1
|
Mei G, Wang J, Wang J, Ye L, Yi M, Chen G, Zhang Y, Tang Q, Chen L. The specificities, influencing factors, and medical implications of bone circadian rhythms. FASEB J 2024; 38:e23758. [PMID: 38923594 DOI: 10.1096/fj.202302582rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Physiological processes within the human body are regulated in approximately 24-h cycles known as circadian rhythms, serving to adapt to environmental changes. Bone rhythms play pivotal roles in bone development, metabolism, mineralization, and remodeling processes. Bone rhythms exhibit cell specificity, and different cells in bone display various expressions of clock genes. Multiple environmental factors, including light, feeding, exercise, and temperature, affect bone diurnal rhythms through the sympathetic nervous system and various hormones. Disruptions in bone diurnal rhythms contribute to the onset of skeletal disorders such as osteoporosis, osteoarthritis and skeletal hypoplasia. Conversely, these bone diseases can be effectively treated when aimed at the circadian clock in bone cells, including the rhythmic expressions of clock genes and drug targets. In this review, we describe the unique circadian rhythms in physiological activities of various bone cells. Then we summarize the factors synchronizing the diurnal rhythms of bone with the underlying mechanisms. Based on the review, we aim to build an overall understanding of the diurnal rhythms in bone and summarize the new preventive and therapeutic strategies for bone disorders.
Collapse
Affiliation(s)
- Gang Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiajia Wang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lanxiang Ye
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ming Yi
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Guangjin Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yifan Zhang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
2
|
Ko JY, Wang FS, Lian WS, Fang HC, Kuo SJ. Cartilage-specific knockout of miRNA-128a expression normalizes the expression of circadian clock genes (CCGs) and mitigates the severity of osteoarthritis. Biomed J 2024; 47:100629. [PMID: 37453588 PMCID: PMC10979161 DOI: 10.1016/j.bj.2023.100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/05/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Micro-ribonucleic acids (miRNAs) are involved in osteoarthritis (OA) pathogenesis and clock-controlled genes (CCGs) regulation. However, the interaction between miRNAs and CCGs remains unclear. METHODS Human OA samples were used to assess CCGs expression. Cartilage-specific miR-128a knockout mouse model was established to investigate miR-128a's role in OA pathogenesis. Destabilization of the medial meniscus (DMM) model was employed to simulate OA. RESULTS Transcription levels of nuclear receptor subfamily 1 group D member 2 (NR1D2) were lower in both human OA samples and wild-type mice undergoing DMM compared to non-OA counterparts. MiR-128a knockout mice showed reduced disturbances in micro-computed tomographic and kinematic parameters following DMM, as well as less severe histologic cartilage loss. Immunohistochemistry staining revealed a lesser decrease in NR1D2-positive chondrocytes after DMM in miR-128a knockout mice than in wild-type mice. NR1D2 agonist rescued the suppressed expression of cartilage anabolic factors and extracellular matrix deposition caused by miR-128a precursor. CONCLUSIONS Cartilage-specific miR-128a knockout mice exhibited reduced severity, less disrupted kinematic parameters, and suppressed NR1D2 expression after DMM. NR1D2 enhanced the expression of cartilage anabolic factors and extracellular matrix deposition. These findings highlight the potential of employing miR-128a and CCG-targeted therapy for knee OA.
Collapse
Affiliation(s)
- Jih-Yang Ko
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Feng-Sheng Wang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wei-Shiung Lian
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsiao-Chi Fang
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shu-Jui Kuo
- School of Medicine, China Medical University, Taichung, Taiwan; Department of Orthopedic Surgery, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
3
|
Taylor S, Gruen M, KuKanich K, X Lascelles BD, Monteiro BP, Sampietro LR, Robertson S, Steagall PV. 2024 ISFM and AAFP consensus guidelines on the long-term use of NSAIDs in cats. J Feline Med Surg 2024; 26:1098612X241241951. [PMID: 38587872 PMCID: PMC11103309 DOI: 10.1177/1098612x241241951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
PRACTICAL RELEVANCE Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used and are effective for the management of pain in cats. These Guidelines will support veterinarians in decision-making around prescribing NSAIDs in situations of chronic pain, to minimise adverse effects and optimise pain management. Information is provided on mechanism of action, indications for use, screening prior to prescription, use in the presence of comorbidities, monitoring of efficacy, and avoidance and management of adverse effects. CLINICAL CHALLENGES The cat's unique metabolism should be considered when prescribing any medications, including NSAIDs. Chronic pain may be challenging to detect in this species and comorbidities, particularly chronic kidney disease, are common in senior cats. Management of chronic pain may be complicated by prescription of other drugs with the potential for interactions with NSAIDs. EVIDENCE BASE These Guidelines have been created by a panel of experts brought together by the International Society of Feline Medicine (ISFM) and American Association of Feline Practitioners (AAFP). Information is based on the available literature, expert opinion and the panel members' experience.
Collapse
Affiliation(s)
- Samantha Taylor
- Panel ChairInternational Society of Feline Medicine, International Cat Care, Tisbury, Wi Itshire, UK
| | - Margaret Gruen
- Comparative Pain Research Laboratory; and Behavioural Medicine Service - Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, NC, USA
| | - Kate KuKanich
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, KS, USA
| | - B Duncan X Lascelles
- Translational Research in Pain (TRiP) Program and Comparative Pain Research and Education Centre (CPREC), North Carolina State University, NC, USA
| | - Beatriz P Monteiro
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Universite de Montreal, Saint-Hyacinthe, QC, Canada
| | | | - Sheilah Robertson
- Lap of Love Veterinary Hospice, Lutz, FL, USA; and Courtesy Lecturer, Shelter Medicine Program, University of Florida, FL, USA
| | - Paulo V Steagall
- Department of Veterinary Clinical Sciences and Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, SAR China; and Department of Clinical Sciences, Faculty of Veterinary Medicine, Universite de Montreal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
4
|
Gu Y, Hu Y, Zhang H, Wang S, Xu K, Su J. Single-cell RNA sequencing in osteoarthritis. Cell Prolif 2023; 56:e13517. [PMID: 37317049 PMCID: PMC10693192 DOI: 10.1111/cpr.13517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/30/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
Osteoarthritis is a progressive and heterogeneous joint disease with complex pathogenesis. The various phenotypes associated with each patient suggest that better subgrouping of tissues associated with genotypes in different phases of osteoarthritis may provide new insights into the onset and progression of the disease. Recently, single-cell RNA sequencing was used to describe osteoarthritis pathogenesis on a high-resolution view surpassing traditional technologies. Herein, this review summarizes the microstructural changes in articular cartilage, meniscus, synovium and subchondral bone that are mainly due to crosstalk amongst chondrocytes, osteoblasts, fibroblasts and endothelial cells during osteoarthritis progression. Next, we focus on the promising targets discovered by single-cell RNA sequencing and its potential applications in target drugs and tissue engineering. Additionally, the limited amount of research on the evaluation of bone-related biomaterials is reviewed. Based on the pre-clinical findings, we elaborate on the potential clinical values of single-cell RNA sequencing for the therapeutic strategies of osteoarthritis. Finally, a perspective on the future development of patient-centred medicine for osteoarthritis therapy combining other single-cell multi-omics technologies is discussed. This review will provide new insights into osteoarthritis pathogenesis on a cellular level and the field of applications of single-cell RNA sequencing in personalized therapeutics for osteoarthritis in the future.
Collapse
Affiliation(s)
- Yuyuan Gu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- School of MedicineShanghai UniversityShanghaiChina
| | - Yan Hu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
| | - Hao Zhang
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
| | - Sicheng Wang
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- Department of OrthopedicsShanghai Zhongye HospitalShanghaiChina
| | - Ke Xu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
- Wenzhou Institute of Shanghai UniversityWenzhouChina
| | - Jiacan Su
- Institute of Translational MedicineShanghai UniversityShanghaiChina
- Organoid Research CenterShanghai UniversityShanghaiChina
| |
Collapse
|
5
|
Rogers N, Meng QJ. Tick tock, the cartilage clock. Osteoarthritis Cartilage 2023; 31:1425-1436. [PMID: 37230460 DOI: 10.1016/j.joca.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 05/27/2023]
Abstract
Osteoarthritis (OA) is the most common age-related joint disease, affecting articular cartilage and other joint structures, causing severe pain and disability. Due to a limited understanding of the underlying disease pathogenesis, there are currently no disease-modifying drugs for OA. Circadian rhythms are generated by cell-intrinsic timekeeping mechanisms which are known to dampen during ageing, increasing disease risks. In this review, we focus on one emerging area of chondrocyte biology, the circadian clocks. We first provide a historical perspective of circadian clock discoveries and the molecular underpinnings. We will then focus on the expression and functions of circadian clocks in articular cartilage, including their rhythmic target genes and pathways, links to ageing, tissue degeneration, and OA, as well as tissue niche-specific entrainment pathways. Further research into cartilage clocks and ageing may have broader implications in the understanding of OA pathogenesis, the standardization of biomarker detection, and the development of novel therapeutic routes for the prevention and management of OA and other musculoskeletal diseases.
Collapse
Affiliation(s)
- Natalie Rogers
- Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK; Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK; Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
6
|
Liu Y, Zhang Z, Liu C, Zhang H. Sirtuins in osteoarthritis: current understanding. Front Immunol 2023; 14:1140653. [PMID: 37138887 PMCID: PMC10150098 DOI: 10.3389/fimmu.2023.1140653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Osteoarthritis (OA) is a common disease characterized by severe chronic joint pain, that imposes a large burden on elderly people. OA is a highly heterogeneous disease, and multiple etiologies contribute to its progression. Sirtuins (SIRTs) are Class III histone deacetylases (HDACs) that regulate a comprehensive range of biological processes such as gene expression, cell differentiation, and organism development, and lifespan. Over the past three decades, increasing evidence has revealed that SIRTs are not only important energy sensors but also protectors against metabolic stresses and aging, and an increasing number of studies have focused on the functions of SIRTs in OA pathogenesis. In this review, we illustrate the biological functions of SIRTs in OA pathogenesis from the perspectives of energy metabolism, inflammation, autophagy and cellular senescence. Moreover, we offer insights into the role played by SIRTs in regulating circadian rhythm, which has recently been recognized to be crucial in OA development. Here, we provide the current understanding of SIRTs in OA to guide a new direction for OA treatment exploration.
Collapse
|
7
|
He T, Pang S, Wang H, Yun H, Hao X, Jia L, Liu H, Wang D, Wang D, Xu H, Jie Q, Yang L, Zheng C. Drugging the circadian clock feedback cycle to ameliorate cartilage degeneration. FEBS J 2022; 289:6643-6658. [DOI: 10.1111/febs.16601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Ting He
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research Northwestern Polytechnical University Xi'an China
- Institute of Orthopedic Surgery, Xijing Hospital Fourth Military Medical University Xi'an China
| | - Siyi Pang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research Northwestern Polytechnical University Xi'an China
- Institute of Orthopedic Surgery, Xijing Hospital Fourth Military Medical University Xi'an China
| | - Huanbo Wang
- Institute of Orthopedic Surgery, Xijing Hospital Fourth Military Medical University Xi'an China
| | - Haitao Yun
- Institute of Orthopedic Surgery, Xijing Hospital Fourth Military Medical University Xi'an China
| | - Xue Hao
- Department of Pediatric Orthopedic, Honghui Hospital, Xi'an Jiaotong University College of Medicine Xi'an China
| | - Liyuan Jia
- Laboratory of Tissue Engineering, College of Life Science Northwest University Xi'an China
| | - He Liu
- Institute of Orthopedic Surgery, Xijing Hospital Fourth Military Medical University Xi'an China
| | - Di Wang
- Institute of Orthopedic Surgery, Xijing Hospital Fourth Military Medical University Xi'an China
| | - Dong Wang
- Institute of Orthopedic Surgery, Xijing Hospital Fourth Military Medical University Xi'an China
| | - Huiyun Xu
- School of Life Sciences Northwestern Polytechnical University Xi'an China
| | - Qiang Jie
- Department of Pediatric Orthopedic, Honghui Hospital, Xi'an Jiaotong University College of Medicine Xi'an China
| | - Liu Yang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research Northwestern Polytechnical University Xi'an China
- Institute of Orthopedic Surgery, Xijing Hospital Fourth Military Medical University Xi'an China
| | - Chao Zheng
- Institute of Orthopedic Surgery, Xijing Hospital Fourth Military Medical University Xi'an China
| |
Collapse
|
8
|
Pferdehirt L, Damato AR, Dudek M, Meng QJ, Herzog ED, Guilak F. Synthetic gene circuits for preventing disruption of the circadian clock due to interleukin-1-induced inflammation. SCIENCE ADVANCES 2022; 8:eabj8892. [PMID: 35613259 PMCID: PMC9132444 DOI: 10.1126/sciadv.abj8892] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 04/07/2022] [Indexed: 05/16/2023]
Abstract
The circadian clock regulates tissue homeostasis through temporal control of tissue-specific clock-controlled genes. In articular cartilage, disruptions in the circadian clock are linked to a procatabolic state. In the presence of inflammation, the cartilage circadian clock is disrupted, which further contributes to the pathogenesis of diseases such as osteoarthritis. Using synthetic biology and tissue engineering, we developed and tested genetically engineered cartilage from murine induced pluripotent stem cells (miPSCs) capable of preserving the circadian clock in the presence of inflammation. We found that circadian rhythms arise following chondrogenic differentiation of miPSCs. Exposure of tissue-engineered cartilage to the inflammatory cytokine interleukin-1 (IL-1) disrupted circadian rhythms and degraded the cartilage matrix. All three inflammation-resistant approaches showed protection against IL-1-induced degradation and loss of circadian rhythms. These synthetic gene circuits reveal a unique approach to support daily rhythms in cartilage and provide a strategy for creating cell-based therapies to preserve the circadian clock.
Collapse
Affiliation(s)
- Lara Pferdehirt
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Shriners Hospitals for Children–St. Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| | - Anna R. Damato
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Michal Dudek
- Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell Matrix Research, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Erik D. Herzog
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Farshid Guilak
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Shriners Hospitals for Children–St. Louis, St. Louis, MO 63110, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63105, USA
| |
Collapse
|
9
|
Gao W, Li R, Ye M, Zhang L, Zheng J, Yang Y, Wei X, Zhao Q. The circadian clock has roles in mesenchymal stem cell fate decision. Stem Cell Res Ther 2022; 13:200. [PMID: 35578353 PMCID: PMC9109355 DOI: 10.1186/s13287-022-02878-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/26/2022] [Indexed: 02/08/2023] Open
Abstract
The circadian clock refers to the intrinsic biological rhythms of physiological functions and behaviours. It synergises with the solar cycle and has profound effects on normal metabolism and organismal fitness. Recent studies have suggested that the circadian clock exerts great influence on the differentiation of stem cells. Here, we focus on the close relationship between the circadian clock and mesenchymal stem cell fate decisions in the skeletal system. The underlying mechanisms include hormone signals and the activation and repression of different transcription factors under circadian regulation. Additionally, the clock interacts with epigenetic modifiers and non-coding RNAs and is even involved in chromatin remodelling. Although the specificity and safety of circadian therapy need to be further studied, the circadian regulation of stem cells can be regarded as a promising candidate for health improvement and disease prevention.
Collapse
Affiliation(s)
- Wenzhen Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Rong Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Meilin Ye
- Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, School and Hospital of Stomatology, Shandong University, Jinan, 250012, China
| | - Lanxin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiawen Zheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuqing Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qing Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Regulation and Role of Transcription Factors in Osteogenesis. Int J Mol Sci 2021; 22:ijms22115445. [PMID: 34064134 PMCID: PMC8196788 DOI: 10.3390/ijms22115445] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Bone is a dynamic tissue constantly responding to environmental changes such as nutritional and mechanical stress. Bone homeostasis in adult life is maintained through bone remodeling, a controlled and balanced process between bone-resorbing osteoclasts and bone-forming osteoblasts. Osteoblasts secrete matrix, with some being buried within the newly formed bone, and differentiate to osteocytes. During embryogenesis, bones are formed through intramembraneous or endochondral ossification. The former involves a direct differentiation of mesenchymal progenitor to osteoblasts, and the latter is through a cartilage template that is subsequently converted to bone. Advances in lineage tracing, cell sorting, and single-cell transcriptome studies have enabled new discoveries of gene regulation, and new populations of skeletal stem cells in multiple niches, including the cartilage growth plate, chondro-osseous junction, bone, and bone marrow, in embryonic development and postnatal life. Osteoblast differentiation is regulated by a master transcription factor RUNX2 and other factors such as OSX/SP7 and ATF4. Developmental and environmental cues affect the transcriptional activities of osteoblasts from lineage commitment to differentiation at multiple levels, fine-tuned with the involvement of co-factors, microRNAs, epigenetics, systemic factors, circadian rhythm, and the microenvironments. In this review, we will discuss these topics in relation to transcriptional controls in osteogenesis.
Collapse
|
11
|
Morris H, Gonçalves CF, Dudek M, Hoyland J, Meng QJ. Tissue physiology revolving around the clock: circadian rhythms as exemplified by the intervertebral disc. Ann Rheum Dis 2021; 80:828-839. [PMID: 33397731 DOI: 10.1136/annrheumdis-2020-219515] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/07/2023]
Abstract
Circadian clocks in the brain and peripheral tissues temporally coordinate local physiology to align with the 24 hours rhythmic environment through light/darkness, rest/activity and feeding/fasting cycles. Circadian disruptions (during ageing, shift work and jet-lag) have been proposed as a risk factor for degeneration and disease of tissues, including the musculoskeletal system. The intervertebral disc (IVD) in the spine separates the bony vertebrae and permits movement of the spinal column. IVD degeneration is highly prevalent among the ageing population and is a leading cause of lower back pain. The IVD is known to experience diurnal changes in loading patterns driven by the circadian rhythm in rest/activity cycles. In recent years, emerging evidence indicates the existence of molecular circadian clocks within the IVD, disruption to which accelerates tissue ageing and predispose animals to IVD degeneration. The cell-intrinsic circadian clocks in the IVD control key aspects of physiology and pathophysiology by rhythmically regulating the expression of ~3.5% of the IVD transcriptome, allowing cells to cope with the drastic biomechanical and chemical changes that occur throughout the day. Indeed, epidemiological studies on long-term shift workers have shown an increased incidence of lower back pain. In this review, we summarise recent findings of circadian rhythms in health and disease, with the IVD as an exemplar tissue system. We focus on rhythmic IVD functions and discuss implications of utilising biological timing mechanisms to improve tissue health and mitigate degeneration. These findings may have broader implications in chronic rheumatic conditions, given the recent findings of musculoskeletal circadian clocks.
Collapse
Affiliation(s)
- Honor Morris
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK.,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Cátia F Gonçalves
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK.,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Michal Dudek
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK.,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Judith Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK .,NIHR Manchester Musculoskeletal Biomedical Research Centre, Manchester University, NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Qing-Jun Meng
- Wellcome Centre for Cell Matrix Research, University of Manchester, Manchester, UK .,Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|