.R.); (F.P.)
| | - Gabriella Olmo
- Data Analytics and Technologies for Health Lab (ANTHEA), Department of Control and Computer Engineering, Politecnico di Torino, 10129 Turin, Italy; (L.B.); (G.O.)
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy; (A.Z.); (M.P.)
- IRCCS Neuromed Institute, 86077 Pozzilli, IS, Italy
| |
Collapse
|
5
|
Wu C, Wu H, Zhou C, Guan X, Guo T, Cao Z, Wu J, Liu X, Chen J, Wen J, Qin J, Tan S, Duanmu X, Yuan W, Zheng Q, Zhang B, Huang P, Xu X, Zhang M. Cholinergic basal forebrain system degeneration underlies postural instability/gait difficulty and attention impairment in Parkinson's disease. Eur J Neurol 2024; 31:e16108. [PMID: 37877681 PMCID: PMC11235900 DOI: 10.1111/ene.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/11/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
BACKGROUND AND PURPOSE The specific pathophysiological mechanisms underlying postural instability/gait difficulty (PIGD) and cognitive function in Parkinson's disease (PD) remain unclear. Both postural and gait control, as well as cognitive function, are associated with the cholinergic basal forebrain (cBF) system. METHODS A total of 84 PD patients and 82 normal controls were enrolled. Each participant underwent motor and cognitive assessments. Diffusion tensor imaging was used to detect structural abnormalities in the cBF system. The cBF was segmented using FreeSurfer, and its fiber tract was traced using probabilistic tractography. To provide information on extracellular water accumulation, free-water fraction (FWf) was quantified. FWf in the cBF and its fiber tract, as well as cortical projection density, were extracted for statistical analyses. RESULTS Patients had significantly higher FWf in the cBF (p < 0.001) and fiber tract (p = 0.021) than normal controls, as well as significantly lower cBF projection in the occipital (p < 0.001), parietal (p < 0.001) and prefrontal cortex (p = 0.005). In patients, a higher FWf in the cBF correlated with worse PIGD score (r = 0.306, p = 0.006) and longer Trail Making Test A time (r = 0.303, p = 0.007). Attentional function (Trail Making Test A) partially mediated the association between FWf in the cBF and PIGD score (indirect effect, a*b = 0.071; total effect, c = 0.256; p = 0.006). CONCLUSIONS Our findings suggest that degeneration of the cBF system in PD, from the cBF to its fiber tract and cortical projection, plays an important role in cognitive-motor interaction.
Collapse
Affiliation(s)
- Chenqing Wu
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Haoting Wu
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Cheng Zhou
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Guan
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Tao Guo
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhengye Cao
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingjing Wu
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaocao Liu
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingwen Chen
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiaqi Wen
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jianmei Qin
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Sijia Tan
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojie Duanmu
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Weijin Yuan
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Qianshi Zheng
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Baorong Zhang
- Department of Neurology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Peiyu Huang
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Xu
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Minming Zhang
- Department of Radiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
6
|
Pelicioni PH, Chan LL, Shi S, Wong K, Kark L, Okubo Y, Brodie MA. Impact of mobile phone use on accidental falls risk in young adult pedestrians. Heliyon 2023; 9:e18366. [PMID: 37701410 PMCID: PMC10493431 DOI: 10.1016/j.heliyon.2023.e18366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 09/14/2023] Open
Abstract
Background Mobile phone use is known to be a distraction to pedestrians, increasing their likelihood of crossing into oncoming traffic or colliding with other people. However, the effect of using a mobile phone to text while walking on gait stability and accidental falls in young adults remains inconclusive. This study uses a 70 cm low friction slip hazard and the threat of hazard to investigate the effects of texting while walking on gait stability, the ability to recover balance after a slip hazard and accidental falls. Methods Fifty healthy young adults performed six walking tasks, and one seated texting task in random order. The walks were conducted over a 10-m walkway. Four progressive hazard levels were used: 1) Seated; 2) Normal Walk (walking across the walkway with no threat of a slip); 3) Threat (walking with the threat of a slip); and 4) Slip (walking with an actual 70 cm slip hazard). The three walking conditions were repeated twice with and without the mobile phone texting dual-task. Gait kinematics and trunk posture were recorded using wearable sensors attached to the head, trunk, pelvis and feet. Study outcomes were analyzed using repeated measures analysis of variance with significance set to P≤.05. Results Mobile phone use significantly impaired postural balance recovery when slipping, as demonstrated by increased trunk sway. Mobile phone use negatively impacted gait stability as demonstrated by increased step time variability and decreased harmonic ratios. Increased hazard levels also led to reduced texting accuracy. Conclusions Using a mobile phone to text while walking may compete with locomotor tasks, threat assessment and postural balance control mechanisms, which leads to an increased risk of accidental falls in young adults. Pedestrians should therefore be discouraged through new educational and technology-based initiatives (for example a "texting lock" on detection of walking) from texting while walking on roadside footpaths and other environments where substantial hazards to safety exist.
Collapse
Affiliation(s)
- Paulo H.S. Pelicioni
- School of Health Sciences, University of New South Wales, Kensington Campus, NSW 2052, Australia
- Neuroscience Research Australia, 139 Barker Street Randwick, NSW 2031, Australia
| | - Lloyd L.Y. Chan
- Neuroscience Research Australia, 139 Barker Street Randwick, NSW 2031, Australia
- School of Population Health, University of New South Wales, Sydney 2052, NSW, Australia
| | - Shuotong Shi
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington Campus, NSW 2052, Australia
| | - Kenny Wong
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington Campus, NSW 2052, Australia
| | - Lauren Kark
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington Campus, NSW 2052, Australia
| | - Yoshiro Okubo
- Neuroscience Research Australia, 139 Barker Street Randwick, NSW 2031, Australia
- School of Population Health, University of New South Wales, Sydney 2052, NSW, Australia
| | - Matthew A. Brodie
- Graduate School of Biomedical Engineering, University of New South Wales, Kensington Campus, NSW 2052, Australia
| |
Collapse
|
7
|
Brodie MA, Pelicioni PH, Okubo Y, Chan DY, Carroll V, Toson B, Vigano D, Macagno M, Sternberg S, Schreier G, Lovell NH. Immediate Effects of Lower Limb Sensory Simulation Using Smart Socks to Stabilize Gait in People with Parkinson's Disease. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083091 DOI: 10.1109/embc40787.2023.10340604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
People with Parkinson's disease (PD) experience gait impairment that can lead to falls and poor quality of life. Here we investigate the feasibility of using smart socks to stimulate the lower limbs of people with PD to reduce excessive step time variability during walking. We hypothesised that rythmic excitation of lower limb afferents, matched to a participant's comfortable pace, would entrain deficient neuro-muscular signals resulting in improved gait. Five people with mild to moderate PD symptoms (70 ± 9 years) were tested on medication before and after a 30-minute familierization session. Paired t-tests and Cohen's d were used to assess gait changes and report effect sizes. Participant experiences were recorded through structured interviews. Lower limb stimulation resulted in an acute 15% increase in gait speed (p=0.006, d=0.62), an 11% increase in step length (p=0.04, d=0.35), a 44% reduction in step time variability (p=0.03, d=0.91), a 22% increase in perceived gait quality (p=0.04, d=1.17), a 24% reduction in mental effort to walk (p=0.02, d=0.79) and no statistical difference for cadence (p=0.16). Participants commented positively on the benefit of stimulation during training but found that stimulation could be distracting when not walking and the socks hard to put on. While the large effects for step time variability and percieved gait quality (Cohen's d > 0.8) are promising, limitations regarding sample size, potential placebo effects and translation to the home environment should be addressed by future studies.Clinical Relevance- This study demonstrates the feasibility of using smart stimulating socks to reduce excessive step time variability in people with PD. As step time variability is a risk factor for falls, the use of smart textiles to augment future rehabilitation programs warrants further investigation.
Collapse
|
8
|
Deb R, An S, Bhat G, Shill H, Ogras UY. A Systematic Survey of Research Trends in Technology Usage for Parkinson's Disease. SENSORS (BASEL, SWITZERLAND) 2022; 22:5491. [PMID: 35897995 PMCID: PMC9371095 DOI: 10.3390/s22155491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Parkinson's disease (PD) is a neurological disorder with complicated and disabling motor and non-motor symptoms. The complexity of PD pathology is amplified due to its dependency on patient diaries and the neurologist's subjective assessment of clinical scales. A significant amount of recent research has explored new cost-effective and subjective assessment methods pertaining to PD symptoms to address this challenge. This article analyzes the application areas and use of mobile and wearable technology in PD research using the PRISMA methodology. Based on the published papers, we identify four significant fields of research: diagnosis, prognosis and monitoring, predicting response to treatment, and rehabilitation. Between January 2008 and December 2021, 31,718 articles were published in four databases: PubMed Central, Science Direct, IEEE Xplore, and MDPI. After removing unrelated articles, duplicate entries, non-English publications, and other articles that did not fulfill the selection criteria, we manually investigated 1559 articles in this review. Most of the articles (45%) were published during a recent four-year stretch (2018-2021), and 19% of the articles were published in 2021 alone. This trend reflects the research community's growing interest in assessing PD with wearable devices, particularly in the last four years of the period under study. We conclude that there is a substantial and steady growth in the use of mobile technology in the PD contexts. We share our automated script and the detailed results with the public, making the review reproducible for future publications.
Collapse
Affiliation(s)
| | - Sizhe An
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Ganapati Bhat
- School of Electrical Engineering & Computer Science, Washington State University, Pullman, WA 99164, USA;
| | - Holly Shill
- Lonnie and Muhammad Ali Movement Disorder Center, Phoenix, AZ 85013, USA;
| | - Umit Y. Ogras
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA;
| |
Collapse
|
9
|
Beretta VS, Santos PCR, Orcioli-Silva D, Jaimes DAR, Pereira MP, Barbieri FA, Gobbi LTB. Cumulative additional information does not improve the neuromuscular control during postural responses to perturbations in postural instability/gait disorders subtype of Parkinson's disease. Exp Gerontol 2022; 166:111892. [PMID: 35811017 DOI: 10.1016/j.exger.2022.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/15/2022] [Accepted: 07/04/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Postural response impairments in postural instability and gait disorders (PIGD) subtype patients may be attributed to Parkinson's disease (PD)-deterioration in central-set (programing/modulating of central outputs during motor responses). Although additional information improves some PD motor impairments, an unanswered question is whether additional information can benefit postural response in PIGD subtype. OBJECTIVE To analyze the effect of cumulative additional information on postural responses after perturbation in PIGD and neurologically healthy older adults (CG). METHODS Perturbations were applied in 16 PIGD and 19 CG by the support-base translation. Participants performed 3 blocks of 5 trials without additional information (B1-B3, Day 1) and 5 trials of each cumulative additional information (C1-C4, Day 2): information about perturbation (C1), visual (C2), verbal (C3), and somatosensory information (C4). Electromyography and center of pressure (CoP) parameters were analyzed by ANOVAs with Group (PIGD × CG) and Block (B1 × B2 × B3) and with Group (PIGD × CG) and Condition (B3 × C1 × C2 × C3 × C4). RESULTS PIGD decreased the range of CoP in B3 while CG decreased both range of CoP and the integral of antagonist's muscle activity (iEMG) in B2. Also, PIGD decreased the recovery time in C4 while CG increased the iEMG of agonist's muscle in C2 and antagonist's muscle in all conditions except C2. CONCLUSION Additional information provided before postural control assessment influences the postural response in PIGD and CG differently. PIGD demonstrated inflexibility of central-set in modulating the neuromuscular control regardless of additional information. CG presents a flexible system evidenced by the increase of agonist muscle iEMG when provided visual information.
Collapse
Affiliation(s)
- Victor Spiandor Beretta
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil
| | - Paulo Cezar Rocha Santos
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Israel
| | - Diego Orcioli-Silva
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil; University of Campinas (UNICAMP), School of Applied Sciences (FCA), Laboratory of Applied Sport Physiology (LAFAE), Limeira, Brazil
| | - Diego Alejandro Rojas Jaimes
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil; University of San Buenaventura Medellin, Graduate Program in Physical Education and Sports, Medellín, Colombia
| | - Marcelo Pinto Pereira
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil
| | - Fabio Augusto Barbieri
- São Paulo State University (UNESP), School of Sciences, Graduate Program in Movement Sciences, Department of Physical Education, Human Movement Research Laboratory (MOVI-LAB), Bauru, Brazil
| | - Lilian Teresa Bucken Gobbi
- São Paulo State University (Unesp), Institute of Biosciences, Graduate Program in Movement Sciences, Posture and Gait Studies Laboratory (LEPLO), Rio Claro, Brazil.
| |
Collapse
|
10
|
Troisi Lopez E, Minino R, Sorrentino P, Manzo V, Tafuri D, Sorrentino G, Liparoti M. Sensitivity to gait improvement after levodopa intake in Parkinson's disease: A comparison study among synthetic kinematic indices. PLoS One 2022; 17:e0268392. [PMID: 35551300 PMCID: PMC9098031 DOI: 10.1371/journal.pone.0268392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 04/28/2022] [Indexed: 02/07/2023] Open
Abstract
The synthetic indices are widely used to describe balance and stability during gait. Some of these are employed to describe the gait features in Parkinson's disease (PD). However, the results are sometimes inconsistent, and the same indices are rarely used to compare the individuals affected by PD before and after levodopa intake (OFF and ON condition, respectively). Our aim was to investigate which synthetic measure among Harmonic Ratio, Jerk Ratio, Golden Ratio and Trunk Displacement Index is representative of gait stability and harmony, and which of these are more sensitive to the variations between OFF and ON condition. We found that all indices, except the Jerk Ratio, significantly improve after levodopa. Only the improvement of the Trunk Displacement Index showed a direct correlation with the motor improvement measured through the clinical scale UPDRS-III (Unified Parkinson's Disease Rating Scale-part III). In conclusion, we suggest that the synthetic indices can be useful to detect motor changes induced by, but not all of them clearly correlate with the clinical changes achieved with the levodopa administration. In our analysis, only the Trunk Displacement Index was able to show a clear relationship with the PD clinical motor improvement.
Collapse
Affiliation(s)
- Emahnuel Troisi Lopez
- Department of Motor Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| | - Roberta Minino
- Department of Motor Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| | - Pierpaolo Sorrentino
- Institut de Neuroscience des Systemès, Aix-Marseille University, Marseille, France
- Institute of Applied Sciences and Intelligent Systems, CNR, Pozzuoli (NA), Italy
| | - Valentino Manzo
- Alzheimer Unit and Movement Disorders Clinic, Department of Neurology, Cardarelli Hospital, Naples, Italy
| | - Domenico Tafuri
- Department of Motor Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| | - Giuseppe Sorrentino
- Department of Motor Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
- Institute of Applied Sciences and Intelligent Systems, CNR, Pozzuoli (NA), Italy
- Institute for Diagnosis and Care, Hermitage Capodimonte, Naples, Italy
| | - Marianna Liparoti
- Department of Motor Sciences and Wellness, University of Naples “Parthenope”, Naples, Italy
| |
Collapse
|
11
|
Stuart S, Wagner J, Makeig S, Mancini M. Brain Activity Response to Visual Cues for Gait Impairment in Parkinson's Disease: An EEG Study. Neurorehabil Neural Repair 2021; 35:996-1009. [PMID: 34505536 PMCID: PMC8593320 DOI: 10.1177/15459683211041317] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background. Gait impairments are common in Parkinson's disease (PD) and increase falls risk. Visual cues can improve gait in PD, particularly freezing of gait (FOG), but mechanisms involved in visual cue response are unknown. This study aimed to examine brain activity in response to visual cues in people with PD who do (PD+FOG) and do not report FOG (PD-FOG) and explore relationships between attention, brain activity and gait. Methods. Mobile EEG measured brain activity during gait in 20 healthy older adults and 43 PD participants (n=22 PD+FOG, n=21 PD-FOG). Participants walked for 2-minutes with and without visual cues (transverse lines to step over). We report power spectral density (PSD) in Delta (1-4 Hz), Theta (4-7 Hz), Alpha (8-12 Hz), Beta (14-24 Hz) and Gamma (30-50 Hz) bands within clusters of similarly brain localized independent component sources. Results. PSDs within the parietal and occipital lobes were altered when walking with visual cues in PD, particularly in PD+FOG. Between group, differences suggested that parietal sources in PD, particularly with PD+FOG, had larger activity compared to healthy older adults when walking. Within group, visual cues altered brain activity in PD, particularly in PD+FOG, within visual processing brain regions. In PD participants, brain activity differences with cues correlated with gait improvements, and in PD+FOG those with worse attention required more visual attentional processing (reduced alpha PSD) in the occipital lobe. Conclusions. Visual cues improve gait and influence brain activity during walking in PD, particularly in PD+FOG. Findings may allow development of more effective therapeutics.
Collapse
Affiliation(s)
- Samuel Stuart
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne, UK
- Northumbria Healthcare NHS foundation trust, North Tyneside, UK
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| | - Johanna Wagner
- Swartz Center for Computational Neuroscience, Institute for Neural Computation (INC), University of California San Diego, San Diego, CA, USA
| | - Scott Makeig
- Swartz Center for Computational Neuroscience, Institute for Neural Computation (INC), University of California San Diego, San Diego, CA, USA
| | - Martina Mancini
- Department of Neurology, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
12
|
Warmerdam E, Romijnders R, Hansen C, Elshehabi M, Zimmermann M, Metzger FG, von Thaler AK, Berg D, Schmidt G, Maetzler W. Arm swing responsiveness to dopaminergic medication in Parkinson's disease depends on task complexity. NPJ PARKINSONS DISEASE 2021; 7:89. [PMID: 34611152 PMCID: PMC8492858 DOI: 10.1038/s41531-021-00235-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022]
Abstract
The evidence of the responsiveness of dopaminergic medication on gait in patients with Parkinson’s disease is contradicting. This could be due to differences in complexity of the context gait was in performed. This study analysed the effect of dopaminergic medication on arm swing, an important movement during walking, in different contexts. Forty-five patients with Parkinson’s disease were measured when walking at preferred speed, fast speed, and dual-tasking conditions in both OFF and ON medication states. At preferred, and even more at fast speed, arm swing improved with medication. However, during dual-tasking, there were only small or even negative effects of medication on arm swing. Assuming that dual-task walking most closely reflects real-life situations, the results suggest that the effect of dopaminergic medication on mobility-relevant movements, such as arm swing, might be small in everyday conditions. This should motivate further studies to look at medication effects on mobility in Parkinson’s disease, as it could have highly relevant implications for Parkinson’s disease treatment and counselling.
Collapse
Affiliation(s)
- Elke Warmerdam
- Department of Neurology, Kiel University, Kiel, Germany. .,Faculty of Engineering, Kiel University, Kiel, Germany.
| | - Robbin Romijnders
- Department of Neurology, Kiel University, Kiel, Germany.,Faculty of Engineering, Kiel University, Kiel, Germany
| | - Clint Hansen
- Department of Neurology, Kiel University, Kiel, Germany
| | | | - Milan Zimmermann
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Florian G Metzger
- Department of Psychiatry and Psychotherapy, University Hospital of Tübingen, Tübingen, Germany.,Geriatric Center, University Hospital of Tübingen, Tübingen, Germany.,Vitos Hospital of Psychiatry and Psychotherapy Haina, Haina, Germany
| | - Anna-Katharina von Thaler
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Daniela Berg
- Department of Neurology, Kiel University, Kiel, Germany.,Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | | | | |
Collapse
|
13
|
Pelicioni PHS, Pereira MP, Lahr J, dos Santos PCR, Gobbi LTB. Assessment of Force Production in Parkinson's Disease Subtypes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph181910044. [PMID: 34639343 PMCID: PMC8507744 DOI: 10.3390/ijerph181910044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022]
Abstract
Muscle weakness is a secondary motor symptom of Parkinson's disease (PD), especially in the subtype characterized by postural instability and gait difficulty (PIGD). Since the PIGD subtype also presents worse bradykinesia, we hypothesized that it also shows a decreased rate of force development, which is linked to an increased risk of falling in PD. Therefore, we investigated the effects of PD and PD subtypes on a force production profile and correlated the force production outcomes with clinical symptoms for each PD subtype. We assessed three groups of participants: 14 healthy older adults (OA), 10 people with PD composing the PIGD group, and 14 people with PD composing the tremor-dominant group. Three knee extension maximum voluntary isometric contractions were performed in a leg extension machine equipped with a load cell to assess the force production. The outcome measures were: peak force and rate of force development (RFD) at 50 ms (RFD50), 100 ms (RFD100), and 200 ms (RFD200). We observed lower peak force, RFD50, RFD100, and RFD200 in people with PD, regardless of subtypes, compared with the OA group (p < 0.05 for all comparisons). Together, our results indicated that PD affects the capacity to produce maximal and rapid force. Therefore, future interventions should consider rehabilitation programs for people with PD based on muscle power and fast-force production, and consequently reduce the likelihood of people with PD falling from balance-related events, such as from an unsuccessful attempt to avoid a tripping hazard or a poor and slower stepping response.
Collapse
Affiliation(s)
- Paulo Henrique Silva Pelicioni
- School of Physiotherapy, Division of Health Sciences, University of Otago, Dunedin 9016, New Zealand
- Posture and Locomotion Studies Laboratory, Universidade Estadual Paulista (UNESP), Rio Claro 13506-900, Brazil; (M.P.P.); (J.L.); (P.C.R.d.S.); (L.T.B.G.)
- Correspondence:
| | - Marcelo Pinto Pereira
- Posture and Locomotion Studies Laboratory, Universidade Estadual Paulista (UNESP), Rio Claro 13506-900, Brazil; (M.P.P.); (J.L.); (P.C.R.d.S.); (L.T.B.G.)
| | - Juliana Lahr
- Posture and Locomotion Studies Laboratory, Universidade Estadual Paulista (UNESP), Rio Claro 13506-900, Brazil; (M.P.P.); (J.L.); (P.C.R.d.S.); (L.T.B.G.)
| | - Paulo Cezar Rocha dos Santos
- Posture and Locomotion Studies Laboratory, Universidade Estadual Paulista (UNESP), Rio Claro 13506-900, Brazil; (M.P.P.); (J.L.); (P.C.R.d.S.); (L.T.B.G.)
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lilian Teresa Bucken Gobbi
- Posture and Locomotion Studies Laboratory, Universidade Estadual Paulista (UNESP), Rio Claro 13506-900, Brazil; (M.P.P.); (J.L.); (P.C.R.d.S.); (L.T.B.G.)
| |
Collapse
|
14
|
Conway ZJ, Silburn PA, Perera T, O'Maley K, Cole MH. Low-frequency STN-DBS provides acute gait improvements in Parkinson's disease: a double-blinded randomised cross-over feasibility trial. J Neuroeng Rehabil 2021; 18:125. [PMID: 34376190 PMCID: PMC8353795 DOI: 10.1186/s12984-021-00921-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/02/2021] [Indexed: 02/01/2023] Open
Abstract
Background Some people with Parkinson’s disease (PD) report poorer dynamic postural stability following high-frequency deep brain stimulation of the subthalamic nucleus (STN-DBS), which may contribute to an increased falls risk. However, some studies have shown low-frequency (60 Hz) STN-DBS improves clinical measures of postural stability, potentially providing support for this treatment. This double-blind randomised crossover study aimed to investigate the effects of low-frequency STN-DBS compared to high-frequency stimulation on objective measures of gait rhythmicity in people with PD. Methods During high- and low-frequency STN-DBS and while off-medication, participants completed assessments of symptom severity and walking (e.g., Timed Up-and-Go). During comfortable walking, the harmonic ratio, an objective measures of gait rhythmicity, was derived from head- and trunk-mounted accelerometers to provide insight in dynamic postural stability. Lower harmonic ratios represent less rhythmic walking and have discriminated people with PD who experience falls. Linear mixed model analyses were performed on fourteen participants. Results Low-frequency STN-DBS significantly improved medial–lateral and vertical trunk rhythmicity compared to high-frequency. Improvements were independent of electrode location and total electrical energy delivered. No differences were noted between stimulation conditions for temporal gait measures, clinical mobility measures, motor symptom severity or the presence of gait retropulsion. Conclusions This study provides evidence for the acute benefits of low-frequency stimulation for gait outcomes in STN-DBS PD patients, independent of electrode location. However, the perceived benefits of this therapy may be diminished for people who experienced significant tremor pre-operatively, as lower frequencies may cause these symptoms to re-emerge. Trial registration: This study was prospectively registered with the Australian and New Zealand Clinical Trials Registry on 5 June 2018 (ACTRN12618000944235). Supplementary Information The online version contains supplementary material available at 10.1186/s12984-021-00921-4.
Collapse
Affiliation(s)
- Zachary J Conway
- School of Behavioural and Health Sciences, Australian Catholic University, P.O. Box 456, Brisbane, QLD, 4014, Australia.
| | - Peter A Silburn
- Asia-Pacific Centre for Neuromodulation, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,Neurosciences Queensland, Brisbane, QLD, Australia
| | - Thushara Perera
- The Bionics Institute, East Melbourne, VIC, Australia.,Department of Medical Bionics, The University of Melbourne, Parkville, VIC, Australia
| | | | - Michael H Cole
- School of Behavioural and Health Sciences, Australian Catholic University, P.O. Box 456, Brisbane, QLD, 4014, Australia. .,Asia-Pacific Centre for Neuromodulation, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia. .,Development and Disability over the Lifespan Program, Healthy Brain and Mind Research Centre, Australian Catholic University, Brisbane, Australia.
| |
Collapse
|
15
|
Fino PC, Mancini M. Phase-Dependent Effects of Closed-Loop Tactile Feedback on Gait Stability in Parkinson's Disease. IEEE Trans Neural Syst Rehabil Eng 2021; 28:1636-1641. [PMID: 32634100 DOI: 10.1109/tnsre.2020.2997283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Gait disturbances in people with Parkinson's disease (PD) are a major cause for functional dependence and have recently been shown to be the largest risk factor for falls, institutionalization and death in PD. The use of external cues has been successful at improving gait in people with PD, but the effect of external cues on gait stability is unclear. We examined whether different forms of cueing, open-loop and closed-loop, influenced the local dynamic stability of three critical phases of gait. Forty-three adults with PD completed six, two-minute long walking trials in the following cued conditions: no cue (B), open-loop cueing, fixed auditory cue (OL), closed-loop cueing, tactile feedback delivered to wrist when the ipsilateral foot contacted with the ground (CL). Conditions were performed with and without a cognitive task. Kinematic data were recorded with inertial sensors. Only CL cueing was associated with changes in trunk stability, and these changes were only evident during the weight transfer phase of gait. Both OL and CL caused reductions in overall gait speed, stride length, and an increase in stride time. While CL cueing significantly influenced local dynamic stability during weight transfer, it remains unknown whether these changes are associated with more or less global stability. Future research will explore the clinical implications.
Collapse
|
16
|
Ma L, Mi TM, Jia Q, Han C, Chhetri JK, Chan P. Gait variability is sensitive to detect Parkinson's disease patients at high fall risk. Int J Neurosci 2020; 132:888-893. [PMID: 33256488 DOI: 10.1080/00207454.2020.1849189] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Gait disturbance is an important risk factor for falls in Parkinson's disease (PD). Using wearable sensors, we can obtain the spatiotemporal parameters of gait and calculate the gait variability. This prospective study aims to objectively evaluate the gait characteristics of PD fallers, and further explore the relationship between spatiotemporal parameters of gait, gait variability and falls in PD patients followed for six months. METHODS Fifty-one PD patients were enrolled in this study. A seven-meter timed up and go test was performed. Gait characteristics were determined by a gait analysis system. Patients were followed monthly by telephone until the occurrence of falls or till the end of six months. The patients were categorized into fallers and non-fallers based on whether fell during the follow-up period. Gait parameters were compared between two groups, and binary logistic regression was used to establish the falls prediction model. In the receiver-operating characteristic curve, area under the curve (AUC) was utilized to evaluate the prediction accuracy of each indicator. RESULTS All subjects completed the follow-up, and 14 (27.5%) patients reported falls. PD fallers had greater gait variability. The range of motion of the trunk in sagittal plane variability was an independent risk factor for falls and achieved moderate prediction accuracy (AUC = 0.751), and the logistic regression model achieved a good accuracy of falls prediction (AUC = 0.838). CONCLUSIONS Increased gait variability is a significant feature of PD fallers and is more sensitive to detect PD patients at high risk of falls than spatiotemporal parameters.
Collapse
Affiliation(s)
- Lin Ma
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China
| | - Tao-Mian Mi
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Qian Jia
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China
| | - Chao Han
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Jagadish K Chhetri
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Piu Chan
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing Institute of Geriatrics, Beijing, China.,National Clinical Research Center for Geriatric Disorders, Beijing, China.,Clinical Center for Parkinson's Disease, Capital Medical University, Beijing, China.,Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Effects of Subthalamic Nucleus Deep Brain Stimulation and Levodopa on Balance in People with Parkinson's Disease: A Cross Sectional Study. Brain Sci 2020; 10:brainsci10100693. [PMID: 33007948 PMCID: PMC7599441 DOI: 10.3390/brainsci10100693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/17/2020] [Accepted: 09/27/2020] [Indexed: 11/30/2022] Open
Abstract
Subthalamic nucleus deep brain stimulation (STN-DBS) and levodopa are common treatment strategies for Parkinson’s disease (PD). However, the specific effects of these treatment strategies on balance and its components remain unclear. This cross-sectional study of people with PD and STN-DBS compared balance in the treated state (ON-medication/ON-stimulation) and untreated state (OFF-medication/OFF-stimulation) using the Balance Evaluation Systems Test (BESTest). Total BESTest scores from the treated and untreated states were compared to assess overall balance. Scores for the six sections of the BESTest were further compared to assess differences in specific components of balance between treatment conditions. Twenty-nine participants were included (Male: 21, Female: 8, Mean Age ± SD: 65.0 ± 6.9). Total BESTest scores showed improved balance in the treated state compared to the untreated state (Treated: 67.56 ± 10.92; Untreated: 59.23 ± 16.51, p < 0.001). Four sections (Stability Limits/Verticality, Anticipatory Postural Reactions, Sensory Orientation, Stability in Gait) of the BESTest significantly improved in the treated state relative to the untreated state, after correcting for multiple comparisons (p < 0.05). These results demonstrate that STN-DBS and levodopa improve overall balance and provide a first step toward understanding the effects of these treatment strategies on specific components of balance.
Collapse
|
18
|
Biomechanical analysis of sit-to-walk in different Parkinson's disease subtypes. Clin Biomech (Bristol, Avon) 2020; 75:105010. [PMID: 32335472 DOI: 10.1016/j.clinbiomech.2020.105010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/24/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The Parkinson's disease Postural Instability and Gait Difficulty subtype is well-known to exhibit higher levels of gait and postural instability and higher frequency of falls. However, no studies have investigated the impact of Parkinson's disease subtypes when performing a highly-challenging postural task, such as sit-to-walk. This task is often used daily and can highlight balance impairments. Thus, the aim of this study was to compare Tremor Dominant and Postural Instability and Gait Difficulty subtypes during sit-to-walk measured by performance, kinematic and kinetic analyses. METHODS Twenty-four people with Parkinson's disease participated in this study, and were divided into two groups: Tremor Dominant (n = 14) and Postural Instability and Gait Difficulty subtype (n = 10). They performed the sit-to-walk under a time constraint (to pick up a phone placed 4 meters away in order to answer an urgent call). Sit-to-walk overall performance, kinetic and kinematic data were assessed as outcome measures. FINDINGS The Postural Instability and Gait Difficulty group demonstrated a slower anteroposterior center-of-mass velocity at seat-off, a longer duration of transitional phase and poorer movement fluidity. Furthermore, the Postural Instability and Gait Difficulty group showed a longer sit-to-walk total time. These results indicate that the Postural Instability and Gait Difficulty group performed the task slowly and split the task into two subtasks (sit-to-stand and walking), rather than performing a single, continuous task. INTERPRETATION The Postural Instability and Gait Difficulty group is unable to perform the sit-to-walk continuously, which might reflect the clinical impairments observed in this Parkinson's disease subtype.
Collapse
|
19
|
Motor adjustments during time-constrained sit-to-walk in people with Parkinson's disease. Exp Gerontol 2019; 124:110654. [DOI: 10.1016/j.exger.2019.110654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/30/2019] [Accepted: 07/05/2019] [Indexed: 11/22/2022]
|
20
|
Falls in Parkinson's Disease Subtypes: Risk Factors, Locations and Circumstances. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16122216. [PMID: 31234571 PMCID: PMC6616496 DOI: 10.3390/ijerph16122216] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 11/25/2022]
Abstract
People with Parkinson’s disease (PD) can be classified into those with postural instability and gait difficulty (PIGD subtype) and those manifesting tremor as the main symptoms (non-PIGD subtype). In a prospective cohort study of 113 people with PD we aimed to contrast fall rates and circumstances as well as a range of disease-related, clinical, and functional measures between the PD subtypes. Compared with non-PIGD participants, PIGD participants were significantly more likely to suffer more falls overall as well as more falls due to freezing of gait, balance-related falls and falls at home. The PIGD group also performed significantly worse in a range of fall-related clinical and functional measures including general cognitive status, executive function, quadriceps muscle strength, postural sway and the timed up and go test. These findings document the extent to which people with the PIGD subtype are at increased risk of falls, the circumstances in which they fall and their disease-related, clinical and functional impairments.
Collapse
|
21
|
Meyer C, Killeen T, Lörincz L, Curt A, Bolliger M, Linnebank M, Zörner B, Filli L. Repeated assessment of key clinical walking measures can induce confounding practice effects. Mult Scler 2019; 26:1298-1302. [PMID: 31081454 DOI: 10.1177/1352458519845839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Accurate functional outcome measures are critical for both clinical trials and routine patient assessments. Many functional outcomes improve with test repetition, a phenomenon that can confound the findings of longitudinal assessments. In this viewpoint, we tackle the poorly considered issue of practice effects in prevailing clinical walking tests based on current literature, while also presenting the original data from our own work, in which we investigated practice effects in the timed 25-foot walk (T25FW), timed-up and go (TUG), and 2-minute walk test (2MWT). In these tests, performed on 3 consecutive days in 10 patients with multiple sclerosis and 40 healthy controls, we observed significant practice effects in several established walking outcomes, including a 9.0% improvement in patients' TUG performance (p = 0.0146). Pre-training in these walking tests prior to baseline measurement may mitigate practice effects, thereby improving the accuracy and value of their repeated use in research and clinical settings.
Collapse
Affiliation(s)
- Christian Meyer
- Spinal Cord Injury Centre, Balgrist University Hospital, Zurich, Switzerland/Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Tim Killeen
- Spinal Cord Injury Centre, Balgrist University Hospital, Zurich, Switzerland
| | - Lilla Lörincz
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Centre, Balgrist University Hospital, Zurich, Switzerland
| | - Marc Bolliger
- Spinal Cord Injury Centre, Balgrist University Hospital, Zurich, Switzerland
| | - Michael Linnebank
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland/Department of Neurology, Helios Klinik Hagen-Ambrock, Hagen, Germany
| | - Björn Zörner
- Spinal Cord Injury Centre, Balgrist University Hospital, Zurich, Switzerland/Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Linard Filli
- Spinal Cord Injury Centre, Balgrist University Hospital, Zurich, Switzerland/Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|