1
|
Zhang W, Dai J, Hou G, Liu H, Zheng S, Wang X, Lin Q, Zhang Y, Lu M, Gong Y, Xiang Z, Yu Y, Hu Y. SMURF2 predisposes cancer cell toward ferroptosis in GPX4-independent manners by promoting GSTP1 degradation. Mol Cell 2023; 83:4352-4369.e8. [PMID: 38016474 DOI: 10.1016/j.molcel.2023.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/22/2023] [Accepted: 10/30/2023] [Indexed: 11/30/2023]
Abstract
Ferroptosis is a non-apoptotic form of regulated cell death. Glutathione (GSH) peroxidase 4 (GPX4) and GSH-independent ferroptosis suppressor protein 1 (FSP1) have been identified as major defenses. Here, we uncover a protective mechanism mediated by GSH S-transferase P1 (GSTP1) by monitoring proteinomic dynamics during ferroptosis. Dramatic downregulation of GSTP1 is caused by SMURF2-mediated GSTP1 ubiquitination and degradation at early stages of ferroptosis. Intriguingly, GSTP1 acts in GPX4- and FSP1-independent manners by catalyzing GSH conjugation of 4-hydroxynonenal and detoxifying lipid hydroperoxides via selenium-independent GSH peroxidase activity. Genetic modulation of the SMURF2/GSTP1 axis or the pharmacological inhibition of GSTP1's catalytic activity sensitized tumor responses to Food and Drug Administration (FDA)-approved ferroptosis-inducing drugs both in vitro and in vivo. GSTP1 expression also confers resistance to immune checkpoint inhibitors by blunting ferroptosis. Collectively, these findings demonstrate a GPX4/FSP1-independent cellular defense mechanism against ferroptosis and suggest that targeting SMURF2/GSTP1 to sensitize cancer cells to ferroptosis has potential as an anticancer therapy.
Collapse
Affiliation(s)
- Wenxin Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou 450000, China
| | - Junren Dai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | | | - Hao Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Shanliang Zheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Qingyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Yi Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Minqiao Lu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Yafan Gong
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zhiyuan Xiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China; Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, HIT Zhengzhou Research Institute, Zhengzhou 450000, China.
| |
Collapse
|
2
|
Shen J, Liu Y, Teng X, Jin L, Feng L, Sun X, Zhao F, Huang B, Zhong J, Chen Y, Wang L. Spatial Transcriptomics of Aging Rat Ovaries Reveals Unexplored Cell Subpopulations with Reduced Antioxidative Defense. Gerontology 2023; 69:1315-1329. [PMID: 37717573 DOI: 10.1159/000533922] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/29/2023] [Indexed: 09/19/2023] Open
Abstract
INTRODUCTION Ovarian aging is characterized by a gradual decline in quantity and quality of oocytes and lower chance of fertility. Better understanding the genetic modulation during ovarian aging can further address available treatment options for aging-related ovarian diseases and fertility preservation. METHODS A novel technique spatial transcriptomics (ST) was used to investigate the spatial transcriptome features of rat ovaries. Transcriptomes from ST spots in the young and aged ovaries were clustered using differentially expressed genes. These data were analyzed to determine the spatial organization of age-induced heterogeneity and potential mechanisms underlying ovarian aging. RESULTS In this study, ST technology was applied to profile the comprehensive spatial imaging in young and aged rat ovary. Fifteen ovarian cell clusters with distinct gene-expression signatures were identified. The gene expression dynamics of granulosa cell clusters revealed three sub-types with sequential developmental stages. Aged ovary showed a significant decrease in the number of granulosa cells from the antral follicle. Besides, a remarkable rearrangement of interstitial gland cells was detected in aging ovary. Further analysis of aging-associated transcriptional changes revealed that the disturbance of oxidative pathway was a crucial factor in ovarian aging. CONCLUSIONS This study firstly described an aging-related spatial transcriptome changes in ovary and identified the potential targets for prevention of ovarian aging. These data may provide the basis for further investigations of the diagnosis and treatment of aging-related ovarian disorders.
Collapse
Affiliation(s)
- Jiayu Shen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,
| | - Yuanyuan Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyuan Teng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ligui Jin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Feng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiwen Sun
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Fengdong Zhao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinjie Zhong
- Department of Basic Medicine Sciences, and Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingying Chen
- Department of Basic Medicine Sciences, and Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liquan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Oxidative Stress and 4-hydroxy-2-nonenal (4-HNE): Implications in the Pathogenesis and Treatment of Aging-related Diseases. J Immunol Res 2022; 2022:2233906. [PMID: 35411309 PMCID: PMC8994689 DOI: 10.1155/2022/2233906] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 02/09/2022] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress plays an important role in the development of aging-related diseases by accelerating the lipid peroxidation of polyunsaturated fatty acids in the cell membrane, resulting in the production of aldehydes, such as malondialdehyde and 4-hydroxy-2-nonenal (4-HNE) and other toxic substances. The compound 4-HNE forms adducts with DNA or proteins, disrupting many cell signaling pathways including the regulation of apoptosis signal transduction pathways. The binding of proteins to 4-HNE (4-HNE-protein) acts as an important marker of lipid peroxidation, and its increasing concentration in brain tissues and fluids because of aging, ultimately gives rise to some hallmark disorders, such as neurodegenerative diseases (Alzheimer's and Parkinson's diseases), ophthalmic diseases (dry eye, macular degeneration), hearing loss, and cancer. This review aims to describe the physiological origin of 4-HNE, elucidate its toxicity in aging-related diseases, and discuss the detoxifying effect of aldehyde dehydrogenase and glutathione in 4-HNE-driven aging-related diseases.
Collapse
|
4
|
Someya S, Kim MJ. Cochlear detoxification: Role of alpha class glutathione transferases in protection against oxidative lipid damage, ototoxicity, and cochlear aging. Hear Res 2020; 402:108002. [PMID: 32600853 DOI: 10.1016/j.heares.2020.108002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/20/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023]
Abstract
Age-related hearing loss (AHL) is the most common form of hearing impairment. AHL is thought to be a multifactorial condition resulting from the interaction of numerous causes including aging, genetics, exposure to noise, and exposure to endogenous and exogenous toxins. Cells possess many detoxification enzymes capable of removing thousands of cytotoxic xenobiotics and endogenous toxins such as 4-hydroxynonenal (4-HNE), one of the most abundant cytotoxic end products of lipid peroxidation. The cellular detoxification system involves three phases of enzymatic detoxification. Of these, the glutathione transferase (GST) detoxification system converts a toxic compound into a less toxic form by conjugating the toxic compound to reduced glutathione by GST enzymes. In this review, we describe the current understanding of the cochlear detoxification system and examine the growing link between GST detoxification, oxidative lipid damage, ototoxicity, and cochlear aging with a particular focus on the alpha-class GSTs (GSTAs). We also describe how exposure to ototoxic drugs, exposure to noise, or aging results in increased 4-HNE levels, how 4-HNE damages various cell components under stress conditions, and how GSTAs detoxify 4-HNE in the auditory system.
Collapse
Affiliation(s)
- Shinichi Someya
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, 32611, USA.
| | - Mi-Jung Kim
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|