1
|
Palau P, Núñez J, Domínguez E, de la Espriella R, Núñez G, Flor C, de Amo I, Casaña J, Calatayud J, Ortega L, Marín P, Sanchis J, Sanchis-Gomar F, López L. Effect of exercise training in patients with chronotropic incompetence and heart failure with preserved ejection fraction: Training-HR study protocol. Curr Probl Cardiol 2024; 49:102839. [PMID: 39242065 DOI: 10.1016/j.cpcardiol.2024.102839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Chronotropic incompetence (ChI) is linked with diminished exercise capacity in heart failure with preserved ejection fraction (HFpEF). Although exercise training has shown potential for improving functional capacity, the exercise modality associated with greater functional and chronotropic response (ChR) is not well-known. Additionally, how the ChR from different exercise modalities mediates functional improvement remains to be determined. This study aimed to evaluate the effect of three different exercise programs over current guideline recommendations on peak oxygen consumption (peakVO2) in patients with ChI HFpEF phenotype. METHODS AND RESULTS In this randomized clinical trial, 80 stable symptomatic patients with HFpEF and ChI (NYHA class II-III/IV) are randomized (1:1:1:1) to receive: a) a 12-week program of supervised aerobic training (AT), b) AT and low to moderate-intensity strength training, c)AT and moderate to high-intensity strength training, or d) guideline-based physical activity and exercise recommendations. The primary endpoint is 12-week changes in peakVO2. The secondary endpoints are 12-week changes in ChR, 12-week changes in quality of life, and how ChR changes mediate changes in peakVO2. A mixed-effects model for repeated measures will be used to compare endpoint changes. The mean age is 75.1 ± 7.2 years, and most patients are women (57.5 %) in New York Heart Association functional class II (68.7 %). The mean peakVO2, percent of predicted peakVO2, and ChR are 11.8 ± 2.6 mL/kg/min, 67.2 ± 14.7 %, and 0.39 ± 0.16, respectively. No significant baseline clinical differences between arms are found. CONCLUSIONS Training-HR will evaluate the effects of different exercise-based therapies on peakVO2, ChR, and quality of life in patients with ChI HFpEF phenotype. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov (NCT05649787).
Collapse
Affiliation(s)
- Patricia Palau
- Cardiology Department, Hospital Clínico Universitario, INCLIVA, Universitat de València, Valencia, Spain.
| | - Julio Núñez
- Cardiology Department, Hospital Clínico Universitario, INCLIVA, Universitat de València, Valencia, Spain; CIBER Cardiovascular, Spain
| | - Eloy Domínguez
- Cardiology Department, Hospital Clínico Universitario, INCLIVA, Universitat de València, Valencia, Spain; Universitat Jaume I, Castellón, Spain
| | - Rafael de la Espriella
- Cardiology Department, Hospital Clínico Universitario, INCLIVA, Universitat de València, Valencia, Spain
| | - Gonzalo Núñez
- Cardiology Department, Hospital Clínico Universitario, INCLIVA, Universitat de València, Valencia, Spain
| | - Cristina Flor
- Physiotherapy Department, Universitat de València, Valencia, Spain
| | - Ivan de Amo
- Cardiology Department, Hospital Clínico Universitario, INCLIVA, Universitat de València, Valencia, Spain
| | - Jose Casaña
- Physiotherapy Department, Universitat de València, Valencia, Spain
| | | | - Lucía Ortega
- Department of Nursing, Universitat de València, Valencia, Spain
| | - Paloma Marín
- Department of Nursing, Universitat de València, Valencia, Spain
| | - Juan Sanchis
- Cardiology Department, Hospital Clínico Universitario, INCLIVA, Universitat de València, Valencia, Spain; CIBER Cardiovascular, Spain
| | - Fabian Sanchis-Gomar
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States.
| | - Laura López
- Cardiology Department, Hospital Clínico Universitario, INCLIVA, Universitat de València, Valencia, Spain; Physiotherapy Department, Universitat de València, Valencia, Spain
| |
Collapse
|
2
|
Straub RH, Cutolo M. A History of Psycho-Neuro-Endocrine Immune Interactions in Rheumatic Diseases. Neuroimmunomodulation 2024; 31:183-210. [PMID: 39168106 DOI: 10.1159/000540959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND All active scientists stand on the shoulders of giants and many other more anonymous scientists, and this is not different in our field of psycho-neuro-endocrine immunology in rheumatic diseases. Too often, the modern world of publishing forgets about the collective enterprise of scientists. Some journals advise the authors to present only literature from the last decade, and it has become a natural attitude of many scientists to present only the latest publications. In order to work against this general unempirical behavior, neuroimmunomodulation devotes the 30th anniversary issue to the history of medical science in psycho-neuro-endocrine immunology. SUMMARY Keywords were derived from the psycho-neuro-endocrine immunology research field very well known to the authors (R.H.S. has collected a list of keywords since 1994). We screened PubMed, the Cochran Library of Medicine, Embase, Scopus database, and the ORCID database to find relevant historical literature. The Snowballing procedure helped find related work. According to the historical appearance of discoveries in the field, the order of presentation follows the subsequent scheme: (1) the sensory nervous system, (2) the sympathetic nervous system, (3) the vagus nerve, (4) steroid hormones (glucocorticoids, androgens, progesterone, estrogens, and the vitamin D hormone), (5) afferent pathways involved in fatigue, anxiety, insomnia, and depression (includes pathophysiology), and (6) evolutionary medicine and energy regulation - an umbrella theory. KEY MESSAGES A brief history on psycho-neuro-endocrine immunology cannot address all relevant aspects of the field. The authors are aware of this shortcoming. The reader must see this review as a viewpoint through the biased eyes of the authors. Nevertheless, the text gives an overview of the history in psycho-neuro-endocrine immunology of rheumatic diseases.
Collapse
Affiliation(s)
- Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Maurizio Cutolo
- Research Laboratories and Academic Division of Clinical Rheumatology, Department of Internal Medicine DIMI, Postgraduate School of Rheumatology, University of Genova, Genoa, Italy
| |
Collapse
|
3
|
Guan Z, Liu Y, Luo L, Jin X, Guan Z, Yang J, Liu S, Tao K, Pan J. Sympathetic innervation induces exosomal miR-125 transfer from osteoarthritic chondrocytes, disrupting subchondral bone homeostasis and aggravating cartilage damage in aging mice. J Adv Res 2024:S2090-1232(24)00122-X. [PMID: 38554999 DOI: 10.1016/j.jare.2024.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/16/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024] Open
Abstract
INTRODUCTION Osteoarthritis (OA) is a progressive disease that poses a significant threat to human health, particularly in aging individuals: Although sympathetic activation has been implicated in bone metabolism, its role in the development of OA related to aging remains poorly understood. Therefore, this study aimed to investigate how sympathetic regulation impacts aging-related OA through experiments conducted both in vivo and in vitro. METHODS To analyze the effect of sympathetic regulation on aging-related OA, we conducted experiments using various mouse models. These models included a natural aging model, a medial meniscus instability model, and a load-induced model, which were used to examine the involvement of sympathetic nerves. In order to evaluate the expression levels of β1-adrenergic receptor (Adrβ1) and sirtuin-6 (Sirt6) in chondrocytes of naturally aging OA mouse models, we performed assessments. Additionally, we investigated the influence of β1-adrenergic receptor knockout or treatment with a β1-adrenergic receptor blocker on the progression of OA in aging mice and detected exosome release and detected downstream signaling expression by inhibiting exosome release. Furthermore, we explored the impact of sympathetic depletion through tyrosine hydroxylase (TH) on OA progression in aging mice. Moreover, we studied the effects of norepinephrine(NE)-induced activation of the β1-adrenergic receptor signaling pathway on the release of exosomes and miR-125 from chondrocytes, subsequently affecting osteoblast differentiation in subchondral bone. RESULTS Our findings demonstrated a significant increase in sympathetic activity, such as NE levels, in various mouse models of OA including natural aging, medial meniscus instability, and load-induced models. Notably, we observed alterations in the expression levels of β1-adrenergic receptor and Sirt6 in chondrocytes in OA mouse models associated with natural aging, leading to an improvement in the progression of OA. Critically, we found that the knockout of β1-adrenergic receptor or treatment with a β1-adrenergic receptor blocker attenuated OA progression in aging mice and the degraded cartilage explants produced more exosome than the nondegraded ones, Moreover, sympathetic depletion through TH was shown to ameliorate OA progression in aging mice. Additionally, we discovered that NE-induced activation of the β1-adrenergic receptor signaling pathway facilitated the release of exosomes and miR-125 from chondrocytes, promoting osteoblast differentiation in subchondral bone. CONCLUSION In conclusion, our study highlights the role of sympathetic innervation in facilitating the transfer of exosomal miR-125 from osteoarthritic chondrocytes, ultimately disrupting subchondral bone homeostasis and exacerbating cartilage damage in aging mice. These findings provide valuable insights into the potential contribution of sympathetic regulation to the pathogenesis of aging-related OA.
Collapse
Affiliation(s)
- Zhiyuan Guan
- Department of Orthopedics, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China; Science and Technology Center, Fenyang College of Shanxi Medical University, Shanxi 032200, China
| | - Yanbin Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, No. 100 Haining Road, Shanghai 200080, China
| | - Liying Luo
- Department of Ophthalmology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao Jin
- Department of Rheumatology and Immunology, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Zhiqiang Guan
- Department of Dermatology, Xuzhou Municipal Hospital Affiliated with Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Jianjun Yang
- Department of Orthopedics, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Shengfu Liu
- Department of Orthopedics, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Kun Tao
- Department of Orthopedics, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Jianfeng Pan
- Science and Technology Center, Fenyang College of Shanxi Medical University, Shanxi 032200, China.
| |
Collapse
|
4
|
Howlett LA, Stevenson-Cocks H, Colman MA, Lancaster MK, Benson AP. Ionic current changes underlying action potential repolarization responses to physiological pacing and adrenergic stimulation in adult rat ventricular myocytes. Physiol Rep 2023; 11:e15766. [PMID: 37495507 PMCID: PMC10371833 DOI: 10.14814/phy2.15766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023] Open
Abstract
This study aimed to simulate ventricular responses to elevations in myocyte pacing and adrenergic stimulation using a novel electrophysiological rat model and investigate ion channel responses underlying action potential (AP) modulations. Peak ion currents and AP repolarization to 50% and 90% of full repolarization (APD50-90 ) were recorded during simulations at 1-10 Hz pacing under control and adrenergic stimulation conditions. Further simulations were performed with incremental ion current block (L-type calcium current, ICa ; transient outward current, Ito ; slow delayed rectifier potassium current, IKs ; rapid delayed rectifier potassium current, IKr ; inward rectifier potassium current, IK1 ) to identify current influence on AP response to exercise. Simulated APD50-90 closely resembled experimental findings. Rate-dependent increases in IKs (6%-101%), IKr (141%-1339%), and ICa (0%-15%) and reductions in Ito (11%-57%) and IK1 (1%-9%) were observed. Meanwhile, adrenergic stimulation triggered moderate increases in all currents (23%-67%) except IK1 . Further analyses suggest AP plateau is most sensitive to modulations in Ito and ICa while late repolarization is most sensitive to IK1 , ICa , and IKs , with alterations in IKs predominantly stimulating the greatest magnitude of influence on late repolarization (35%-846% APD90 prolongation). The modified Leeds rat model (mLR) is capable of accurately modeling APs during physiological stress. This study highlights the importance of ICa , Ito , IK1, and IKs in controlling electrophysiological responses to exercise. This work will benefit the study of cardiac dysfunction, arrythmia, and disease, though future physiologically relevant experimental studies and model development are required.
Collapse
Affiliation(s)
- Luke A Howlett
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | | | | | | | - Alan P Benson
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
5
|
Carving the senescent phenotype by the chemical reactivity of catecholamines: An integrative review. Ageing Res Rev 2022; 75:101570. [PMID: 35051644 DOI: 10.1016/j.arr.2022.101570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 11/21/2022]
Abstract
Macromolecules damaged by covalent modifications produced by chemically reactive metabolites accumulate in the slowly renewable components of living bodies and compromise their functions. Among such metabolites, catecholamines (CA) are unique, compared with the ubiquitous oxygen, ROS, glucose and methylglyoxal, in that their high chemical reactivity is confined to a limited set of cell types, including the dopaminergic and noradrenergic neurons and their direct targets, which suffer from CA propensities for autoxidation yielding toxic quinones, and for Pictet-Spengler reactions with carbonyl-containing compounds, which yield mitochondrial toxins. The functions progressively compromised because of that include motor performance, cognition, reward-driven behaviors, emotional tuning, and the neuroendocrine control of reproduction. The phenotypic manifestations of the resulting disorders culminate in such conditions as Parkinson's and Alzheimer's diseases, hypertension, sarcopenia, and menopause. The reasons to suspect that CA play some special role in aging accumulated since early 1970-ies. Published reviews address the role of CA hazardousness in the development of specific aging-associated diseases. The present integrative review explores how the bizarre discrepancy between CA hazardousness and biological importance could have emerged in evolution, how much does the chemical reactivity of CA contribute to the senescent phenotype in mammals, and what can be done with it.
Collapse
|
6
|
Howlett LA, Kirton HM, Al‐Owais MM, Steele D, Lancaster MK. Action potential responses to changes in stimulation frequency and isoproterenol in rat ventricular myocytes. Physiol Rep 2022; 10:e15166. [PMID: 35076184 PMCID: PMC8787729 DOI: 10.14814/phy2.15166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023] Open
Abstract
PURPOSE Current understanding of ventricular action potential adaptation to physiological stress is generally based on protocols using non-physiological rates and conditions isolating rate effects from escalating adrenergic stimulation. To permit refined understanding, ventricular action potentials were assessed across physiological pacing frequencies in the presence and absence of adrenergic stimuli. Isolated and combined effects were analyzed to assess their ability to replicate in-vivo responses. METHODS Steady-state action potentials from ventricular myocytes isolated from male Wistar rats (3 months; N = 8 animals) were recorded at 37°C with steady-state pacing at 1, 2, 4, 6, 8 and 10 Hz using whole-cell patch-clamp. Action potential repolarization to 25, 50, 75, 90 and 100% of full repolarization (APD25-100 ) was compared before and after 5 nM, 100 nM and 1 µM isoproterenol doses. RESULTS A Repeated measures ANOVA found APD50-90 shortened with 5 nM isoproterenol infusion by 6-25% (but comparable across doses) (p ≤ 0.03). Pacing frequencies emulating a normal rat heart rate (6 Hz) prolonged APD50 23% compared with 1 Hz pacing. Frequencies emulating exercise or stress (10 Hz) shortened APD90 (29%). CONCLUSION These results demonstrate modest action potential shortening in response to adrenergic stimulation and elevations in pacing beyond physiological resting rates. Our findings indicate changes in action potential plateau and late repolarization predominantly underlie simulated exercise responses in the rat heart. This work provides novel action potential reference data and will help model cardiac responses to physiological stimuli in the rat heart via computational techniques.
Collapse
Affiliation(s)
| | | | | | - Derek Steele
- Faculty of Biological SciencesUniversity of LeedsLeedsUK
| | | |
Collapse
|