1
|
Lu Q, Huang S, Zhang T, Song J, Dong M, Qian Y, Teng J, Wang T, He C, Shen Y. Age-related differences in long-term potentiation-like plasticity and short-latency afferent inhibition and their association with cognitive function. Gen Psychiatr 2024; 37:e101181. [PMID: 38390239 PMCID: PMC10882289 DOI: 10.1136/gpsych-2023-101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
Background The neurophysiological differences in cortical plasticity and cholinergic system function due to ageing and their correlation with cognitive function remain poorly understood. Aims To reveal the differences in long-term potentiation (LTP)-like plasticity and short-latency afferent inhibition (SAI) between older and younger individuals, alongside their correlation with cognitive function using transcranial magnetic stimulation (TMS). Methods The cross-sectional study involved 31 younger adults aged 18-30 and 46 older adults aged 60-80. All participants underwent comprehensive cognitive assessments and a neurophysiological evaluation based on TMS. Cognitive function assessments included evaluations of global cognitive function, language, memory and executive function. The neurophysiological assessment included LTP-like plasticity and SAI. Results The findings of this study revealed a decline in LTP among the older adults compared with the younger adults (wald χ2=3.98, p=0.046). Subgroup analysis further demonstrated a significant reduction in SAI level among individuals aged 70-80 years in comparison to both the younger adults (SAI(N20): (t=-3.37, p=0.018); SAI(N20+4): (t=-3.13, p=0.038)) and those aged 60-70 (SAI(N20): (t=-3.26, p=0.025); SAI(N20+4): (t=-3.69, p=0.006)). Conversely, there was no notable difference in SAI level between those aged 60-70 years and the younger group. Furthermore, after employing the Bonferroni correction, the correlation analysis revealed that only the positive correlation between LTP-like plasticity and language function (r=0.61, p<0.001) in the younger group remained statistically significant. Conclusions During the normal ageing process, a decline in synaptic plasticity may precede cholinergic system dysfunction. In individuals over 60 years of age, there is a reduction in LTP-like plasticity, while a decline in cholinergic system function is observed in those over 70. Thus, the cholinergic system may play a vital role in preventing cognitive decline during normal ageing. In younger individuals, LTP-like plasticity might represent a potential neurophysiological marker for language function.
Collapse
Affiliation(s)
- Qian Lu
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sisi Huang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tianjiao Zhang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Song
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Manyu Dong
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yilun Qian
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Teng
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tong Wang
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuan He
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
Boran HE, Alaydın HC, Kılınç H, Tankişi H, Samusyte G, Howells J, Koltzenburg M, Cengiz B. Long-interval afferent inhibition measurement using two different methods: Normative values, repeatability and reliability. Neurophysiol Clin 2024; 54:102940. [PMID: 38382141 DOI: 10.1016/j.neucli.2023.102940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND The mechanism of Short-Latency Afferent Inhibition (SAI) is relatively well understood. In contrast, Long-Latency Afferent Inhibition (LAI) has not been as extensively studied as SAI, and its underlying mechanism remains unclear. OBJECTIVE/HYPOTHESIS This study had two primary objectives: first, to determine the optimal ISIs for LAI measured by amplitude changes (A-LAI) using high-resolution ISI ranges; and second, to compare measurements of LAI by threshold-tracking (T-LAI). METHODS Twenty-eight healthy volunteers (12 males aged 24- 45 years) participated in the study. Paired peripheral electrical and transcranial magnetic stimulation (TMS) stimuli (TS1mv) were applied at varying (ISIs)- 100, 200, 250, 300, 350, 400, 450, 500, 550, 600, 700, 800, 900, 1000 ms. RESULTS Both A-LAI and T-LAI showed that LAI decreased progressively from a peak at 200 or 250 ms to 1000 ms. Using the A-LAI method, pronounced inhibition was observed at three specific ISIs: 100 ms, 250 ms and 450 ms. When A-LAI values were converted to equivalent threshold changes, they did not differ significantly from T-LAI. Reliability at distinguishing individuals, as indicated by intraclass correlation coefficient (ICC) was greater for A-LAI, with a peak value of 0.82 at 250 ms. CONCLUSION(S) The study demonstrates that ISIs of 100 ms and 250 ms can be reliably used in amplitude measurement LAI. The study demonstrates that both LAI measurements record a similar decline of inhibition with increasing ISI.
Collapse
Affiliation(s)
- Hürrem Evren Boran
- Department of Neurology, Gazi University Faculty of Medicine, Beşevler, 06500 Ankara, Turkey; Gazi University Neuropsychiatry of Education, Research and Application Center, Ankara, Turkey; NOROM, Neuroscience and Neurotechnology Center of Excellence, Ankara, Turkey
| | - Halil Can Alaydın
- Department of Neurology, Gazi University Faculty of Medicine, Beşevler, 06500 Ankara, Turkey
| | - Hasan Kılınç
- Gazi University Neuropsychiatry of Education, Research and Application Center, Ankara, Turkey
| | - Hatice Tankişi
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | - Ginte Samusyte
- Department of Neurology, Lithuanian University of Health Sciences, Hospital Kauno klinikos Kaunas, Lithuania; Department of Neurology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - James Howells
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Martin Koltzenburg
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG London, United Kingdom; Department of Clinical Neurophysiology, National Hospital for Neurology and Neurosurgery, Queen Square, WC1N 3BG London, United Kingdom; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG London, United Kingdom
| | - Bülent Cengiz
- Department of Neurology, Gazi University Faculty of Medicine, Beşevler, 06500 Ankara, Turkey; Gazi University Neuropsychiatry of Education, Research and Application Center, Ankara, Turkey; NOROM, Neuroscience and Neurotechnology Center of Excellence, Ankara, Turkey.
| |
Collapse
|
3
|
Tulimieri DT, Semrau JA. Aging increases proprioceptive error for a broad range of movement speed and distance estimates in the upper limb. Front Hum Neurosci 2023; 17:1217105. [PMID: 37886690 PMCID: PMC10598783 DOI: 10.3389/fnhum.2023.1217105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Previous work has identified age-related declines in proprioception within a narrow range of limb movements. It is unclear whether these declines are consistent across a broad range of movement characteristics that more closely represent daily living. Here we aim to characterize upper limb error in younger and older adults across a range of movement speeds and distances. The objective of this study was to determine how proprioceptive matching accuracy changes as a function of movement speed and distance, as well as understand the effects of aging on these accuracies. We used an upper limb robotic test of proprioception to vary the speed and distance of movement in two groups: younger (n = 20, 24.25 ± 3.34 years) and older adults (n = 21, 63 ± 10.74 years). The robot moved one arm and the participant was instructed to mirror-match the movement with their opposite arm. Participants matched seven different movement speeds (0.1-0.4 m/s) and five distances (7.5-17.5 cm) over 350 trials. Spatial (e.g., End Point Error) and temporal (e.g., Peak Speed Ratio) outcomes were used to quantify proprioceptive accuracy. Regardless of the speed or distance of movement, we found that older controls had significantly reduced proprioceptive matching accuracy compared to younger control participants (p ≤ 0.05). When movement speed was varied, we observed that errors in proprioceptive matching estimates of spatial and temporal measures were significantly higher for older adults for all but the slowest tested speed (0.1 m/s) for the majority of parameters. When movement distance was varied, we observed that errors in proprioceptive matching estimates were significantly higher for all distances, except for the longest distance (17.5 cm) for older adults compared to younger adults. We found that the magnitude of proprioceptive matching errors was dependent on the characteristics of the reference movement, and that these errors scaled increasingly with age. Our results suggest that aging significantly negatively impacts proprioceptive matching accuracy and that proprioceptive matching errors made by both groups lies along a continuum that depends on movement characteristics and that these errors are amplified due to the typical aging process.
Collapse
Affiliation(s)
- Duncan Thibodeau Tulimieri
- Biomechanics and Movement Science (BIOMS), University of Delaware, Newark, DE, United States
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
| | - Jennifer A. Semrau
- Biomechanics and Movement Science (BIOMS), University of Delaware, Newark, DE, United States
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| |
Collapse
|
4
|
Frolov N, Pitsik E, Grubov V, Badarin A, Maksimenko V, Zakharov A, Kurkin S, Hramov A. Perceptual Integration Compensates for Attention Deficit in Elderly during Repetitive Auditory-Based Sensorimotor Task. SENSORS (BASEL, SWITZERLAND) 2023; 23:6420. [PMID: 37514714 PMCID: PMC10385696 DOI: 10.3390/s23146420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Sensorimotor integration (SI) brain functions that are vital for everyday life tend to decline in advanced age. At the same time, elderly people preserve a moderate level of neuroplasticity, which allows the brain's functionality to be maintained and slows down the process of neuronal degradation. Hence, it is important to understand which aspects of SI are modifiable in healthy old age. The current study focuses on an auditory-based SI task and explores: (i) if the repetition of such a task can modify neural activity associated with SI, and (ii) if this effect is different in young and healthy old age. A group of healthy older subjects and young controls underwent an assessment of the whole-brain electroencephalography (EEG) while repetitively executing a motor task cued by the auditory signal. Using EEG spectral power and functional connectivity analyses, we observed a differential age-related modulation of theta activity throughout the repetition of the SI task. Growth of the anterior stimulus-related theta oscillations accompanied by enhanced right-lateralized frontotemporal phase-locking was found in elderly adults. Their young counterparts demonstrated a progressive increase in prestimulus occipital theta power. Our results suggest that the short-term repetition of the auditory-based SI task modulates sensory processing in the elderly. Older participants most likely progressively improve perceptual integration rather than attention-driven processing compared to their younger counterparts.
Collapse
Affiliation(s)
- Nikita Frolov
- Laboratory of Dynamics in Biological Systems, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Elena Pitsik
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| | - Vadim Grubov
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| | - Artem Badarin
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| | - Vladimir Maksimenko
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| | - Alexander Zakharov
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| | - Semen Kurkin
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| | - Alexander Hramov
- Institute of Neuroscience, Samara State Medical University, 443099 Samara, Russia
| |
Collapse
|
5
|
Tactile sensorimotor training does not alter short- and long-latency afferent inhibition. Neuroreport 2023; 34:123-127. [PMID: 36719836 DOI: 10.1097/wnr.0000000000001866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Sensorimotor integration refers to the process of combining incoming sensory information with outgoing motor commands to control movement. Short-latency afferent inhibition (SAI), and long-latency afferent inhibition (LAI) are neurophysiological measures of sensorimotor integration collected using transcranial magnetic stimulation. No studies to date have investigated the influence of tactile discrimination training on these measures. This study aimed to determine whether SAI and LAI are modulated following training on a custom-designed tactile discrimination maze task. Participants performed a 'high difficulty' and 'low difficulty' maze training condition on separate visits. On an additional visit, no maze training was performed to serve as a control condition. Despite evidence of performance improvements during training, there were no significant changes in SAI or LAI following training in either condition. The total number of errors during maze training was significantly greater in the high-difficulty condition compared with the low-difficulty condition. These findings suggest that sensorimotor maze training for 30 min is insufficient to modify the magnitude of SAI and LAI.
Collapse
|
6
|
Hirono T, Ikezoe T, Taniguchi M, Yamagata M, Umehara J, Ichihashi N. Acute effects of ankle plantar flexor force-matching exercises on postural strategy during single leg standing in healthy adults. Gait Posture 2022; 92:428-434. [PMID: 34979429 DOI: 10.1016/j.gaitpost.2021.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Ankle plantar flexor force steadiness, assessed by measuring the fluctuation of the force around the submaximal target torque, has been associated with postural stability. RESEARCH QUESTION To investigate whether a force-matching exercise, where submaximal steady torque is maintained at the target torque, can modulate postural strategy immediately. METHODS Twenty-eight healthy young adults performed ankle plantar flexor force-matching exercises at target torques of 5%, 20%, and 50% of maximum voluntary contraction (MVC), in a randomized crossover trial. Participants with their ankle in a neutral position were instructed to maintain isometric contraction at each target torque, as measured by a dynamometer, for 20 s with 3 sets of 5 contractions. Before and after the force-matching exercises, the anterior-posterior velocities and standard deviation of the center of pressure (COP) on the stable platform and the tilt angle of the unstable platform during 20-seconds single-leg standing were measured. The velocities and standard deviations of the COP and tilt angle before and after the exercises were compared using paired t-tests. RESULTS The tilt angle velocity of an unstable platform significantly decreased after the force-matching exercise at a target torque of 5% MVC (p = 0.029), whereas it was unchanged after the exercises at target torques of 20% and 50% MVC. The standard deviations of the tilt angle of unstable platform test did not change significantly after any exercise. Furthermore, no significant differences were observed in the COP velocities or standard deviations on the stable platform test after any exercise. SIGNIFICANCE Our findings suggest that repeated exertion training at low-intensity contractions can affect postural stability in an unstable condition. Particularly, force-matching exercise at very low-intensity torque, such as 5% of MVC, may be an effective method to improve postural control in the unstable condition, but not in a stable condition.
Collapse
Affiliation(s)
- Tetsuya Hirono
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Research Fellow of the Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan; School of Health and Sport Sciences, Chukyo University, 101 Tokodachi, Kaizu-cho, Toyota, Aichi 470-0393 Japan.
| | - Tome Ikezoe
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Department of Physical Medicine and Rehabilitation, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka 573-1010, Japan
| | - Masashi Taniguchi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Momoko Yamagata
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Research Fellow of the Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan; Department of Human Development, Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe, Hyogo 657-0011, Japan
| | - Jun Umehara
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Research Fellow of the Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan; Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, 1-4, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Noriaki Ichihashi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
7
|
Le Franc S, Fleury M, Jeunet C, Butet S, Barillot C, Bonan I, Cogné M, Lécuyer A. Influence of the visuo-proprioceptive illusion of movement and motor imagery of the wrist on EEG cortical excitability among healthy participants. PLoS One 2021; 16:e0256723. [PMID: 34473788 PMCID: PMC8412266 DOI: 10.1371/journal.pone.0256723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 08/13/2021] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Motor Imagery (MI) is a powerful tool to stimulate sensorimotor brain areas and is currently used in motor rehabilitation after a stroke. The aim of our study was to evaluate whether an illusion of movement induced by visuo-proprioceptive immersion (VPI) including tendon vibration (TV) and Virtual moving hand (VR) combined with MI tasks could be more efficient than VPI alone or MI alone on cortical excitability assessed using Electroencephalography (EEG). METHODS We recorded EEG signals in 20 healthy participants in 3 different conditions: MI tasks involving their non-dominant wrist (MI condition); VPI condition; and VPI with MI tasks (combined condition). Each condition lasted 3 minutes, and was repeated 3 times in randomized order. Our main judgment criterion was the Event-Related De-synchronization (ERD) threshold in sensori-motor areas in each condition in the brain motor area. RESULTS The combined condition induced a greater change in the ERD percentage than the MI condition alone, but no significant difference was found between the combined and the VPI condition (p = 0.07) and between the VPI and MI condition (p = 0.20). CONCLUSION This study demonstrated the interest of using a visuo-proprioceptive immersion with MI rather than MI alone in order to increase excitability in motor areas of the brain. Further studies could test this hypothesis among patients with stroke to provide new perspectives for motor rehabilitation in this population.
Collapse
Affiliation(s)
- Salomé Le Franc
- Rehabilitation Medicine Unit, University Hospital of Rennes, Rennes, France
- Hybrid Team, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
| | - Mathis Fleury
- Hybrid Team, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
- Empenn Unit U1228, Inserm, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
| | - Camille Jeunet
- CLLE Lab, CNRS, Univ. Toulouse Jean Jaurès, Toulouse, France
| | - Simon Butet
- Rehabilitation Medicine Unit, University Hospital of Rennes, Rennes, France
- Empenn Unit U1228, Inserm, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
| | - Christian Barillot
- Empenn Unit U1228, Inserm, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
| | - Isabelle Bonan
- Rehabilitation Medicine Unit, University Hospital of Rennes, Rennes, France
- Empenn Unit U1228, Inserm, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
| | - Mélanie Cogné
- Rehabilitation Medicine Unit, University Hospital of Rennes, Rennes, France
- Hybrid Team, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
| | - Anatole Lécuyer
- Hybrid Team, Inria, University of Rennes, Irisa, UMR CNRS 6074, Rennes, France
| |
Collapse
|
8
|
Guerra A, Rocchi L, Grego A, Berardi F, Luisi C, Ferreri F. Contribution of TMS and TMS-EEG to the Understanding of Mechanisms Underlying Physiological Brain Aging. Brain Sci 2021; 11:405. [PMID: 33810206 PMCID: PMC8004753 DOI: 10.3390/brainsci11030405] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
In the human brain, aging is characterized by progressive neuronal loss, leading to disruption of synapses and to a degree of failure in neurotransmission. However, there is increasing evidence to support the notion that the aged brain has a remarkable ability to reorganize itself, with the aim of preserving its physiological activity. It is important to develop objective markers able to characterize the biological processes underlying brain aging in the intact human, and to distinguish them from brain degeneration associated with many neurological diseases. Transcranial magnetic stimulation (TMS), coupled with electromyography or electroencephalography (EEG), is particularly suited to this aim, due to the functional nature of the information provided, and thanks to the ease with which it can be integrated with behavioral manipulation. In this review, we aimed to provide up to date information about the role of TMS and TMS-EEG in the investigation of brain aging. In particular, we focused on data about cortical excitability, connectivity and plasticity, obtained by using readouts such as motor evoked potentials and transcranial evoked potentials. Overall, findings in the literature support an important potential contribution of TMS to the understanding of the mechanisms underlying normal brain aging. Further studies are needed to expand the current body of information and to assess the applicability of TMS findings in the clinical setting.
Collapse
Affiliation(s)
| | - Lorenzo Rocchi
- Department of Clinical and Movements Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Alberto Grego
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Francesca Berardi
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Concetta Luisi
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Florinda Ferreri
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
9
|
Hirono T, Ikezoe T, Yamagata M, Kato T, Kimura M, Ichihashi N. Relationship between postural sway on an unstable platform and ankle plantar flexor force steadiness in community-dwelling older women. Gait Posture 2021; 84:227-231. [PMID: 33383532 DOI: 10.1016/j.gaitpost.2020.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Accepted: 12/21/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Force steadiness is evaluated as force variability during constant force exertion around a target level. Ankle plantar flexor force steadiness is reported to be related to postural sway on an unstable platform in healthy young adults; however, this relationship in older adults is unclear. RESEARCH QUESTION This study aimed to investigate whether ankle plantar flexor force steadiness was related to postural sway on stable and unstable platforms in older adults. METHODS Twenty-six community-dwelling older women participated in this study (72 ± 6 years). Maximal isometric strength and force steadiness at 5%, 20 %, and 50 % of the maximal strength of ankle plantar flexion were assessed. Postural sway in the anteroposterior direction during bipedal standing was measured on stable and unstable platforms. RESULTS The results showed that force steadiness at any intensity level and maximal isometric strength were not related to postural sway on the stable platform. Force steadiness at 20 % of maximal strength alone was significantly correlated with postural sway on the unstable platform (ρ = 0.441, p < 0.05). SIGNIFICANCE These results indicate that the ability to control muscle force could be important for postural stability on an unstable platform in older adults.
Collapse
Affiliation(s)
- Tetsuya Hirono
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Research Fellow of the Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan.
| | - Tome Ikezoe
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Momoko Yamagata
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan; Research Fellow of the Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan; Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada-ku, Kobe, Hyogo, 657-0011, Japan
| | - Takehiro Kato
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Misaka Kimura
- Research Institute, Kyoto University of Advanced Science, 18 Gotanda-cho, Yamanouchi, Ukyo-ku, Kyoto, 615-8577, Japan; Faculty of Nursing, Doshisha Women's College of Liberal Arts, Koudo, 97-1, Minamihokotate, Kodo, Kyotanabe City, Kyoto, 610-0395, Japan
| | - Noriaki Ichihashi
- Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
10
|
Felicetti G, Thoumie P, Do MC, Schieppati M. Cutaneous and muscular afferents from the foot and sensory fusion processing: Physiology and pathology in neuropathies. J Peripher Nerv Syst 2021; 26:17-34. [PMID: 33426723 DOI: 10.1111/jns.12429] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
The foot-sole cutaneous receptors (section 2), their function in stance control (sway minimisation, exploratory role) (2.1), and the modulation of their effects by gait pattern and intended behaviour (2.2) are reviewed. Experimental manipulations (anaesthesia, temperature) (2.3 and 2.4) have shown that information from foot sole has widespread influence on balance. Foot-sole stimulation (2.5) appears to be a promising approach for rehabilitation. Proprioceptive information (3) has a pre-eminent role in balance and gait. Reflex responses to balance perturbations are produced by both leg and foot muscle stretch (3.1) and show complex interactions with skin input at both spinal and supra-spinal levels (3.2), where sensory feedback is modulated by posture, locomotion and vision. Other muscles, notably of neck and trunk, contribute to kinaesthesia and sense of orientation in space (3.3). The effects of age-related decline of afferent input are variable under different foot-contact and visual conditions (3.4). Muscle force diminishes with age and sarcopenia, affecting intrinsic foot muscles relaying relevant feedback (3.5). In neuropathy (4), reduction in cutaneous sensation accompanies the diminished density of viable receptors (4.1). Loss of foot-sole input goes along with large-fibre dysfunction in intrinsic foot muscles. Diabetic patients have an elevated risk of falling, and vision and vestibular compensation strategies may be inadequate (4.2). From Charcot-Marie-Tooth 1A disease (4.3) we have become aware of the role of spindle group II fibres and of the anatomical feet conditions in balance control. Lastly (5) we touch on the effects of nerve stimulation onto cortical and spinal excitability, which may participate in plasticity processes, and on exercise interventions to reduce the impact of neuropathy.
Collapse
Affiliation(s)
- Guido Felicetti
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Neuromotor Rehabilitation, Institute of Montescano, Pavia, Italy
| | - Philippe Thoumie
- Service de rééducation neuro-orthopédique, Hôpital Rothschild APHP, Université Sorbonne, Paris, France.,Agathe Lab ERL Inserm U-1150, Paris, France
| | - Manh-Cuong Do
- Université Paris-Saclay, CIAMS, Orsay, France.,Université d'Orléans, CIAMS, Orléans, France
| | | |
Collapse
|
11
|
Altered visuomotor integration in complex regional pain syndrome. Behav Brain Res 2020; 397:112922. [PMID: 32971196 DOI: 10.1016/j.bbr.2020.112922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 08/13/2020] [Accepted: 09/15/2020] [Indexed: 11/18/2022]
Abstract
During self-guided movements, we optimise performance by combining sensory and self-motion cues optimally, based on their reliability. Discrepancies between such cues and problems in combining them are suggested to underlie some pain conditions. Therefore, we examined whether visuomotor integration is altered in twenty-two participants with upper or lower limb complex regional pain syndrome (CRPS) compared to twenty-four controls. Participants located targets that appeared in the unaffected (CRPS) / dominant (controls) or affected (CRPS) / non-dominant (controls) side of space, using the hand of their unaffected/dominant or affected/non-dominant side of the body. For each side of space and each hand, participants located the target using visual information and no movement (vision only condition), an unseen pointing movement (self-motion only condition), or a visually-guided pointing movement (visuomotor condition). In all four space-by-hand conditions, controls reduced their variability in the visuomotor compared to the vision and self-motion only conditions and in line with a model prediction for optimal integration. Participants with CRPS showed similar evidence of cue combination in two of the four conditions. However, they had better-than-optimal integration for the unaffected hand in the affected space. Furthermore, they did not integrate optimally for the hand of the affected side of the body in unaffected space, but instead relied on the visual information. Our results suggest that people with CRPS can optimally integrate visual and self-motion cues under some conditions, despite lower reliability of self-motion cues, and use different strategies to controls.
Collapse
|
12
|
Developmental and age-related changes in sensorimotor regulation of biting maneuvers in humans. Physiol Behav 2020; 219:112845. [DOI: 10.1016/j.physbeh.2020.112845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
|
13
|
Wingert JR, Corle CE, Saccone DF, Lee J, Rote AE. Effects of a Community-Based Tai Chi Program on Balance, Functional Outcomes, and Sensorimotor Function in Older Adults. PHYSICAL & OCCUPATIONAL THERAPY IN GERIATRICS 2020. [DOI: 10.1080/02703181.2019.1709600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jason R. Wingert
- Department of Health and Wellness, One University Heights, University of North Carolina Asheville, Asheville, North Carolina, USA
| | - Caitlin E. Corle
- Department of Health and Wellness, One University Heights, University of North Carolina Asheville, Asheville, North Carolina, USA
| | - Diane F. Saccone
- Healthy Aging Initiatives, YMCA of Western North Carolina, Asheville, North Carolina, USA
| | - Jimin Lee
- Department of Mathematics, One University Heights, University of North Carolina Asheville, Asheville, North Carolina, USA
| | - Aubrianne E. Rote
- Department of Health and Wellness, One University Heights, University of North Carolina Asheville, Asheville, North Carolina, USA
| |
Collapse
|
14
|
Škarabot J, Ansdell P, Howatson G, Goodall S, Durbaba R. Corticospinal responses during passive shortening and lengthening of tibialis anterior and soleus in older compared to younger adults. Exp Physiol 2019; 105:419-426. [PMID: 31860743 DOI: 10.1113/ep088204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/18/2019] [Indexed: 01/24/2023]
Abstract
NEW FINDINGS What is the central question of this study? Are there age-related differences in corticospinal responses whilst passively changing muscle length? What is the main finding and its importance? In contrast to young, older adults exhibited no modulation of corticospinal excitability in tibialis anterior during passive ankle movement. These data show impaired sensorimotor response in older adults during length changes of tibialis anterior, thus contributing to our understanding of age-related changes in sensorimotor control. ABSTRACT Corticospinal responses have been shown to increase and decrease with passive muscle shortening and lengthening, respectively, as a result of changes in muscle spindle afferent feedback. The ageing sensory system is accompanied by a number of alterations that might influence the processing and integration of sensory information. Consequently, corticospinal excitability might be modulated differently whilst changing muscle length. In 10 older adults (66 ± 4 years), corticospinal responses (MEP/Mmax ) were evoked in a static position, and during passive shortening and lengthening of soleus (SOL) and tibialis anterior (TA), and these data were compared to the re-analysed data pool of 18 younger adults (25 ± 4 years) published previously. Resting motor threshold was greater in SOL compared to TA (P < 0.001), but did not differ between young and older (P = 0.405). No differences were observed in MEP/Mmax between the static position, passive shortening or lengthening in SOL (young: all 0.02 ± 0.01; older: 0.05 ± 0.04, 0.03 ± 0.02 and 0.04 ± 0.01, respectively; P = 0.298), and responses were not dependent on age (P = 0.090). Conversely, corticospinal responses in TA were modulated differently between the age groups (P = 0.002), with greater MEP/Mmax during passive shortening (0.22 ± 0.12) compared to passive lengthening (0.13 ± 0.10) and static position (0.10 ± 0.05) in young (P < 0.001), but unchanged in older adults (0.19 ± 0.11, 0.22 ± 0.11 and 0.18 ± 0.07, respectively; P ≥ 0.867). The present experiment shows that length-dependent changes in corticospinal excitability in TA of the young are not evident in older adults. This suggests impaired sensorimotor response during muscle length changes in older age that might only be present in ankle flexors, but not extensors.
Collapse
Affiliation(s)
- Jakob Škarabot
- Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Paul Ansdell
- Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Glyn Howatson
- Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK.,Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa
| | - Stuart Goodall
- Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Rade Durbaba
- Faculty of Health & Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| |
Collapse
|
15
|
Carvalho RL, Gomes MM, Franco LFDR, Abreu DCCD. Postural responses of galvanic vestibular stimulation: comparison between groups of older adults and young people. REVISTA BRASILEIRA DE GERIATRIA E GERONTOLOGIA 2019. [DOI: 10.1590/1981-22562019022.190091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract Objective: To evaluate the effect of vestibular manipulation on the postural sway and muscle activation of younger and older adults. Methods: The study analyzed the effects of three intensity levels of galvanic vestibular stimulation (GVS) (0.3; 0.6 and 1m) on the pattern of muscle activity and center of pressure (CP) displacements of 12 older adults (EG) and 12 young adults (CG) while maintaining their balance on a stable surface, with no vision. Results: The EG showed a positive correlation between CP displacement and muscle activity and GVS intensity. On the other hand, the magnitude of postural response in the EG was not modulated in accordance with GVS intensities. Additionally, during the highest GVS intensity level (1 mA) greater muscle activity was used to increase stiffness, decrease the amplitude of oscillation and ensure stability. This unusual response characterizes a pattern of co-activation and is perhaps a safety mechanism to ensure stability. Conclusion: The EG individuals were not able to select the appropriate motor strategy to efficiently compensate the effects of GVS. This unusual strategy reflects deficits in the vestibular system of older adults, a fact which negatively interferes with their ability to reevaluate sensory information.
Collapse
|