1
|
Attar-Schneider O, Zismanov V, Dabbah M, Tartakover-Matalon S, Drucker L, Lishner M. Multiple myeloma and bone marrow mesenchymal stem cells' crosstalk: Effect on translation initiation. Mol Carcinog 2015; 55:1343-54. [PMID: 26293751 DOI: 10.1002/mc.22378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2015] [Revised: 07/15/2015] [Accepted: 07/23/2015] [Indexed: 12/26/2022]
Abstract
Multiple myeloma (MM) malignant plasma cells reside in the bone marrow (BM) and convert it into a specialized pre-neoplastic niche that promotes the proliferation and survival of the cancer cells. BM resident mesenchymal stem cells (BM-MSCs) are altered in MM and in vitro studies indicate their transformation by MM proximity is within hours. The response time frame suggested that protein translation may be implicated. Thus, we assembled a co-culture model of MM cell lines with MSCs from normal donors (ND) and MM patients to test our hypothesis. The cell lines (U266, ARP-1) and BM-MSCs (ND, MM) were harvested separately after 72 h of co-culture and assayed for proliferation, death, levels of major translation initiation factors (eIF4E, eIF4GI), their targets, and regulators. Significant changes were observed: BM-MSCs (ND and MM) co-cultured with MM cell lines displayed elevated proliferation and death as well as increased expression/activity of eIF4E/eIF4GI; MM cell lines co-cultured with MM-MSCs also displayed higher proliferation and death rates coupled with augmented translation initiation factors; in contrast, MM cell lines co-cultured with ND-MSCs did not display elevated proliferation only death and had no changes in eIF4GI levels/activity. eIF4E expression was increased in one of the cell lines. Our study demonstrates that there is direct dialogue between the MM and BM-MSCs populations that includes translation initiation manipulation and critically affects cell fate. Future research should be aimed at identifying therapeutic targets that may be used to minimize the collateral damage to the cancer microenvironment and limit its recruitment into the malignant process. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Oshrat Attar-Schneider
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Victoria Zismanov
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mahmoud Dabbah
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shelly Tartakover-Matalon
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liat Drucker
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Lishner
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Internal Medicine, Meir Medical Center, Kfar Saba, Israel
| |
Collapse
|
2
|
Zhao X, Wang X, Wu W, Gao Z, Wu J, Garfield DH, Wang H, Wang J, Qian J, Li H, Jin L, Li Q, Han B, Lu D, Bai C. Matrix metalloproteinase-2 polymorphisms and clinical outcome of Chinese patients with nonsmall cell lung cancer treated with first-line, platinum-based chemotherapy. Cancer 2011; 118:3587-98. [PMID: 22072145 DOI: 10.1002/cncr.26669] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2011] [Revised: 10/01/2011] [Accepted: 10/03/2011] [Indexed: 12/29/2022]
Abstract
BACKGROUND Matrix metalloproteinase-2 (MMP-2) is well known for its critical role in cell survival and cancer development. It also plays an important role in hematopoietic recovery after chemotherapy-induced myelosuppression. In this study, the authors investigated the association of MMP-2 polymorphisms with treatment efficacy and the occurrence of severe toxicity in patients with nonsmall cell lung cancer (NSCLC) who were receiving first-line, platinum-based chemotherapy. METHODS A pharmacogenetic association study was performed in 663 Chinese patients who had inoperable stage III/IV NSCLC and were receiving first-line, platinum-based regimens. Information about objective response, progression-free survival, overall survival, grade 3 or 4 gastrointestinal toxicity (nausea/vomiting), and hematologic toxicity (neutropenia, anemia, thrombocytopenia) was available. Sixteen tag single nucleotide polymorphisms (SNPs) of MMP-2 were assessed. RESULTS In 7 polymorphisms, significant associations were observed with the incidence of grade 3 or 4 neutropenia. The variant homozygotes of reference SNP rs12934241 exhibited the most significant effect on the risk of neutropenia, leading to an incidence rate that increased from 12.3% (for the C/C genotype) to 50% (for the T/T genotype; odds ratio, 8.33; P = 8.8 × 10(-5)). Stratified analyses indicated that rs12934241 exhibited a much stronger influence in the cisplatin-gemcitabine regimen subgroup than subgroups that received other regimens (P(interaction) = .003). Further haplotype analyses produced results that were consistent with results from single-SNP analyses. However, no significant association was observed between MMP-2 polymorphisms and treatment efficacy, including response rate, clinical benefit, progression-free survival, and overall survival. CONCLUSIONS To the authors' knowledge, this study provides the first evidence for a predictive role of MMP-2 polymorphisms in the variability of severe chemotherapy-related neutropenia among Chinese patients with platinum-treated, advanced NSCLC.
Collapse
Affiliation(s)
- Xueying Zhao
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Carrancio S, Blanco B, Romo C, Muntion S, Lopez-Holgado N, Blanco JF, Briñon JG, San Miguel JF, Sanchez-Guijo FM, del Cañizo MC. Bone marrow mesenchymal stem cells for improving hematopoietic function: an in vitro and in vivo model. Part 2: Effect on bone marrow microenvironment. PLoS One 2011; 6:e26241. [PMID: 22028841 PMCID: PMC3197625 DOI: 10.1371/journal.pone.0026241] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2011] [Accepted: 09/22/2011] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to determine how mesenchymal stem cells (MSC) could improve bone marrow (BM) stroma function after damage, both in vitro and in vivo. Human MSC from 20 healthy donors were isolated and expanded. Mobilized selected CD34+ progenitor cells were obtained from 20 HSCT donors. For in vitro study, long-term bone marrow cultures (LTBMC) were performed using a etoposide damaged stromal model to test MSC effect in stromal confluence, capability of MSC to lodge in stromal layer as well as some molecules (SDF1, osteopontin,) involved in hematopoietic niche maintenance were analyzed. For the in vivo model, 64 NOD/SCID recipients were transplanted with CD34+ cells administered either by intravenous (IV) or intrabone (IB) route, with or without BM derived MSC. MSC lodgement within the BM niche was assessed by FISH analysis and the expression of SDF1 and osteopontin by immunohistochemistry. In vivo study showed that when the stromal damage was severe, TP-MSC could lodge in the etoposide-treated BM stroma, as shown by FISH analysis. Osteopontin and SDF1 were differently expressed in damaged stroma and their expression restored after TP-MSC addition. Human in vivo MSC lodgement was observed within BM niche by FISH, but MSC only were detected and not in the contralateral femurs. Human MSC were located around blood vessels in the subendoestal region of femurs and expressed SDF1 and osteopontin. In summary, our data show that MSC can restore BM stromal function and also engraft when a higher stromal damage was done. Interestingly, MSC were detected locally where they were administered but not in the contralateral femur.
Collapse
Affiliation(s)
- Soraya Carrancio
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
| | - Belen Blanco
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
| | - Carlos Romo
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
| | - Sandra Muntion
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
| | - Natalia Lopez-Holgado
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
| | - Juan F. Blanco
- Servicio de Traumatología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Jesus G. Briñon
- Departamento de Biologia Celular y Patologia, Universidad de Salamanca, Spain
| | - Jesus F. San Miguel
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
| | - Fermin M. Sanchez-Guijo
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
| | - M. Consuelo del Cañizo
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León and Red Nacional de Terapia Celular (Tercel, ISCIII), Castilla y León, Spain
- Centro de Investigación del Cáncer-IBMCC (Universidad de Salamanca-CSIC), Salamanca, Spain
- * E-mail:
| |
Collapse
|
4
|
Dudakov JA, Goldberg GL, Reiseger JJ, Vlahos K, Chidgey AP, Boyd RL. Sex steroid ablation enhances hematopoietic recovery following cytotoxic antineoplastic therapy in aged mice. THE JOURNAL OF IMMUNOLOGY 2009; 183:7084-94. [PMID: 19890044 DOI: 10.4049/jimmunol.0900196] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
Cytotoxic antineoplastic therapy is widely used in the clinic as a treatment for malignant diseases. The treatment itself, however, leads to long-term depletion of the adaptive immune system, which is more pronounced in older patients, predominantly due to thymic atrophy. We and others have previously shown that withdrawal of sex steroids is able to regenerate the aged thymus and enhance recovery from autologous and allogeneic hematopoietic stem cell transplant. In this study we have examined the effects of sex steroid ablation (SSA) on the recovery of lymphopoiesis in the bone marrow (BM) and thymus following treatment with the chemotherapeutic agent cyclophosphamide (Cy) in middle-aged and old mice. Furthermore, we have also examined the impact of this regeneration on peripheral immunity. SSA enhanced the recovery of BM resident hematopoietic stem cells and lymphoid progenitors and promoted lymphopoiesis. Interestingly, Cy alone caused a profound increase in the recently described common lymphoid progenitor 2 (CLP-2) population in the BM. In the thymus, SSA caused a profound increase in cellularity as well as all intrathymic T-lineage progenitors including early T-lineage progenitors (ETPs) and non-canonical T cell progenitors such as the CLP-2. We also found that these transferred into numerical increases in the periphery with enhanced B and T cell numbers. Furthermore, these lymphocytes were found to have an enhanced functional capacity with no perturbation of the TCR repertoire. Taken together, these results provide the basis for the use of SSA in the clinic to enhance treatment outcomes from cytotoxic antineoplastic therapy.
Collapse
Affiliation(s)
- Jarrod A Dudakov
- Immune Regeneration Laboratory, Monash Immunology and Stem Cell Laboratories, Monash University, Wellington Road, Clayton VIC 3800, Australia.
| | | | | | | | | | | |
Collapse
|
5
|
Williams BW, Chang JJ, Chi RM, Marker PH, Frethem CD, Le CT, Kratzke RA, Kirstein MN. Cap-dependent translation blockade and fixed dose-rate gemcitabine: interaction in an in vitro bioreactor system. Cancer Lett 2009; 284:37-46. [PMID: 19442436 DOI: 10.1016/j.canlet.2009.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2008] [Revised: 04/02/2009] [Accepted: 04/03/2009] [Indexed: 01/13/2023]
Abstract
Translation initiation commences with the binding of eIF-4F to the mRNA 5'-end cap. eIF-4F binds the cap structure via its eIF-4E subunit, which is the rate-limiting step for the initiation of translation. This pathway can be inhibited by 4E-binding proteins (4E-BPs). The present study investigated prolonged gemcitabine infusion in combination with reduced eIF-4E function on NSCLC cell viability in an in vitro bioreactor system. To assess attachment to the hollow fibers, cells with dominant active 4E-BP1 were first analyzed by scanning electron microscopy. Cells were treated with 0.5- or 2.5h (fixed dose rate) infusion (same total dose), simulating human plasma gemcitabine concentration-time profiles. An interaction was observed between fixed dose rate infusion gemcitabine and presence of dominant active 4E-BP1. We conclude that cap-dependent translation blockade and fixed dose rate infusion gemcitabine treatment results in a significant interaction affecting cell viability in vitro.
Collapse
Affiliation(s)
- Brent W Williams
- Department of Experimental and Clinical Pharmacology, College of Pharmacy and Comprehensive Cancer Center, University of Minnesota, 717 Delaware St. SE, Minneapolis, MN 55414, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
The immune system undergoes dramatic changes with age-the thymus involutes, particularly from puberty, with the gradual loss of newly produced naïve T cells resulting in a restricted T cell receptor repertoire, skewed towards memory cells. Coupled with a similar, though less dramatic age-linked decline in bone marrow function, this translates to a reduction in immune responsiveness and has important clinical implications particularly in immune reconstitution following cytoablation regimes for cancer treatment or following severe viral infections such as HIV. Given that long-term reconstitution of the immune system is dependent on the bi-directional interplay between primary lymphoid organ stromal cells and the progenitors whose downstream differentiation they direct, regeneration of the thymus is fundamental to developing new strategies for the clinical management of many major diseases of immunological origin. This review will discuss the impact of aging on primary lymphoid organ niches and current approaches for thymic regeneration and immune reconstitution.
Collapse
|