1
|
Lee BC. Challenges and innovations in hematopoietic stem cell transplantation: exploring bone marrow niches and new model systems. BMB Rep 2024; 57:352-362. [PMID: 38919014 PMCID: PMC11362137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/27/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) remains an indispensable therapeutic strategy for various hematological diseases. This review discusses the pivotal role of bone marrow (BM) niches in influencing the efficacy of HSCT and evaluates the current animal models, emphasizing their limitations and the need for alternative models. Traditional animal models, mainly murine xenograft, have provided significant insights, but due to species-specific differences, are often constrained from accurately mimicking human physiological responses. These limitations highlight the importance of developing alternative models that can more realistically replicate human hematopoiesis. Emerging models that include BM organoids and BM-on-a-chip microfluidic systems promise enhanced understanding of HSCT dynamics. These models aim to provide more accurate simulations of the human BM microenvironment, potentially leading to improved preclinical assessments and therapeutic outcomes. This review highlights the complexities of the BM niche, discusses the limitations of current models, and suggests directions for future research using advanced model systems. [BMB Reports 2024; 57(8): 352-362].
Collapse
Affiliation(s)
- Byung-Chul Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea
- Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea
| |
Collapse
|
2
|
Kwee BJ, Sung KE. Engineering microenvironments for manufacturing therapeutic cells. Exp Biol Med (Maywood) 2021; 246:1845-1856. [PMID: 34250847 DOI: 10.1177/15353702211026922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
There are a growing number of globally approved products and clinical trials utilizing autologous and allogeneic therapeutic cells for applications in regenerative medicine and immunotherapies. However, there is a need to develop rapid and cost-effective methods for manufacturing therapeutically effective cells. Furthermore, the resulting manufactured cells may exhibit heterogeneities that result in mixed therapeutic outcomes. Engineering approaches that can provide distinct microenvironmental cues to these cells may be able to enhance the growth and characterization of these cell products. This mini-review describes strategies to potentially enhance the expansion of therapeutic cells with biomaterials and bioreactors, as well as to characterize the cell products with microphysiological systems. These systems can provide distinct cues to maintain the quality attributes of the cells and evaluate their function in physiologically relevant conditions.
Collapse
Affiliation(s)
- Brian J Kwee
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Kyung E Sung
- Division of Cellular and Gene Therapies, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
| |
Collapse
|
3
|
Extended time-lapse in vivo imaging of tibia bone marrow to visualize dynamic hematopoietic stem cell engraftment. Leukemia 2016; 31:1582-1592. [PMID: 27890929 PMCID: PMC5498248 DOI: 10.1038/leu.2016.354] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 12/12/2022]
Abstract
Homing, engraftment and proliferation of hematopoietic stem/progenitor cell (HSC/HPCs) are crucial steps required for success of a bone marrow transplant. Observation of these critical events is limited by the opaque nature of bone. Here we demonstrate how individual HSCs engraft in long bones by thinning one side of the tibia for direct and unbiased observation. Intravital imaging enabled detailed visualization of single Sca-1+, c-Kit+, Lineage− (SKL) cell migration to bone marrow niches and subsequent proliferation to reconstitute hematopoiesis. This longitudinal study allowed direct observation of dynamic HSC/HPC activities during engraftment in full color for up to six days in live recipients. Individual SKL cells, but not mature or committed progenitor cells, preferentially homed to a limited number of niches near highly vascularized endosteal regions, and clonally expanded. Engraftment of SKL cells in P-selectin and osteopontin knockout mice showed abnormal homing and expansion of SKL cells. CD150+, CD48− SKL populations initially engrafted in the central marrow region, utilizing only a subset of niches occupied by the parent SKL cells. Our study demonstrates that time-lapse imaging of tibia can be a valuable tool to understand the dynamic characteristics of functional HSC and niche components in various mouse models.
Collapse
|
4
|
Kim S, Zingler M, Harrison JK, Scott EW, Cogle CR, Luo D, Raizada MK. Angiotensin II Regulation of Proliferation, Differentiation, and Engraftment of Hematopoietic Stem Cells. Hypertension 2016; 67:574-84. [PMID: 26781279 DOI: 10.1161/hypertensionaha.115.06474] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/22/2015] [Indexed: 12/28/2022]
Abstract
Emerging evidence indicates that differentiation and mobilization of hematopoietic cell are critical in the development and establishment of hypertension and hypertension-linked vascular pathophysiology. This, coupled with the intimate involvement of the hyperactive renin-angiotensin system in hypertension, led us to investigate the hypothesis that chronic angiotensin II (Ang II) infusion affects hematopoietic stem cell (HSC) regulation at the level of the bone marrow. Ang II infusion resulted in increases in hematopoietic stem/progenitor cells (83%) and long-term HSC (207%) in the bone marrow. Interestingly, increases of HSCs and long-term HSCs were more pronounced in the spleen (228% and 1117%, respectively). Furthermore, we observed higher expression of C-C chemokine receptor type 2 in these HSCs, indicating there was increased myeloid differentiation in Ang II-infused mice. This was associated with accumulation of C-C chemokine receptor type 2(+) proinflammatory monocytes in the spleen. In contrast, decreased engraftment efficiency of GFP(+) HSC was observed after Ang II infusion. Time-lapse in vivo imaging and in vitro Ang II pretreatment demonstrated that Ang II induces untimely proliferation and differentiation of the donor HSC resulting in diminished HSC engraftment and bone marrow reconstitution. We conclude that (1) chronic Ang II infusion regulates HSC proliferation, mediated by angiotensin receptor type 1a, (2) Ang II accelerates HSC to myeloid differentiation resulting in accumulation of C-C chemokine receptor type 2(+) HSCs and inflammatory monocytes in the spleen, and (3) Ang II impairs homing and reconstitution potentials of the donor HSCs. These observations highlight the important regulatory roles of Ang II on HSC proliferation, differentiation, and engraftment.
Collapse
Affiliation(s)
- Seungbum Kim
- From the Departments of Physiology and Functional Genomics (S.K., M.Z., M.K.R.), Pharmacology and Therapeutics (J.K.H., D.L.), Molecular Genetics and Microbiology (E.W.S.), and Medicine (C.R.C.), College of Medicine, University of Florida, Gainesville
| | - Michael Zingler
- From the Departments of Physiology and Functional Genomics (S.K., M.Z., M.K.R.), Pharmacology and Therapeutics (J.K.H., D.L.), Molecular Genetics and Microbiology (E.W.S.), and Medicine (C.R.C.), College of Medicine, University of Florida, Gainesville
| | - Jeffrey K Harrison
- From the Departments of Physiology and Functional Genomics (S.K., M.Z., M.K.R.), Pharmacology and Therapeutics (J.K.H., D.L.), Molecular Genetics and Microbiology (E.W.S.), and Medicine (C.R.C.), College of Medicine, University of Florida, Gainesville
| | - Edward W Scott
- From the Departments of Physiology and Functional Genomics (S.K., M.Z., M.K.R.), Pharmacology and Therapeutics (J.K.H., D.L.), Molecular Genetics and Microbiology (E.W.S.), and Medicine (C.R.C.), College of Medicine, University of Florida, Gainesville
| | - Christopher R Cogle
- From the Departments of Physiology and Functional Genomics (S.K., M.Z., M.K.R.), Pharmacology and Therapeutics (J.K.H., D.L.), Molecular Genetics and Microbiology (E.W.S.), and Medicine (C.R.C.), College of Medicine, University of Florida, Gainesville
| | - Defang Luo
- From the Departments of Physiology and Functional Genomics (S.K., M.Z., M.K.R.), Pharmacology and Therapeutics (J.K.H., D.L.), Molecular Genetics and Microbiology (E.W.S.), and Medicine (C.R.C.), College of Medicine, University of Florida, Gainesville
| | - Mohan K Raizada
- From the Departments of Physiology and Functional Genomics (S.K., M.Z., M.K.R.), Pharmacology and Therapeutics (J.K.H., D.L.), Molecular Genetics and Microbiology (E.W.S.), and Medicine (C.R.C.), College of Medicine, University of Florida, Gainesville.
| |
Collapse
|
5
|
Le Brocq ML, Fraser AR, Cotton G, Woznica K, McCulloch CV, Hewitt KD, McKimmie CS, Nibbs RJB, Campbell JDM, Graham GJ. Chemokines as novel and versatile reagents for flow cytometry and cell sorting. THE JOURNAL OF IMMUNOLOGY 2014; 192:6120-6130. [PMID: 24850722 DOI: 10.4049/jimmunol.1303371] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cell therapy regimens are frequently compromised by low-efficiency cell homing to therapeutic niches. Improvements in this regard would enhance effectiveness of clinically applicable cell therapy. The major regulators of tissue-specific cellular migration are chemokines, and therefore selection of therapeutic cellular populations for appropriate chemokine receptor expression would enhance tissue-homing competence. A number of practical considerations preclude the use of Abs in this context, and alternative approaches are required. In this study, we demonstrate that appropriately labeled chemokines are at least as effective in detecting their cognate receptors as commercially available Abs. We also demonstrate the utility of biotinylated chemokines as cell-sorting reagents. Specifically, we demonstrate, in the context of CCR7 (essential for lymph node homing of leukocytes), the ability of biotinylated CCL19 with magnetic bead sorting to enrich for CCR7-expressing cells. The sorted cells demonstrate improved CCR7 responsiveness and lymph node-homing capability, and the sorting is effective for both T cells and dendritic cells. Importantly, the ability of chemokines to detect CCR7, and sort for CCR7 positivity, crosses species being effective on murine and human cells. This novel approach to cell sorting is therefore inexpensive, versatile, and applicable to numerous cell therapy contexts. We propose that this represents a significant technological advance with important therapeutic implications.
Collapse
Affiliation(s)
- Michelle L Le Brocq
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Alasdair R Fraser
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Graham Cotton
- Almac Sciences (Scotland) Ltd, Elvingston Science Centre, By Gladsmuir, East Lothian EH33 1EH, UK
| | - Kerry Woznica
- Almac Sciences (Scotland) Ltd, Elvingston Science Centre, By Gladsmuir, East Lothian EH33 1EH, UK
| | - Clare V McCulloch
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Kay D Hewitt
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Clive S McKimmie
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Robert J B Nibbs
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - John D M Campbell
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK.,Clinical Science and Cell Analysis Group, Miltenyi Biotec Ltd
| | - Gerard J Graham
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| |
Collapse
|
6
|
Bertoncello I, McQualter JL. Endogenous lung stem cells: what is their potential for use in regenerative medicine? Expert Rev Respir Med 2014; 4:349-62. [DOI: 10.1586/ers.10.21] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Tada T, Fukuta K. Expression of cell adhesion molecules at the collapse and recovery of haematopoiesis in bone marrow of mouse. Anat Histol Embryol 2012; 39:403-10. [PMID: 20545639 DOI: 10.1111/j.1439-0264.2010.01009.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
After bone marrow transplantation (BMT) and lethal irradiation, vascular endothelial cells play an important role in the homing of haematopoietic cells and recovery of haematopoiesis. We investigated the expression of mucosal addressin cell adhesion molecule-1 (MAdCAM-1), vascular cell adhesion molecule-1 (VCAM-1) and fibronectin in the endothelial cells of bone marrow in a collapsed state after lethal irradiation and in a recovery state after BMT in mice. After lethal irradiation, the expression of MAdCAM-1, VCAM-1 and fibronectin increased on the luminal surface of endothelial cells. In the recovery state, the expression of MAdCAM-1 and VCAM-1 was increased from 2 to 4 days after BMT, but fibronectin levels remained constant, except for a temporary increase at 4 days after BMT. The number of homing cells, however, was markedly decreased in parallel with the reduction in the haematopoietic compartment at 2 and 4 days after lethal irradiation. Next, to analyse the influence of fibronectin expression after BMT on homing activity, we performed double BMT experiment. The number of homing cells in double BMT experiment maintained high level from 2 h to 2 days after secondary BMT. Our data suggest that homing of bone marrow cells is activated until fibronectin-mediated endothelial cell repair and that transplanted haematopoietic stem/progenitor cells inhibit fibronectin expression for endothelial cell repair until the homing is completed. Therefore, the homing of haematopoietic cells in bone marrow depends on the condition of the bone marrow endothelial cells, as well as the cell adhesion molecules.
Collapse
Affiliation(s)
- T Tada
- Laboratory of Animal Morphology and Function, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan.
| | | |
Collapse
|
8
|
Hematopoietic stem cell development, niches, and signaling pathways. BONE MARROW RESEARCH 2012; 2012:270425. [PMID: 22900188 PMCID: PMC3413998 DOI: 10.1155/2012/270425] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/30/2012] [Accepted: 06/13/2012] [Indexed: 12/22/2022]
Abstract
Hematopoietic stem cells (HSCs) play a key role in hematopoietic system that functions mainly in homeostasis and immune response. HSCs transplantation has been applied for the treatment of several diseases. However, HSCs persist in the small quantity within the body, mostly in the quiescent state. Understanding the basic knowledge of HSCs is useful for stem cell biology research and therapeutic medicine development. Thus, this paper emphasizes on HSC origin, source, development, the niche, and signaling pathways which support HSC maintenance and balance between self-renewal and proliferation which will be useful for the advancement of HSC expansion and transplantation in the future.
Collapse
|
9
|
de Barros APDN, Takiya CM, Garzoni LR, Leal-Ferreira ML, Dutra HS, Chiarini LB, Meirelles MN, Borojevic R, Rossi MID. Osteoblasts and bone marrow mesenchymal stromal cells control hematopoietic stem cell migration and proliferation in 3D in vitro model. PLoS One 2010; 5:e9093. [PMID: 20161704 PMCID: PMC2816998 DOI: 10.1371/journal.pone.0009093] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 01/12/2010] [Indexed: 01/02/2023] Open
Abstract
Background Migration, proliferation, and differentiation of hematopoietic stem cells (HSCs) are dependent upon a complex three-dimensional (3D) bone marrow microenvironment. Although osteoblasts control the HSC pool, the subendosteal niche is complex and its cellular composition and the role of each cell population in HSC fate have not been established. In vivo models are complex and involve subtle species-specific differences, while bidimensional cultures do not reflect the 3D tissue organization. The aim of this study was to investigate in vitro the role of human bone marrow–derived mesenchymal stromal cells (BMSC) and active osteoblasts in control of migration, lodgment, and proliferation of HSCs. Methodology/Principal Findings A complex mixed multicellular spheroid in vitro model was developed with human BMSC, undifferentiated or induced for one week into osteoblasts. A clear limit between the two stromal cells was established, and deposition of extracellular matrix proteins fibronectin, collagens I and IV, laminin, and osteopontin was similar to the observed in vivo. Noninduced BMSC cultured as spheroid expressed higher levels of mRNA for the chemokine CXCL12, and the growth factors Wnt5a and Kit ligand. Cord blood and bone marrow CD34+ cells moved in and out the spheroids, and some lodged at the interface of the two stromal cells. Myeloid colony-forming cells were maintained after seven days of coculture with mixed spheroids, and the frequency of cycling CD34+ cells was decreased. Conclusions/Significance Undifferentiated and one-week osteo-induced BMSC self-assembled in a 3D spheroid and formed a microenvironment that is informative for hematopoietic progenitor cells, allowing their lodgment and controlling their proliferation.
Collapse
Affiliation(s)
- Ana Paula D. N. de Barros
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina M. Takiya
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana R. Garzoni
- Departamento de Ultrastructura e Biologia Celular, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Hélio S. Dutra
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana B. Chiarini
- Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Nazareth Meirelles
- Departamento de Ultrastructura e Biologia Celular, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Radovan Borojevic
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Isabel D. Rossi
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
10
|
Tada T, Inoue N, Widayati DT, Fukuta K. Role of MAdCAM-1 and its ligand on the homing of transplanted hematopoietic cells in irradiated mice. Exp Anim 2008; 57:347-56. [PMID: 18633157 DOI: 10.1538/expanim.57.347] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We examined the expression of VCAM-1 and MAdCAM-1 after bone marrow transplantation (BMT). We also examined the influence of alpha(4)beta(7) integrin blockade on the homing of cells to the bone marrow and spleen. The expression of VCAM-1 and MAdCAM-1 by endothelial cells in the spleen and bone marrow was examined by immunoelectron microscopy using colloidal gold and was analyzed semiquantitatively. To examine the role of alpha(4)beta(7) integrin in donor cells, a homing assay was conducted following alpha(4)beta(7) integrin blockade in bone marrow-derived hematopoietic cells or spleen colony cells. Immediately after BMT, the expression of VCAM-1 and MAdCAM1 markedly decreased, but expression recovered significantly between 12 and 24 h after BMT. VCAM-1 recovered more acutely than MAdCAM-1 from 12 h onward. In the group transplanted with anti-alpha(4)beta(7) integrin antibody-treated bone marrow cells, the numbers of homing cells in the spleen and bone marrow were significantly decreased in an antibody dose-dependent manner. However, the number of homing cells was not different in either the spleen or bone marrow between anti-alpha(4)beta(7) integrin antibody treated and untreated spleen colony cells. It has been reported that alpha(4)beta(1) integrin and its receptor VCAM-1 play major roles in the homing of hematopoietic cells to bone marrow. Our study indicates the importance of MAdCAM-1 and its ligand, alpha(4)beta(7) integrin, in the homing of bone marrow-derived hematopoietic cells, but not spleen colony-derived cells, to both the spleen and bone marrow.
Collapse
Affiliation(s)
- Tatsuya Tada
- Laboratory of Animal Morphology and Function, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | |
Collapse
|
11
|
Skinner AM, O'Neill SL, Grompe M, Kurre P. CXCR4 induction in hematopoietic progenitor cells from Fanca(-/-), -c(-/-), and -d2(-/-) mice. Exp Hematol 2008; 36:273-82. [PMID: 18279715 DOI: 10.1016/j.exphem.2007.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 11/16/2007] [Accepted: 11/19/2007] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Bone marrow failure is a near-universal occurrence in patients with Fanconi anemia (FA) and is thought to result from exhaustion of the hematopoietic stem cell (HSC) pool. Retrovirus-mediated expression of the deficient protein corrects this phenotype and makes FA a candidate disease for HSC-directed gene therapy. However, inherent repopulation deficits and stem cell attrition during conventional transduction culture prevent therapeutic chimerism. MATERIALS AND METHODS We previously reported rapid transduction protocols to limit stem cell losses after ex vivo culture. Here we describe a complementary strategy intended to improve repopulation through upregulation of chemokine receptor (CXCR) 4, a principal factor in hematopoietic homing. RESULTS Using murine models with transgenic disruption of Fanca, -c, and -d2, we found that c-kit(+) and sca-1(+) progenitor cells express levels of CXCR4 comparable with those of wild-type littermates. Lineage-depleted progenitor populations rapidly upregulated CXCR4 transcript and protein in response to cytokine stimulation or hypoxia, regardless of genotype. Hypoxia conditioning of lineage-depleted Fancc(-/-) progenitors also reduced oxidative stress, improved in vitro migration and led to improved chimerism in myeloablated recipients after transplantation. CONCLUSION These studies provide evidence that CXCR4 regulation in progenitor cells from transgenic mice representing multiple FA genotypes is intact and that modulation of homing offers a potential strategy to offset the FA HSC repopulation deficiency.
Collapse
Affiliation(s)
- Amy M Skinner
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
12
|
|
13
|
Ostronoff LK, Kremmer E, Fermín ML, Fragío C, Mysliwietz J, Kolb HJ, Tejero C. Canine stem cell factor augments expression of matrix metalloproteinase-9 by CD34 cells. Cytotherapy 2008; 10:193-202. [PMID: 18368598 DOI: 10.1080/14653240701827407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Canine models have proved to be predictive of clinical findings in human bone marrow (BM) transplantation; consequently, the utilization of dogs is an excellent tool for supporting therapeutic purposes. Considering the role of growth factors in homing and mobilization of hematopoietic progenitors, the aim of this work was to evaluate whether canine stem cell factor (cSCF) contributes to matrix metalloproteinase (MMP)-9 secretion by CD34 cells. METHODS The study was carried out in a cell population selected by immunomagnetic techniques using the anti-canine CD34 monoclonal antibody (MAb) 3B4 produced by us. Secretion of MMP-9 was evaluated by zymography. RESULTS Analyzes of canine CD34(+) cells guaranteed that the MAb 3B4 was optimum for selecting a subset population with defined characteristics of primitive hematopoietic cells. The isolated cells were able to proliferate onto irradiated pre-established stroma, giving rise to mature neutrophils. There was also a 20-fold enrichment in the long-term culture-initiating cell content when the isolated population was added to irradiated cultures, with respect to the starting mononuclear cell population. DISCUSSION We have provided the first evidence that canine BM CD34(+) cells constitutively express MMP-9 and the role of cSCF in up-regulating the secretion of this enzyme. The fact that cSCF augments expression of MMP-9 together with the ability of the isolated CD34(+)cells to proliferate onto irradiated pre-established stroma enables further investigations to determine whether the secretion of MMP-9 mediated by cSCF is one of the factors that enhance migration, homing and repopulation of primitive hemopoietic cells.
Collapse
Affiliation(s)
- L K Ostronoff
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Impact of niche aging on thymic regeneration and immune reconstitution. Semin Immunol 2007; 19:331-40. [PMID: 18024073 DOI: 10.1016/j.smim.2007.10.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 10/02/2007] [Indexed: 12/14/2022]
Abstract
The immune system undergoes dramatic changes with age-the thymus involutes, particularly from puberty, with the gradual loss of newly produced naïve T cells resulting in a restricted T cell receptor repertoire, skewed towards memory cells. Coupled with a similar, though less dramatic age-linked decline in bone marrow function, this translates to a reduction in immune responsiveness and has important clinical implications particularly in immune reconstitution following cytoablation regimes for cancer treatment or following severe viral infections such as HIV. Given that long-term reconstitution of the immune system is dependent on the bi-directional interplay between primary lymphoid organ stromal cells and the progenitors whose downstream differentiation they direct, regeneration of the thymus is fundamental to developing new strategies for the clinical management of many major diseases of immunological origin. This review will discuss the impact of aging on primary lymphoid organ niches and current approaches for thymic regeneration and immune reconstitution.
Collapse
|
15
|
Qian H, Georges-Labouesse E, Nyström A, Domogatskaya A, Tryggvason K, Jacobsen SEW, Ekblom M. Distinct roles of integrins alpha6 and alpha4 in homing of fetal liver hematopoietic stem and progenitor cells. Blood 2007; 110:2399-407. [PMID: 17586725 DOI: 10.1182/blood-2006-10-051276] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Homing of hematopoietic stem cells (HSCs) into the bone marrow (BM) is a prerequisite for establishment of hematopoiesis during development and following transplantation. However, the molecular interactions that control homing of HSCs, in particular, of fetal HSCs, are not well understood. Herein, we studied the role of the alpha6 and alpha4 integrin receptors for homing and engraftment of fetal liver (FL) HSCs and hematopoietic progenitor cells (HPCs) to adult BM by using integrin alpha6 gene-deleted mice and function-blocking antibodies. Both integrins were ubiquitously expressed in FL Lin(-)Sca-1(+)Kit(+) (LSK) cells. Deletion of integrin alpha6 receptor or inhibition by a function-blocking antibody inhibited FL LSK cell adhesion to its extracellular ligands, laminins-411 and -511 in vitro, and significantly reduced homing of HPCs to BM. In contrast, the anti-integrin alpha6 antibody did not inhibit BM homing of HSCs. In agreement with this, integrin alpha6 gene-deleted FL HSCs did not display any homing or engraftment defect compared with wild-type littermates. In contrast, inhibition of integrin alpha4 receptor by a function-blocking antibody virtually abrogated homing of both FL HSCs and HPCs to BM, indicating distinct functions for integrin alpha6 and alpha4 receptors during homing of fetal HSCs and HPCs.
Collapse
Affiliation(s)
- Hong Qian
- Hematopoietic Stem Cell Laboratory, Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|