1
|
Jiang Y, Tang X, Deng P, Jiang C, He Y, Hao D, Yang H. The Neuroprotective Role of Fisetin in Different Neurological Diseases: a Systematic Review. Mol Neurobiol 2023; 60:6383-6394. [PMID: 37453993 DOI: 10.1007/s12035-023-03469-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Neurological diseases place a substantial burden on public health and have a serious impact on the quality of life of patients. Despite the multifaceted pathological process involved in the occurrence and development of these neurological diseases, each disease has its own unique pathological characteristics and underlying molecular mechanisms which trigger their onset. Thus, it is unlikely to achieve effective treatment of neurological diseases by means of a single approach. To this end, we reason that it is pivotal to seek an efficient strategy that implements multitherapeutic targeting and addresses the multifaceted pathological process to overcome the complex issues related to neural dysfunction. In recent years, natural medicinal plant-derived monomers have received extensive attention as new neuroprotective agents for treatment of neurological disorders. Fisetin, a flavonoid, has emerged as a novel potential molecule that enhances neural protection and reverses cognitive abnormalities. The neuroprotective effects of fisetin are attributed to its multifaceted biological activity and multiple therapeutic mechanisms associated with different neurological disorders. In this review article, we summarize recent research progression regarding the pharmacological effects of fisetin in treating several neurological diseases and the potential mechanisms.
Collapse
Affiliation(s)
- Yizhen Jiang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Basic Medical school Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Xiangwen Tang
- Basic Medical school Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Peng Deng
- Basic Medical school Academy, Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China
| | - Chao Jiang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yuqing He
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
2
|
Huard CA, Gao X, Dey Hazra ME, Dey Hazra RO, Lebsock K, Easley JT, Millett PJ, Huard J. Effects of Fisetin Treatment on Cellular Senescence of Various Tissues and Organs of Old Sheep. Antioxidants (Basel) 2023; 12:1646. [PMID: 37627641 PMCID: PMC10451965 DOI: 10.3390/antiox12081646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Fisetin has been shown to be beneficial for brain injury and age-related brain disease via different mechanisms. The purpose of this study was to determine the presence of senescent cells and the effects of fisetin on cellular senescence in the brain and other vital organs in old sheep, a more translational model. Female sheep 6-7 years old (N = 6) were treated with 100 mg/kg fisetin or vehicle alone on two consecutive days a week for 8 weeks. All vital organs were harvested at the time of sacrifice. Histology, immunofluorescence staining, and RT-Q-PCR were performed on different regions of brain tissues and other organs. Our results indicated that fisetin treatment at the current regimen did not affect the general morphology of the brain. The presence of senescent cells in both the cerebral brain cortex and cerebellum and non-Cornu Ammonis (CA) area of the hippocampus was detected by senescent-associated β-galactosidase (SA-β-Gal) staining and GL13 (lipofuscin) staining. The senescent cells detected were mainly neurons in both gray and white matter of either the cerebral brain cortex, cerebellum, or non-CA area of the hippocampus. Very few senescent cells were detected in the neurons of the CA1-4 area of the hippocampus, as revealed by GL13 staining and GLB1 colocalization with NEUN. Fisetin treatment significantly decreased the number of SA-β-Gal+ cells in brain cortex white matter and GL13+ cells in the non-CA area of the hippocampus, and showed a decreasing trend of SA-β-Gal+ cells in the gray matter of both the cerebral brain cortex and cerebellum. Furthermore, fisetin treatment significantly decreased P16+ and GLB1+ cells in neuronal nuclear protein (NEUN)+ neurons, glial fibrillary acidic protein (GFAP)+ astrocytes, and ionized calcium binding adaptor molecule 1 (IBA1)+ microglia cells in both gray and white matter of cerebral brain cortex. Fisetin treatment significantly decreased GLB1+ cells in microglia cells, astrocytes, and NEUN+ neurons in the non-CA area of the hippocampus. Fisetin treatment significantly decreased plasma S100B. At the mRNA level, fisetin significantly downregulated GLB1 in the liver, showed a decreasing trend in GLB1 in the lung, heart, and spleen tissues, and significantly decreased P21 expression in the liver and lung. Fisetin treatment significantly decreased TREM2 in the lung tissues and showed a trend of downregulation in the liver, spleen, and heart. A significant decrease in NRLP3 in the liver was observed after fisetin treatment. Finally, fisetin treatment significantly downregulated SOD1 in the liver and spleen while upregulating CAT in the spleen. In conclusion, we found that senescent cells were widely present in the cerebral brain cortex and cerebellum and non-CA area of the hippocampus of old sheep. Fisetin treatment significantly decreased senescent neurons, astrocytes, and microglia in both gray and white matter of the cerebral brain cortex and non-CA area of the hippocampus. In addition, fisetin treatment decreased senescent gene expressions and inflammasomes in other organs, such as the lung and the liver. Fisetin treatment represents a promising therapeutic strategy for age-related diseases.
Collapse
Affiliation(s)
- Charles A. Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA or (C.A.H.); (R.-O.D.H.); (P.J.M.)
| | - Xueqin Gao
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA or (C.A.H.); (R.-O.D.H.); (P.J.M.)
| | - Maria E. Dey Hazra
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA or (C.A.H.); (R.-O.D.H.); (P.J.M.)
- The Steadman Clinic, Vail, CO 81657, USA
| | - Rony-Orijit Dey Hazra
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA or (C.A.H.); (R.-O.D.H.); (P.J.M.)
- The Steadman Clinic, Vail, CO 81657, USA
- Department for Shoulder and Elbow Surgery, Center for Musculoskeletal Surgery, Charite-University Medicine Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 14195 Berlin, Germany
| | - Kimberly Lebsock
- Preclinical Surgical Research Laboratory, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.L.); (J.T.E.)
| | - Jeremiah T. Easley
- Preclinical Surgical Research Laboratory, Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA; (K.L.); (J.T.E.)
| | - Peter J. Millett
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA or (C.A.H.); (R.-O.D.H.); (P.J.M.)
- The Steadman Clinic, Vail, CO 81657, USA
| | - Johnny Huard
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, CO 81657, USA or (C.A.H.); (R.-O.D.H.); (P.J.M.)
| |
Collapse
|
3
|
Joseph DK, Mat Ludin AF, Ibrahim FW, Ahmadazam A, Che Roos NA, Shahar S, Rajab NF. Effects of aerobic exercise and dietary flavonoids on cognition: a systematic review and meta-analysis. Front Physiol 2023; 14:1216948. [PMID: 37664425 PMCID: PMC10468597 DOI: 10.3389/fphys.2023.1216948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/12/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction: Studies have shown that exercise increases angiogenesis and perfusion in the hippocampus, activates neurogenesis in the dentate gyrus and increases synaptic plasticity, as well as increases the complexity and number of dendritic spines, all of which promote memory function and protect against cognitive decline. Flavonoids are gaining attention as antioxidants in health promotion due to their rich phenolic content, particularly for their modulating role in the treatment of neurodegenerative diseases. Despite this, there has been no comprehensive review of cognitive improvement supplemented with flavonoid and prescribed with exercise or a combination of the two interventions has been conducted. The purpose of this review is to determine whether a combined intervention produces better results when given together than when given separately. Methods: Relevant articles assessing the effect of physical exercise, flavonoid or in combination on cognitive related biomarkers and neurobehavioral assessments within the timeline of January 2011 until June 2023 were searched using three databases; PubMed, PROQUEST and SCOPUS. Results: A total of 705 articles were retrieved and screened, resulting in 108 studies which are in line with the objective of the current study were included in the analysis. Discussion: The selected studies have shown significant desired effect on the chosen biomarkers and neurobehavioral assessments. Systematic Review Registration: identifier: [CRD42021271001].
Collapse
Affiliation(s)
- Daren Kumar Joseph
- Center for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Arimi Fitri Mat Ludin
- Center for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Farah Wahida Ibrahim
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amalina Ahmadazam
- Center for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Aishah Che Roos
- Faculty of Medicine and Defence Health, National Defence University of Malaysia, Kuala Lumpur, Malaysia
| | - Suzana Shahar
- Center for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nor Fadilah Rajab
- Center for Healthy Ageing and Wellness (H-CARE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Elsallabi O, Patruno A, Pesce M, Cataldi A, Carradori S, Gallorini M. Fisetin as a Senotherapeutic Agent: Biopharmaceutical Properties and Crosstalk between Cell Senescence and Neuroprotection. Molecules 2022; 27:738. [PMID: 35164003 PMCID: PMC8839434 DOI: 10.3390/molecules27030738] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Like other organs, brain functions diminish with age. Furthermore, for a variety of neurological disorders-including Alzheimer's disease-age is one of the higher-risk factors. Since in many Western countries the average age is increasing, determining approaches for decreasing the effects of aging on brain function is taking on a new urgency. Neuroinflammation and oxidative stress are two convoluted key factors in brain aging and chronic neurodegenerative diseases. The diverseness of factors, causing an age-related decrease in brain functions, requires identifying small molecules that have multiple biological activities that can affect all these factors. One great source of these small molecules is related to polyphenolic flavonoids. Recently, 3,3',4',7-tetrahydroxyflavone (fisetin) has been reported as a potent senotherapeutic capable of extending lifespan by reducing peroxidation levels and enhancing antioxidant cell responses. The neuroprotective effects of fisetin have been shown in several in vitro and in vivo models of neurological disorders due to its actions on multiple pathways associated with different neurological disorders. The present work aims to collect the most recent achievements related to the antioxidant and neuroprotective effects of fisetin. Moreover, in silico pharmacokinetics, pharmacodynamics, and toxicity of fisetin are also comprehensively described along with emerging novel drug delivery strategies for the amelioration of this flavonol bioavailability and chemical stability.
Collapse
Affiliation(s)
- Osama Elsallabi
- Department of Medicine and Science of Aging, University “G. d’Annunzio” of Chieti Pescara, 66100 Chieti, Italy; (O.E.); (A.P.); (M.P.)
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 57 Huddinge, Sweden
| | - Antonia Patruno
- Department of Medicine and Science of Aging, University “G. d’Annunzio” of Chieti Pescara, 66100 Chieti, Italy; (O.E.); (A.P.); (M.P.)
| | - Mirko Pesce
- Department of Medicine and Science of Aging, University “G. d’Annunzio” of Chieti Pescara, 66100 Chieti, Italy; (O.E.); (A.P.); (M.P.)
| | - Amelia Cataldi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (M.G.)
| | - Simone Carradori
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (M.G.)
| | - Marialucia Gallorini
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.C.); (M.G.)
| |
Collapse
|