1
|
Stergiou IE, Tsironis C, Papadakos SP, Tsitsilonis OE, Dimopoulos MA, Theocharis S. Unraveling the Role of the NLRP3 Inflammasome in Lymphoma: Implications in Pathogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:2369. [PMID: 38397043 PMCID: PMC10889189 DOI: 10.3390/ijms25042369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammasomes are multimeric protein complexes, sensors of intracellular danger signals, and crucial components of the innate immune system, with the NLRP3 inflammasome being the best characterized among them. The increasing scientific interest in the mechanisms interconnecting inflammation and tumorigenesis has led to the study of the NLRP3 inflammasome in the setting of various neoplasms. Despite a plethora of data regarding solid tumors, NLRP3 inflammasome's implication in the pathogenesis of hematological malignancies only recently gained attention. In this review, we investigate its role in normal lymphopoiesis and lymphomagenesis. Considering that lymphomas comprise a heterogeneous group of hematologic neoplasms, both tumor-promoting and tumor-suppressing properties were attributed to the NLRP3 inflammasome, affecting neoplastic cells and immune cells in the tumor microenvironment. NLRP3 inflammasome-related proteins were associated with disease characteristics, response to treatment, and prognosis. Few studies assess the efficacy of NLRP3 inflammasome therapeutic targeting with encouraging results, though most are still at the preclinical level. Further understanding of the mechanisms regulating NLRP3 inflammasome activation during lymphoma development and progression can contribute to the investigation of novel treatment approaches to cover unmet needs in lymphoma therapeutics.
Collapse
Affiliation(s)
- Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (C.T.)
| | - Christos Tsironis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (C.T.)
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| | - Ourania E. Tsitsilonis
- Flow Cytometry Unit, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Meletios Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 11528 Athens, Greece;
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| |
Collapse
|
2
|
Voelker P, Weible AP, Niell CM, Rothbart MK, Posner MI. Molecular Mechanisms for Changing Brain Connectivity in Mice and Humans. Int J Mol Sci 2023; 24:15840. [PMID: 37958822 PMCID: PMC10648558 DOI: 10.3390/ijms242115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The goal of this study was to examine commonalities in the molecular basis of learning in mice and humans. In previous work we have demonstrated that the anterior cingulate cortex (ACC) and hippocampus (HC) are involved in learning a two-choice visuospatial discrimination task. Here, we began by looking for candidate genes upregulated in mouse ACC and HC with learning. We then determined which of these were also upregulated in mouse blood. Finally, we used RT-PCR to compare candidate gene expression in mouse blood with that from humans following one of two forms of learning: a working memory task (network training) or meditation (a generalized training shown to change many networks). Two genes were upregulated in mice following learning: caspase recruitment domain-containing protein 6 (Card6) and inosine monophosphate dehydrogenase 2 (Impdh2). The Impdh2 gene product catalyzes the first committed step of guanine nucleotide synthesis and is tightly linked to cell proliferation. The Card6 gene product positively modulates signal transduction. In humans, Card6 was significantly upregulated, and Impdh2 trended toward upregulation with training. These genes have been shown to regulate pathways that influence nuclear factor kappa B (NF-κB), a factor previously found to be related to enhanced synaptic function and learning.
Collapse
Affiliation(s)
- Pascale Voelker
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA (M.I.P.)
| | - Aldis P. Weible
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; (A.P.W.); (C.M.N.)
| | - Cristopher M. Niell
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; (A.P.W.); (C.M.N.)
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Mary K. Rothbart
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA (M.I.P.)
| | - Michael I. Posner
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA (M.I.P.)
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; (A.P.W.); (C.M.N.)
| |
Collapse
|
3
|
Gorbacheva MA, Tikhomirova MA, Potashnikova DM, Akbay B, Sheval EV, Musinova YR. Production of Stable Cell Lines on the Basis of the Cultured RPMI 8866 B-Cells with Constant and Inducible Expression of the Human Immunodeficiency Virus Tat Protein. Russ J Dev Biol 2019. [DOI: 10.1134/s1062360419050060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Gladkikh AA, Potashnikova DM, Tatarskiy V, Yastrebova M, Khamidullina A, Barteneva N, Vorobjev I. Comparison of the mRNA expression profile of B-cell receptor components in normal CD5-high B-lymphocytes and chronic lymphocytic leukemia: a key role of ZAP70. Cancer Med 2017; 6:2984-2997. [PMID: 29125235 PMCID: PMC5727315 DOI: 10.1002/cam4.1257] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/22/2017] [Accepted: 10/15/2017] [Indexed: 01/15/2023] Open
Abstract
The B‐cell receptor (BCR) signaling pathway is of great importance for B‐cell survival and proliferation. The BCR expressed on malignant B‐CLL cells contributes to the disease pathogenesis, and its signaling pathway is currently the target of several therapeutic strategies. Although various BCR alterations have been described in B‐CLL at the protein level, the mRNA expression levels of tyrosine kinases in B‐CLL compared to that in normal CD5‐high and CD5‐low B‐lymphocytes remain unknown. In the current study, we measured the mRNA expression levels of CD79A, CD79B, LYN, SYK, SHP1, and ZAP70 in purified populations of CD5‐high B‐CLL cells, CD5‐low B‐cells from the peripheral blood of healthy donors, and CD5‐high B‐cells from human tonsils. Here, we report a clear separation in the B‐CLL dataset between the ZAP70‐high and ZAP70‐low subgroups. Each subgroup has a unique expression profile of BCR signaling components that might reflect the functional status of the BCR signaling pathway. Moreover, the ZAP70‐low subgroup does not resemble either CD5‐high B‐lymphocytes from the tonsils or CD5‐low lymphocytes from PBMC (P < 0.05). We also show that ZAP70 is the only gene that is differentially expressed in CD5‐high and CD5‐low normal B‐lymphocytes, confirming the key role of Zap‐70 tyrosine kinase in BCR signaling alterations in B‐CLL.
Collapse
Affiliation(s)
- Aleena A Gladkikh
- Biological Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Margarita Yastrebova
- Biological Department, M.V. Lomonosov Moscow State University, Moscow, Russia.,N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Alvina Khamidullina
- Biological Department, M.V. Lomonosov Moscow State University, Moscow, Russia.,N.N. Blokhin Russian Cancer Research Center, Moscow, Russia
| | - Natasha Barteneva
- Department of Pediatrics Harvard Medical School, Boston, Massachusetts
| | - Ivan Vorobjev
- Biological Department, M.V. Lomonosov Moscow State University, Moscow, Russia.,Department of Biology, School of Science and Technology, Nazarbayev University, Astana, Kazakhstan.,A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
5
|
Teixeira Mendes LS, Peters N, Attygalle AD, Wotherspoon A. Cyclin D1 overexpression in proliferation centres of small lymphocytic lymphoma/chronic lymphocytic leukaemia. J Clin Pathol 2017; 70:899-902. [DOI: 10.1136/jclinpath-2017-204364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 11/04/2022]
|
6
|
Zamani-Ahmadmahmudi M, Aghasharif S, Ilbeigi K. Prognostic efficacy of the human B-cell lymphoma prognostic genes in predicting disease-free survival (DFS) in the canine counterpart. BMC Vet Res 2017; 13:17. [PMID: 28069005 PMCID: PMC5223581 DOI: 10.1186/s12917-016-0919-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/09/2016] [Indexed: 01/17/2023] Open
Abstract
Background Canine B-cell lymphoma is deemed an ideal model of human non-Hodgkin’s lymphoma where the lymphomas of both species share similar clinical features and biological behaviors. However there are some differences between tumor features in both species. In the current study, we sought to evaluate the prognostic efficacy of human B-cell lymphoma prognostic gene signatures in canine B-cell lymphoma. Methods The corresponding probe sets of 36 human B-cell lymphoma prognostic genes were retrieved from 2 canine B-cell lymphoma microarray datasets (GSE43664 and GSE39365) (76 samples), and prognostic probe sets were thereafter detected using the univariate and multivariate Cox proportional-hazard model and the Kaplan–Meier analysis. The two datasets were employed both as training sets and as external validation sets for each other. Results were confirmed using quantitative real-time PCR (qRT-PCR) analysis. Results In the univariate analysis, CCND1, CCND2, PAX5, CR2, LMO2, HLA-DQA1, P53, CD38, MYC-N, MYBL1, and BIRCS5 were associated with longer disease-free survival (DFS), while CD44, PLAU, and FN1 were allied to shorter DFS. However, the multivariate Cox proportional-hazard analysis confirmed CCND1 and BIRCS5 as prognostic genes for canine B-cell lymphoma. qRT-PCR used for verification of results indicated that expression level of CCND1 was significantly higher in B-cell lymphoma patients with the long DFS than ones with the short DFS, while expression level of BIRCS5 wasn’t significantly different between two groups. Conclusion Our results confirmed CCND1 as important gene that can be used as a potential predictor in this tumor type. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0919-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohamad Zamani-Ahmadmahmudi
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, P.O Box: 76169133, Kerman, Iran.
| | - Sina Aghasharif
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Garmsar Branch, Garmsar, Iran
| | - Keyhan Ilbeigi
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Garmsar Branch, Garmsar, Iran
| |
Collapse
|
7
|
HACE1 is a putative tumor suppressor gene in B-cell lymphomagenesis and is down-regulated by both deletion and epigenetic alterations. Leuk Res 2016; 45:90-100. [DOI: 10.1016/j.leukres.2016.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/07/2016] [Accepted: 04/08/2016] [Indexed: 11/19/2022]
|
8
|
Mastorci K, Muraro E, Pasini E, Furlan C, Sigalotti L, Cinco M, Dolcetti R, Fratta E. Toll-Like Receptor 1/2 and 5 Ligands Enhance the Expression of Cyclin D1 and D3 and Induce Proliferation in Mantle Cell Lymphoma. PLoS One 2016; 11:e0153823. [PMID: 27123851 PMCID: PMC4849792 DOI: 10.1371/journal.pone.0153823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/04/2016] [Indexed: 12/28/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell non-Hodgkin’s lymphoma with a still undefined etiology. Several lines of evidence are consistent with the possible involvement of peculiar microenvironmental stimuli sustaining tumor cell growth and survival, as the activation of Toll-like receptors (TLR) 4 and 9. However, little is known about the contribution of other TLRs of pathogenic relevance in the development of MCL. This study reports evidence that MCL cell lines and primary MCL cells express different levels of TLR2 and TLR5, and that their triggering is able to further activate the Akt, MAPK, and NF-κB signaling cascades, known to be altered in MCL cells. This leads to the enhancement of cyclin D1 and D3 over-expression, occurring at post-translational level through a mechanism that likely involves the Akt/GSK-3α/β pathway. Interestingly, in primary B cells, TLR1/2 or TLR5 ligands increase protein level of cyclin D1, which is not usually expressed in normal B cells, and cyclin D3 when associated with CD40 ligand (CD40L), IL-4, and anti-human-IgM co-stimulus. Finally, the activation of TLR1/2 and TLR5 results in an increased proliferation of MCL cell lines and, in the presence of co-stimulation with CD40L, IL-4, and anti-human-IgM also of primary MCL cells and normal B lymphocytes. These effects befall together with an enhanced IL-6 production in primary cultures. Overall, our findings suggest that ligands for TLR1/2 or TLR5 may provide critical stimuli able to sustain the growth and the malignant phenotype of MCL cells. Further studies aimed at identifying the natural source of these TLR ligands and their possible pathogenic association with MCL are warranted in order to better understand MCL development, but also to define new therapeutic targets for counteracting the tumor promoting effects of lymphoma microenvironment.
Collapse
Affiliation(s)
- Katy Mastorci
- Cancer Bio-Immunotherapy Unit, Department of Translational Research, Centro di Riferimento Oncologico, IRCCS—National Cancer Institute, Aviano (PN), Italy
| | - Elena Muraro
- Cancer Bio-Immunotherapy Unit, Department of Translational Research, Centro di Riferimento Oncologico, IRCCS—National Cancer Institute, Aviano (PN), Italy
- * E-mail:
| | - Elisa Pasini
- Cancer Bio-Immunotherapy Unit, Department of Translational Research, Centro di Riferimento Oncologico, IRCCS—National Cancer Institute, Aviano (PN), Italy
- Princess Margaret Cancer Centre, University Health Network and TECHNA Institute for the Advancement of Technology for Health, TMDT, Room 11–314, 101 College Street, Toronto, ON M5G 1L7, Canada
| | - Chiara Furlan
- Cancer Bio-Immunotherapy Unit, Department of Translational Research, Centro di Riferimento Oncologico, IRCCS—National Cancer Institute, Aviano (PN), Italy
| | - Luca Sigalotti
- Cancer Bio-Immunotherapy Unit, Department of Translational Research, Centro di Riferimento Oncologico, IRCCS—National Cancer Institute, Aviano (PN), Italy
| | - Marina Cinco
- Spirochete Laboratory, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Riccardo Dolcetti
- Cancer Bio-Immunotherapy Unit, Department of Translational Research, Centro di Riferimento Oncologico, IRCCS—National Cancer Institute, Aviano (PN), Italy
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Elisabetta Fratta
- Cancer Bio-Immunotherapy Unit, Department of Translational Research, Centro di Riferimento Oncologico, IRCCS—National Cancer Institute, Aviano (PN), Italy
- * E-mail:
| |
Collapse
|
9
|
Zamani-Ahmadmahmudi M, Najafi A, Nassiri SM. Detection of Critical Genes Associated with Overall Survival (OS) and Progression-Free Survival (PFS) in Reconstructed Canine B-Cell Lymphoma Gene Regulatory Network (GRN). Cancer Invest 2016; 34:70-9. [PMID: 26818715 DOI: 10.3109/07357907.2015.1114120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Canine B-cell lymphoma GRN was reconstructed from gene expression data in the STRING and MiMI databases. Critical genes of networks were identified and correlations of critical genes with overall survival (OS) and progression-free survival (PFS) were evaluated. Significant changes were detected in the expressions of GLUL, CD44, CD79A, ARF3, FOS, BLOC1S1, FYN, GZMB, GALNT3, IFI44, CD3G, GNG2, ESRP1, and CCND1 in the STRING network and of PECAM1, GLUL, CD44, GDI1, E2F4, TLE1, CD79A, UCP2, CCND1, FYN, RHOQ, BIN1, and A2M in the MiMI network. Final survival analysis highlighted CCND1 and FOS as genes with significant correlations with OS and PFS.
Collapse
Affiliation(s)
- Mohamad Zamani-Ahmadmahmudi
- a Faculty of Veterinary Medicine, Department of Clinical Science, Shahid Bahonar University of Kerman , Kerman , Iran
| | - Ali Najafi
- b Molecular Biology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Seyed Mahdi Nassiri
- c Faculty of Veterinary Medicine, Department of Clinical Pathology, University of Tehran , Tehran , Iran
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Deregulated proteolysis is increasingly being implicated in pathogenesis of lymphoma. In this review, we highlight the major cellular processes that are affected by deregulated proteolysis of critical substrates that promote lymphoproliferative disorders. RECENT FINDINGS Emerging evidence supports the role of aberrant proteolysis by the ubiquitin proteasome system (UPS) in lymphoproliferative disorders. Several UPS mediators are identified to be altered in lymphomagenesis. However, the precise role of their alteration and comprehensive knowledge of their target substrate critical for lymphomagenesis is far from complete. SUMMARY Many E3 ligase and deubiquitinases that contribute to regulated proteolysis of substrates critical for major cellular processes are altered in various lineages of lymphoma. Understanding of the proteolytic regulatory mechanisms of these major cellular pathways may offer novel biomarkers and targets for lymphoma therapy.
Collapse
|
11
|
Simonsen AT, Sørensen CD, Ebbesen LH, Bødker JS, Bentzen HHN, Nyvold CG. SOX11 as a minimal residual disease marker for Mantle cell lymphoma. Leuk Res 2014; 38:918-24. [DOI: 10.1016/j.leukres.2014.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/15/2014] [Accepted: 04/14/2014] [Indexed: 01/08/2023]
|
12
|
Zhang Q, Yang Z, Jia Z, Liu C, Guo C, Lu H, Chen P, Ma K, Wang W, Zhou C. ISL-1 is overexpressed in non-Hodgkin lymphoma and promotes lymphoma cell proliferation by forming a p-STAT3/p-c-Jun/ISL-1 complex. Mol Cancer 2014; 13:181. [PMID: 25070240 PMCID: PMC4125377 DOI: 10.1186/1476-4598-13-181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 07/22/2014] [Indexed: 12/20/2022] Open
Abstract
Background Insulin enhancer binding protein-1 (ISL-1), a LIM-homeodomain transcription factor, is essential for the heart, motor neuron and pancreas development. Recently, ISL-1 has been found in some types of human cancers. However, how ISL-1 exerts the role in tumor development is not clear. Methods and results The expression of ISL-1 was assessed in 211 human lymphoma samples and 23 normal lymph node samples. Immunohistochemistry results demonstrated a markedly higher expression of ISL-1 in 75% of non-Hodgkin lymphoma (NHL) samples compared with that in normal lymph nodes or Hodgkin lymphoma (HL) samples. CCK-8 analysis, cell cycle assay and xenograft model were performed to characterize the association between ISL-1 expression level and biological functions in NHL. The results showed that ISL-1 overexpression obviously promoted NHL cells proliferation, changed the cell cycle distribution in vitro and significantly enhanced xenografted lymphoma development in vivo. Real-time PCR, Western blot, luciferase assay and ChIP assay were used to explore the potential regulatory targets of ISL-1 and the results demonstrated that ISL-1 activated the c-Myc expression in NHL by direct binding to a conserved binding site on the c-Myc enhancer. Further results revealed that ISL-1 could be positively regulated by the c-Jun N-terminal kinase (JNK) and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways. Both the JNK and JAK/STAT signaling inhibitors could significantly suppressed the growth of NHL cells through the down-regulation of ISL-1 as demonstrated by CCK-8 and Western blot assays. Bioinformatic analysis and luciferase assay exhibited that ISL-1 was a novel target of p-STAT3 and p-c-jun. ChIP, Co-IP and ChIP-re-IP analysis revealed that ISL-1 could participate with p-STAT3 and p-c-Jun to form a p-STAT3/p-c-Jun/ISL-1 transcriptional complex that binds directly on the ISL-1 promoter, demonstrating a positive feedback regulatory mechanism for ISL-1 expression in NHL. Conclusions Our results provide the first evidence that ISL-1 is tightly linked to NHL proliferation and development by promoting c-Myc transcription, and its aberrant expression was regulated by p-STAT3/p-c-Jun/ISL-1 complex activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Weiping Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education of China, Peking University, 38 Xueyuan Road, 100191 Beijing, China.
| | | |
Collapse
|
13
|
Srivastava S, Tsongalis GJ, Kaur P. Recent advances in microRNA-mediated gene regulation in chronic lymphocytic leukemia. Clin Biochem 2013; 46:901-8. [PMID: 23518313 DOI: 10.1016/j.clinbiochem.2013.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 03/01/2013] [Accepted: 03/08/2013] [Indexed: 01/04/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in the western world and is a very clinically heterogeneous disease for which better prognostic biomarkers are needed. Current prognostic markers exhibit both biological and technical limitations. MicroRNAs (miRNAs) are small endogenous, non-coding 22-nucleotide regulatory RNAs that have been shown to modulate hematopoietic lineage differentiation and play important gene-regulatory roles in disease processes. In this manuscript, we review miRNA biology and the association of specific miRNAs with CLL.
Collapse
Affiliation(s)
- Swati Srivastava
- Department of Pathology, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Norris Cotton Cancer Center, Lebanon, NH 03756, USA
| | | | | |
Collapse
|
14
|
A defect of the INK4-Cdk4 checkpoint and Myc collaborate in blastoid mantle cell lymphoma-like lymphoma formation in mice. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1688-701. [PMID: 22326754 DOI: 10.1016/j.ajpath.2012.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 12/02/2011] [Accepted: 01/03/2012] [Indexed: 12/30/2022]
Abstract
Mantle cell lymphoma (MCL) is a B-cell malignancy characterized by a monoclonal proliferation of lymphocytes with the co-expression of CD5 and CD43, but not of CD23. Typical MCL is associated with overexpression of cyclin D1, and blastoid MCL variants are associated with Myc (alias c-myc) translocations. In this study, we developed a murine model of MCL-like lymphoma by crossing Cdk4(R24C) mice with Myc-3'RR transgenic mice. The Cdk4(R24C) mouse is a knockin strain that expresses a Cdk4 protein that is resistant to inhibition by p16(INK4a) as well as other INK4 family members. Ablation of INK4 control on Cdk4 does not affect lymphomagenesis, B-cell maturation, and functions in Cdk4(R24C) mice. Additionally, B cells were normal in numbers, cell cycle activity, mitogen responsiveness, and Ig synthesis in response to activation. By contrast, breeding Cdk4(R24C) mice with Myc-3'RR transgenic mice prone to develop aggressive Burkitt lymphoma-like lymphoma (CD19(+)IgM(+)IgD(+) cells) leads to the development of clonal blastoid MCL-like lymphoma (CD19(+)IgM(+)CD5(+)CD43(+)CD23(-) cells) in Myc/Cdk4(R24C) mice. Western blot analysis revealed high amounts of Cdk4/cyclin D1 complexes as the main hallmark of these lymphomas. These results indicate that although silent in nonmalignant B cells, a defect in the INK4-Cdk4 checkpoint can participate in lymphomagenesis in conjunction with additional alterations of cell cycle control, a situation that might be reminiscent of the development of human blastoid MCL.
Collapse
|
15
|
F-box protein FBXL2 targets cyclin D2 for ubiquitination and degradation to inhibit leukemic cell proliferation. Blood 2012; 119:3132-41. [PMID: 22323446 DOI: 10.1182/blood-2011-06-358911] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hematologic maligancies exhibit a growth advantage by up-regulation of components within the molecular apparatus involved in cell-cycle progression. The SCF (Skip-Cullin1-F-box protein) E3 ligase family provides homeostatic feedback control of cell division by mediating ubiquitination and degradation of cell-cycle proteins. By screening several previously undescribed E3 ligase components, we describe the behavior of a relatively new SCF subunit, termed FBXL2, that ubiquitinates and destabilizes cyclin D2 protein leading to G(0) phase arrest and apoptosis in leukemic and B-lymphoblastoid cell lines. FBXL2 expression was strongly suppressed, and yet cyclin D2 protein levels were robustly expressed in acute myelogenous leukemia (AML) and acute lymphoblastic leukemia (ALL) patient samples. Depletion of endogenous FBXL2 stabilized cyclin D2 levels, whereas ectopically expressed FBXL2 decreased cyclin D2 lifespan. FBXL2 did not bind a phosphodegron within its substrate, which is typical of other F-box proteins, but uniquely targeted a calmodulin-binding signature within cyclin D2 to facilitate its polyubiquitination. Calmodulin competes with the F-box protein for access to this motif where it bound and protected cyclin D2 from FBXL2. Calmodulin reversed FBXL2-induced G(0) phase arrest and attenuated FBXL2-induced apoptosis of lymphoblastoid cells. These results suggest an antiproliferative effect of SCF(FBXL2) in lymphoproliferative malignancies.
Collapse
|
16
|
Henson SE, Morford T, Stein MP, Wall R, Malone CS. Candidate genes contributing to the aggressive phenotype of mantle cell lymphoma. Acta Histochem 2011; 113:729-42. [PMID: 21145576 DOI: 10.1016/j.acthis.2010.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/26/2010] [Accepted: 11/03/2010] [Indexed: 12/11/2022]
Abstract
Mantle cell lymphoma and small lymphocytic lymphoma are lymphocyte cancers that have similar morphologies and a common age of onset. Mantle cell lymphoma is generally an aggressive B cell lymphoma with a short median survival time, whereas small lymphocytic lymphoma is typically an indolent B cell lymphoma with a prolonged median survival time. Using primary tumor samples in bi-directional suppression subtractive hybridization, we identified genes with differential expression in an aggressive mantle cell lymphoma versus an indolent small lymphocytic lymphoma. "Virtual" Northern blot analyses of multiple lymphoma samples confirmed that a set of genes was preferentially expressed in aggressive mantle cell lymphoma compared to indolent small lymphocytic lymphoma. These analyses identified mantle cell lymphoma-specific genes that may be involved in the aggressive behavior of mantle cell lymphoma and possibly other aggressive human lymphomas. Interestingly, most of these differentially expressed genes have not been identified using other techniques, highlighting the unique ability of suppression subtractive hybridization to identify potentially rare or low expression genes.
Collapse
MESH Headings
- DNA, Complementary/genetics
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/pathology
- Phenotype
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Sarah E Henson
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, 90095, USA
| | | | | | | | | |
Collapse
|
17
|
Ward BP, Tsongalis GJ, Kaur P. MicroRNAs in chronic lymphocytic leukemia. Exp Mol Pathol 2010; 90:173-8. [PMID: 21168405 DOI: 10.1016/j.yexmp.2010.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 12/07/2010] [Indexed: 01/07/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common leukemia in the western world. Recent research, conducted primarily in basic science laboratories, has indicated a role for microRNAs (miRNAs) in the pathogenesis and prognosis of this disease. MiRNAs are small, non-coding, functional RNAs, that mediate post-transcriptional inhibition of messenger RNAs. Because miRNA expression levels in CLL patients differ from that of normal patients, there may be a role for these novel small molecules as biomarkers in this disease.
Collapse
Affiliation(s)
- Brian P Ward
- Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | | | | |
Collapse
|