1
|
Chaurasia A, Brigi C, Daghrery A, Asa'ad F, Spirito F, Hasuike A, González-Alva P, Kojic DD, Ünsal RBK, Sivaramakrishnan G. Tumour-Associated Macrophages in Oral Squamous Cell Carcinoma. Oral Dis 2025. [PMID: 39846431 DOI: 10.1111/odi.15265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/25/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
OBJECTIVE Tumour-associated macrophages (TAMs) are crucial in the progression and treatment response of oral squamous cell carcinoma (OSCC). TAMs infiltrate OSCC, adopting an M2-like phenotype that promotes tumour growth, metastasis and immune suppression. The current narrative review explored the roles of TAMs in OSCC, focusing on their impact on the tumour microenvironment, invasion, metastasis, angiogenesis, immunosuppression and potential therapeutic targeting. METHODS A comprehensive analysis of the current literature on TAMs in OSCC was conducted. Specifically, we evaluated the biological functions of TAMs, their interactions within the tumour microenvironment, and their influence on disease progression and treatment outcomes. RESULTS TAMs contribute to OSCC progression by secreting cytokines, such as IL-10 and TGF-β, that inhibit effector immune cells. They facilitate angiogenesis, extracellular matrix remodelling and the epithelial-mesenchymal transition, which are essential for tumour invasion and metastasis. TAMs support cancer stem cells and recruit regulatory T cells and myeloid-derived suppressor cells, enhancing resistance to therapies. Their presence correlates with advanced OSCC stages, lymph node metastasis and poor prognosis. CONCLUSION TAMs regulate OSCC progression and therapy resistance. Reprogramming them to an M1-like phenotype or depleting them enhances treatments. Understanding TAM-OSCC interactions is crucial for developing interventions against their tumour-promoting functions and restoring anti-tumour immunity.
Collapse
Affiliation(s)
- Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, King George's Medical University, Lucknow, India
| | - Carel Brigi
- Department of Oral Diagnosis, Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | - Arwa Daghrery
- Department of Restorative Dental Sciences, School of Dentistry, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Farah Asa'ad
- Department of Oral Biochemistry, Institute for Odontology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Akira Hasuike
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
| | - Patricia González-Alva
- Laboratory of Tissue Bioengineering, Faculty of Dentistry, Universidad Nacional Autónoma De México, Mexico City, Mexico
| | - Dave D Kojic
- Restorative Dentistry, A.T. Still University, Missouri School of Dentistry & Oral Health, Kirksville, Missouri, USA
| | - Revan Birke Koca Ünsal
- Department of Periodontics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | | |
Collapse
|
2
|
Lu G, Liu H, Wang H, Tang X, Luo S, Du M, Christiani DC, Wei Q. Potentially functional variants of INPP5D and EXOSC3 in immunity B cell-related genes are associated with non-small cell lung cancer survival. Front Immunol 2024; 15:1440454. [PMID: 39176091 PMCID: PMC11338758 DOI: 10.3389/fimmu.2024.1440454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
B cells are adaptive immune cells in the tumor microenvironment and play an important role in tumor development and metastasis. However, the roles of genetic variants of the immunity B cell-related genes in the survival of patients with non-small cell lung cancer (NSCLC) remain unknown. In the present study, we first evaluated associations between 10,776 single nucleotide polymorphisms (SNPs) in 220 immunity B cell-related genes and survival of NSCLC in a discovery dataset of 1,185 patients from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. We found that 369 SNPs were significantly associated with overall survival (OS) of NSCLC in multivariable Cox proportional hazards regression analysis (P ≤ 0.05, Bayesian false discovery probability ≤ 0.80), of which 18 SNPs were validated in another independent genotyping dataset of 984 patients from the Harvard Lung Cancer Susceptibility (HLCS) Study. We then performed linkage disequilibrium (LD) analysis, followed by stepwise analysis with a multivariable Cox regression model. Finally, two independent SNPs, inositol polyphosphate-5-phosphatase D (INPP5D) rs13385922 C>T and exosome component 3 (EXOSC3) rs3208406 A>G, remained significantly associated withNSCLC OS with a combined hazards ratio (HR) of 1.14 (95% confidence interval = 1.06-1.23, P = 2.41×10-4) and 1.20 (95% confidence interval = 1.14-1.28, P = 3.41×10-9), respectively. Furthermore, NSCLC patients with the combination of unfavorable genotypes for these two SNPs were associated with a poor OS (P trend = 0.0002) and disease-specific survival (DSS, P trend < 0.0001) in the PLCO dataset. Expression quantitative trait loci (eQTL) analysis suggested that the INPP5D rs6782875 T allele was significantly correlated with elevated INPP5D mRNA expression levels in normal lung tissues and whole blood samples, while the EXOSC3 rs3208406 G allele was significantly correlated with increased EXOSC3 mRNA expression levels in normal lung tissues. Our data indicated that genetic variants in these immunity B cell-related genes may predict NSCLC survival possibly by influencing the gene expression.
Collapse
Affiliation(s)
- Guojun Lu
- Department of Respiratory Medicine, Nanjing Chest Hospital, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Huilin Wang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
- Department of Respiratory Oncology, Guangxi Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaozhun Tang
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
- Department of Head and Neck Surgery, Guangxi Cancer Hospital, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, United States
| | - Mulong Du
- Departments of Environmental Health and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, United States
| | - David C. Christiani
- Departments of Environmental Health and Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, United States
- Department of Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Duke Global Health Institute, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
3
|
Nigam M, Devi K, Coutinho HDM, Mishra AP. Exploration of gut microbiome and inflammation: A review on key signalling pathways. Cell Signal 2024; 118:111140. [PMID: 38492625 DOI: 10.1016/j.cellsig.2024.111140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
The gut microbiome, a crucial component of the human system, is a diverse collection of microbes that belong to the gut of human beings as well as other animals. These microbial communities continue to coexist harmoniously with their host organisms and perform various functions that affect the host's general health. Each person's gut microbiota has a unique makeup. The gut microbiota is well acknowledged to have a part in the local as well as systemic inflammation that underlies a number of inflammatory disorders (e.g., atherosclerosis, diabetes mellitus, obesity, and inflammatory bowel disease).The gut microbiota's metabolic products, such as short-chain fatty acids (butyrate, propionate, and acetate) inhibit inflammation by preventing immune system cells like macrophages and neutrophils from producing pro-inflammatory factors, which are triggered by the structural elements of bacteria (like lipopolysaccharide). The review's primary goal is to provide comprehensive and compiled data regarding the contribution of gut microbiota to inflammation and the associated signalling pathways.
Collapse
Affiliation(s)
- Manisha Nigam
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India.
| | - Kanchan Devi
- Department of Biochemistry, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal 246174, Uttarakhand, India
| | | | - Abhay Prakash Mishra
- Department of Pharmacology, University of Free State, Bloemfontein 9300, South Africa.
| |
Collapse
|
4
|
Ehm P, Rietow R, Wegner W, Bußmann L, Kriegs M, Dierck K, Horn S, Streichert T, Horstmann M, Jücker M. SHIP1 Is Present but Strongly Downregulated in T-ALL, and after Restoration Suppresses Leukemia Growth in a T-ALL Xenotransplantation Mouse Model. Cells 2023; 12:1798. [PMID: 37443832 PMCID: PMC10341211 DOI: 10.3390/cells12131798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/23/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cause of cancer-related death in children. Despite significantly increased chances of cure, especially for high-risk ALL patients, it still represents a poor prognosis for a substantial fraction of patients. Misregulated proteins in central switching points of the cellular signaling pathways represent potentially important therapeutic targets. Recently, the inositol phosphatase SHIP1 (SH2-containing inositol 5-phosphatase) has been considered as a tumor suppressor in leukemia. SHIP1 serves as an important negative regulator of the PI3K/AKT signaling pathway, which is frequently constitutively activated in primary T-ALL. In contrast to other reports, we show for the first time that SHIP1 has not been lost in T-ALL cells, but is strongly downregulated. Reduced expression of SHIP1 leads to an increased activation of the PI3K/AKT signaling pathway. SHIP1-mRNA expression is frequently reduced in primary T-ALL samples, which is recapitulated by the decrease in SHIP1 expression at the protein level in seven out of eight available T-ALL patient samples. In addition, we investigated the change in the activity profile of tyrosine and serine/threonine kinases after the restoration of SHIP1 expression in Jurkat T-ALL cells. The tyrosine kinase receptor subfamilies of NTRK and PDGFR, which are upregulated in T-ALL subgroups with low SHIP1 expression, are significantly disabled after SHIP1 reconstitution. Lentiviral-mediated reconstitution of SHIP1 expression in Jurkat cells points to a decreased cellular proliferation upon transplantation into NSG mice in comparison to the control cohort. Together, our findings will help to elucidate the complex network of cell signaling proteins, further support a functional role for SHIP1 as tumor suppressor in T-ALL and, much more importantly, show that full-length SHIP1 is expressed in T-ALL samples.
Collapse
Affiliation(s)
- Patrick Ehm
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg and Department of Pediatric Oncology and Hematology, University Medical Center, 20246 Hamburg, Germany
| | - Ruth Rietow
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg and Department of Pediatric Oncology and Hematology, University Medical Center, 20246 Hamburg, Germany
| | - Wiebke Wegner
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Lara Bußmann
- Department of Otorhinolaryngology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- UCCH Kinomics Core Facility, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Malte Kriegs
- UCCH Kinomics Core Facility, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Center for Oncology, Clinic for Radiation Therapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kevin Dierck
- Research Institute Children’s Cancer Center Hamburg, Hamburg and Department of Pediatric Oncology and Hematology, University Medical Center, 20246 Hamburg, Germany
| | - Stefan Horn
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Thomas Streichert
- Institute for Clinical Chemistry, University Hospital Köln, 50937 Cologne, Germany
| | - Martin Horstmann
- Research Institute Children’s Cancer Center Hamburg, Hamburg and Department of Pediatric Oncology and Hematology, University Medical Center, 20246 Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
5
|
Ehm P, Bettin B, Jücker M. Activated Src kinases downstream of BCR-ABL and Flt3 induces proteasomal degradation of SHIP1 by phosphorylation of tyrosine 1021. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119467. [PMID: 36958526 DOI: 10.1016/j.bbamcr.2023.119467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/03/2023] [Accepted: 03/12/2023] [Indexed: 03/25/2023]
Abstract
Within the various subtypes of ALL, patients with a BCR-ABL-positive background as well as with a genetic change in the KMT2A gene have by far the worst survival probabilities. Interestingly, both subtypes are characterized by highly activated tyrosine kinases. SHIP1 serves as an important negative regulator of the PI3K/AKT signaling pathway, which is often constitutively activated in ALL. The protein expression of SHIP1 is decreased in most T-ALL and in some subgroups of B-ALL. In this study, we analyzed the expression of SHIP1 protein in detail in the context of groups with aberrant activated tyrosine kinases, namely BCR-ABL (Ph+) and Flt3 (KMT2A translocations). We demonstrate that constitutively activated Src kinases downstream of BCR-ABL and receptor tyrosine kinases reduce the SHIP1 expression in a SHIP1-Y1021 phosphorylated-dependent manner with subsequent ubiquitin marked proteasomal degradation. Inhibition of BCR-ABL (Imatinib), Flt3 (Quizartinib) or Src-Kinase-Family (Saracatinib) leads to significant reconstitution of SHIP1 protein expression. These results further support a functional role of SHIP1 as tumor suppressor protein and could be the basis for the establishment of a targeted therapy form.
Collapse
Affiliation(s)
- Patrick Ehm
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; Research Institute Children's Cancer Center Hamburg, Hamburg and Dept. of Pediatric Oncology and Hematology, University Medical Center, Hamburg, Germany.
| | - Bettina Bettin
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| |
Collapse
|
6
|
Chen L, Zhang S, Li Q, Li J, Deng H, Zhang S, Meng R. Emerging role of Protein Kinase CK2 in Tumor immunity. Front Oncol 2022; 12:1065027. [DOI: 10.3389/fonc.2022.1065027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Protein kinase CK2, a conserved serine/threonine-protein kinase, is ubiquitous in cells and regulates various intracellular processes, especially in tumor cells. As one of the earliest discovered protein kinases in humans, CK2 plays a crucial role in phosphorylating or associating with hundreds of substrates to modulate several signaling pathways. Excellent reviews have reported that the overexpression of CK2 could be observed in many cancers and was closely associated with tumor occurrence and development. The elevation of CK2 is also an indicator of a poor prognosis. Recently, increasing attention has been paid to the relationship between CK2 and tumor immunity. However, there is no comprehensive description of how CK2 regulates the immune cells in the tumor microenvironment (TME). Also, the underlying mechanisms are still not very clear. In this review, we systematically summarized the correlation between CK2 and tumor immunity, primarily the effects on various immune cells, both in innate and adaptive immunity in the TME. With the comprehensive development of immunotherapy and the mounting transformation research of CK2 inhibitors from the bench to the clinic, this review will provide vital information to find new treatment options for enhancing the efficacy of immunotherapy.
Collapse
|
7
|
Husain K, Villalobos-Ayala K, Laverde V, Vazquez OA, Miller B, Kazim S, Blanck G, Hibbs ML, Krystal G, Elhussin I, Mori J, Yates C, Ghansah T. Apigenin Targets MicroRNA-155, Enhances SHIP-1 Expression, and Augments Anti-Tumor Responses in Pancreatic Cancer. Cancers (Basel) 2022; 14:3613. [PMID: 35892872 PMCID: PMC9331563 DOI: 10.3390/cancers14153613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic cancer (PC) is a deadly disease with a grim prognosis. Pancreatic tumor derived factors (TDF) contribute to the induction of an immunosuppressive tumor microenvironment (TME) that impedes the effectiveness of immunotherapy. PC-induced microRNA-155 (miRNA-155) represses expression of Src homology 2 (SH2) domain-containing Inositol 5'-phosphatase-1 (SHIP-1), a regulator of myeloid cell development and function, thus impacting anti-tumor immunity. We recently reported that the bioflavonoid apigenin (API) increased SHIP-1 expression which correlated with the expansion of tumoricidal macrophages (TAM) and improved anti-tumor immune responses in the TME of mice with PC. We now show that API transcriptionally regulates SHIP-1 expression via the suppression of miRNA-155, impacting anti-tumor immune responses in the bone marrow (BM) and TME of mice with PC. We discovered that API reduced miRNA-155 in the PC milieu, which induced SHIP-1 expression. This promoted the restoration of myelopoiesis and increased anti-tumor immune responses in the TME of heterotopic, orthotopic and transgenic SHIP-1 knockout preclinical mouse models of PC. Our results suggest that manipulating SHIP-1 through miR-155 may assist in augmenting anti-tumor immune responses and aid in the therapeutic intervention of PC.
Collapse
Affiliation(s)
- Kazim Husain
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Krystal Villalobos-Ayala
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Valentina Laverde
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Oscar A. Vazquez
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Bradley Miller
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - Samra Kazim
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
| | - George Blanck
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Margaret L. Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne 3004, Australia;
| | - Gerald Krystal
- The Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
| | - Isra Elhussin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (I.E.); (J.M.); (C.Y.)
| | - Joakin Mori
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (I.E.); (J.M.); (C.Y.)
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA; (I.E.); (J.M.); (C.Y.)
| | - Tomar Ghansah
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (K.H.); (K.V.-A.); (V.L.); (O.A.V.); (B.M.); (S.K.); (G.B.)
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
8
|
Ceyhan Y, Zhang M, Sandoval CG, Agoulnik AI, Agoulnik IU. Expression pattern and the roles of phosphatidylinositol phosphatases in testis. Biol Reprod 2022; 107:902-915. [PMID: 35766372 DOI: 10.1093/biolre/ioac132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/02/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphoinositides (PIs) are relatively rare lipid components of the cellular membranes. Their homeostasis is tightly controlled by specific PI kinases and phosphatases. PIs play essential roles in cellular signaling, cytoskeletal organization, and secretory processes in various diseases and normal physiology. Gene targeting experiments strongly suggest that in mice with deficiency of several PI phosphatases such as Pten, Mtmrs, Inpp4b, and Inpp5b, spermatogenesis is affected, resulting in partial or complete infertility. Similarly, in men, loss of several of the PIP phosphatases is observed in infertility characterized by the lack of mature sperm. Using available gene expression databases, we compare expression of known PI phosphatases in various testicular cell types, infertility patients, and mouse age-dependent testicular gene expression, and discuss their potential roles in testis physiology and spermatogenesis.
Collapse
Affiliation(s)
- Yasemin Ceyhan
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Manqi Zhang
- Department of Medicine, Duke University, Durham, NC, USA
| | - Carlos G Sandoval
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,New York University Grossman School of Medicine, New York, NY, USA
| | - Alexander I Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Irina U Agoulnik
- Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
Glück M, Dally L, Jücker M, Ehm P. JAK2-V617F is a negative regulation factor of SHIP1 protein and thus influences the AKT signaling pathway in patients with Myeloproliferative Neoplasm (MPN). Int J Biochem Cell Biol 2022; 149:106229. [PMID: 35609769 DOI: 10.1016/j.biocel.2022.106229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/19/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Myeloproliferative neoplasms (MPN) are a group of chronic haematological disorders. At the molecular level of MPN cells, the gain-of-function mutation V617F of the Janus kinase 2 (JAK2) leads to a constitutive activation of the downstream signaling cascade and is a conventional criteria for diagnosis. Here, the functional role of the tumor suppressor SHIP1 (SH2 domain containing inositol-5 phosphatase 1) in the pathogenesis of MPNs was investigated. METHODS Primary blood samples of MPN-patients were analysed using Western Blot technique regarding the level of SHIP1 expression. Moreover, SHIP1 and SHIP1-mutations were lentivirally transduced in the JAK2-V617F-positive UKE-1 cell line and expression was monitored over time. In addition, we examined SHIP1 reconstitution by inhibition of JAK2-V617F. Furthermore, we transfected SHIP1-expressing cells with a JAK2-V617F respectively a BCR-ABL construct and investigated changes in SHIP1 expression. RESULTS Four out of five MPN-patient samples showed a loss or a reduction in SHIP1 expression. We identified JAK2 as a negative regulator of SHIP1 expression in MPN cells and inhibition of JAK2-V617F implicates a reconstituted SHIP1 expression. This is significant because SHIP1 negatively regulates the AKT signaling pathway and in consequence the reconstitution of SHIP1 expression leads to a decreased cell growth. Moreover, we examined the impact of SHIP1 and patient-derived SHIP1-mutations on AKT phosphorylation and show the benefit of a combined therapy in MPN cells with inhibitors of the AKT/mTOR pathway. CONCLUSION In summary, the data suggest that SHIP1 may play a role during the development of MPNs and could be the basis for establishing a targeted therapy.
Collapse
Affiliation(s)
- Madeleine Glück
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Lina Dally
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Patrick Ehm
- Institute of Biochemistry and Signal Transduction, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany.
| |
Collapse
|
10
|
Le Coq J, López Navajas P, Rodrigo Martin B, Alfonso C, Lietha D. A new layer of phosphoinositide-mediated allosteric regulation uncovered for SHIP2. FASEB J 2021; 35:e21815. [PMID: 34314064 DOI: 10.1096/fj.202100561r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/26/2021] [Accepted: 07/08/2021] [Indexed: 11/11/2022]
Abstract
The Src homology 2 containing inositol 5-phosphatase 2 (SHIP2) is a large multidomain enzyme that catalyzes the dephosphorylation of the phospholipid phosphatidylinositol 3,4,5-triphosphate (PI(3,4,5)P3 ) to form PI(3,4)P2 . PI(3,4,5)P3 is a key lipid second messenger controlling the recruitment of signaling proteins to the plasma membrane, thereby regulating a plethora of cellular events, including proliferation, growth, apoptosis, and cytoskeletal rearrangements. SHIP2, alongside PI3K and PTEN, regulates PI(3,4,5)P3 levels at the plasma membrane and has been heavily implicated in serious diseases such as cancer and type 2 diabetes; however, many aspects of its regulation mechanism remain elusive. We recently reported an activating effect of the SHIP2 C2 domain and here we describe an additional layer of regulation via the pleckstrin homology-related (PHR) domain. We show a phosphoinositide-induced transition to a high activity state of the enzyme that increases phosphatase activity up to 10-15 fold. We further show that PI(3,4)P2 directly interacts with the PHR domain to trigger this allosteric activation. Modeling of the PHR-phosphatase-C2 region of SHIP2 on the membrane suggests no major inter-domain interactions with the PHR domain, but close contacts between the two linkers offer a possible path of allosteric communication. Together, our data show that the PHR domain acts as an allosteric module regulating the catalytic activity of SHIP2 in response to specific phosphoinositide levels in the cell membrane.
Collapse
Affiliation(s)
- Johanne Le Coq
- Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Pilar López Navajas
- Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), Madrid, Spain
| | - Bárbara Rodrigo Martin
- Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), Madrid, Spain
| | - Carlos Alfonso
- Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), Madrid, Spain
| | - Daniel Lietha
- Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
11
|
Whitfield H, Hemmings AM, Mills SJ, Baker K, White G, Rushworth S, Riley AM, Potter BVL, Brearley CA. Allosteric Site on SHIP2 Identified Through Fluorescent Ligand Screening and Crystallography: A Potential New Target for Intervention. J Med Chem 2021; 64:3813-3826. [PMID: 33724834 PMCID: PMC7610569 DOI: 10.1021/acs.jmedchem.0c01944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Src homology 2 domain-containing inositol phosphate phosphatase 2 (SHIP2) is one of the 10 human inositol phosphate 5-phosphatases. One of its physiological functions is dephosphorylation of phosphatidylinositol 3,4,5-trisphosphate, PtdIns(3,4,5)P3. It is therefore a therapeutic target for pathophysiologies dependent on PtdIns(3,4,5)P3 and PtdIns(3,4)P2. Therapeutic interventions are limited by the dearth of crystallographic data describing ligand/inhibitor binding. An active site-directed fluorescent probe facilitated screening of compound libraries for SHIP2 ligands. With two additional orthogonal assays, several ligands including galloflavin were identified as low micromolar Ki inhibitors. One ligand, an oxo-linked ethylene-bridged dimer of benzene 1,2,4-trisphosphate, was shown to be an uncompetitive inhibitor that binds to a regulatory site on the catalytic domain. We posit that binding of ligands to this site restrains L4 loop motions that are key to interdomain communications that accompany high catalytic activity with phosphoinositide substrate. This site may, therefore, be a future druggable target for medicinal chemistry.
Collapse
Affiliation(s)
- Hayley Whitfield
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Andrew M Hemmings
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Stephen J Mills
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K
| | - Kendall Baker
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Gaye White
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Stuart Rushworth
- Department of Molecular Haematology; Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, U.K
| | - Andrew M Riley
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K
| | - Barry V L Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, U.K
| | - Charles A Brearley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| |
Collapse
|
12
|
Targeting SHIP1 and SHIP2 in Cancer. Cancers (Basel) 2021; 13:cancers13040890. [PMID: 33672717 PMCID: PMC7924360 DOI: 10.3390/cancers13040890] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Phosphoinositol signaling pathways and their dysregulation have been shown to have a fundamental role in health and disease, respectively. The SH2-containing 5′ inositol phosphatases, SHIP1 and SHIP2, are regulators of the PI3K/AKT pathway that have crucial roles in cancer progression. This review aims to summarize the role of SHIP1 and SHIP2 in cancer signaling and the immune response to cancer, the discovery and use of SHIP inhibitors and agonists as possible cancer therapeutics. Abstract Membrane-anchored and soluble inositol phospholipid species are critical mediators of intracellular cell signaling cascades. Alterations in their normal production or degradation are implicated in the pathology of a number of disorders including cancer and pro-inflammatory conditions. The SH2-containing 5′ inositol phosphatases, SHIP1 and SHIP2, play a fundamental role in these processes by depleting PI(3,4,5)P3, but also by producing PI(3,4)P2 at the inner leaflet of the plasma membrane. With the intent of targeting SHIP1 or SHIP2 selectively, or both paralogs simultaneously, small molecule inhibitors and agonists have been developed and tested in vitro and in vivo over the last decade in various disease models. These studies have shown promising results in various pre-clinical models of disease including cancer and tumor immunotherapy. In this review the potential use of SHIP inhibitors in cancer is discussed with particular attention to the molecular structure, binding site and efficacy of these SHIP inhibitors.
Collapse
|
13
|
Cao QQ, Li S, Lu Y, Wu D, Feng W, Shi Y, Zhang LP. Transcriptome analysis of molecular mechanisms underlying facial nerve injury repair in rats. Neural Regen Res 2021; 16:2316-2323. [PMID: 33818518 PMCID: PMC8354104 DOI: 10.4103/1673-5374.310700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although the transcriptional alterations inside the facial nucleus after facial nerve injury have been well studied, the gene expression changes in the facial nerve trunk after injury are still unknown. In this study, we established an adult rat model of facial nerve crush injury by compressing the right lateral extracranial nerve trunk. Transcriptome sequencing, differential gene expression analysis, and cluster analysis of the injured facial nerve trunk were performed, and 39 intersecting genes with significant variance in expression were identified. Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes pathway analyses of the 39 intersecting genes revealed that these genes are mostly involved in leukocyte cell-cell adhesion and phagocytosis and have essential roles in regulating nerve repair. Quantitative real-time polymerase chain reaction assays were used to validate the expression of pivotal genes. Finally, nine pivotal genes that contribute to facial nerve recovery were identified, including Arhgap30, Akr1b8, C5ar1, Csf2ra, Dock2, Hcls1, Inpp5d, Sla, and Spi1. Primary Schwann cells were isolated from the sciatic nerve of neonatal rats. After knocking down Akr1b8 in Schwann cells with an Akr1b8-specific small interfering RNA plasmid, expression levels of monocyte chemoattractant protein-1 and interleukin-6 were decreased, while cell proliferation and migration were not obviously altered. These findings suggest that Akr1b8 likely regulates the interaction between Schwann cells and macrophages through regulation of cytokine expression to promote facial nerve regeneration. This study is the first to reveal a transcriptome change in the facial nerve trunk after facial nerve injury, thereby revealing the potential mechanism underlying repair of facial nerve injury. This study was approved by the Animal Ethics Committee of Nantong University, China in 2018 (approval No. S20180923-007).
Collapse
Affiliation(s)
- Qian-Qian Cao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Shuo Li
- Department of Otolaryngology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yan Lu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Di Wu
- Department of Otolaryngology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wei Feng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Yong Shi
- Department of Otolaryngology, Head and Neck Surgery, Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Lu-Ping Zhang
- Department of Otolaryngology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
14
|
Villalobos-Ayala K, Ortiz Rivera I, Alvarez C, Husain K, DeLoach D, Krystal G, Hibbs ML, Jiang K, Ghansah T. Apigenin Increases SHIP-1 Expression, Promotes Tumoricidal Macrophages and Anti-Tumor Immune Responses in Murine Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12123631. [PMID: 33291556 PMCID: PMC7761852 DOI: 10.3390/cancers12123631] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) has an extremely poor prognosis due to the expansion of immunosuppressive myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM) in the inflammatory tumor microenvironment (TME), which halts the recruitment of effector immune cells and renders immunotherapy ineffective. Thus, the identification of new molecular targets that can modulate the immunosuppressive TME is warranted for PC intervention. Src Homology-2 (SH2) domain-containing Inositol 5'-Phosphatase-1 (SHIP-1) is a lipid signaling protein and a regulator of myeloid cell development and function. Herein, we used the bioflavonoid apigenin (API) to reduce inflammation in different PC models. Wild type mice harboring heterotopic or orthotopic PC were treated with API, which induced SHIP-1 expression, reduced inflammatory tumor-derived factors (TDF), increased the proportion of tumoricidal macrophages and enhanced anti-tumor immune responses, resulting in a reduction in tumor burden compared to vehicle-treated PC mice. In contrast, SHIP-1-deficient mice exhibited an increased tumor burden and displayed augmented proportions of pro-tumor macrophages. These results provide further support for the importance of SHIP-1 expression in promoting pro-tumor macrophage development in the pancreatic TME. Our findings suggest that agents augmenting SHIP-1 expression may provide novel therapeutic options for the treatment of PC.
Collapse
Affiliation(s)
- Krystal Villalobos-Ayala
- Department of Molecular Medicine, Morsani College of Medicine at the University of South Florida, Tampa, FL 33612, USA; (K.V.-A.); (I.O.R.); (C.A.); (K.H.)
| | - Ivannie Ortiz Rivera
- Department of Molecular Medicine, Morsani College of Medicine at the University of South Florida, Tampa, FL 33612, USA; (K.V.-A.); (I.O.R.); (C.A.); (K.H.)
| | - Ciara Alvarez
- Department of Molecular Medicine, Morsani College of Medicine at the University of South Florida, Tampa, FL 33612, USA; (K.V.-A.); (I.O.R.); (C.A.); (K.H.)
| | - Kazim Husain
- Department of Molecular Medicine, Morsani College of Medicine at the University of South Florida, Tampa, FL 33612, USA; (K.V.-A.); (I.O.R.); (C.A.); (K.H.)
| | - DeVon DeLoach
- Comparative Medicine at the University of South Florida, Tampa, FL 33612, USA;
| | - Gerald Krystal
- The Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada;
| | - Margaret L. Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne 3004, Australia;
| | - Kun Jiang
- Anatomic Pathology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
| | - Tomar Ghansah
- Department of Molecular Medicine, Morsani College of Medicine at the University of South Florida, Tampa, FL 33612, USA; (K.V.-A.); (I.O.R.); (C.A.); (K.H.)
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-974-1825
| |
Collapse
|
15
|
Amirani E, Hallajzadeh J, Asemi Z, Mansournia MA, Yousefi B. Effects of chitosan and oligochitosans on the phosphatidylinositol 3-kinase-AKT pathway in cancer therapy. Int J Biol Macromol 2020; 164:456-467. [PMID: 32693135 DOI: 10.1016/j.ijbiomac.2020.07.137] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
Abstract
Phosphatidylinositol 3-kinase (PI3K)-AKT pathway is one of the most important kinase signaling networks in the context of cancer development and treatment. Aberrant activation of AKT, the central mediator of this pathway, has been implicated in numerous malignancies including endometrial, hepatocellular, breast, colorectal, prostate, and, cervical cancer. Thus regulation and blockage of this kinase and its key target nodes is an attractive approach in cancer therapy and diverse efforts have been done to achieve this aim. Chitosan is a carbohydrate with multiple interesting applications in cancer diagnosis and treatment strategies. This bioactive polymer and its derivative oligomers commonly used in drug/DNA delivery methods due to their functional properties which improve efficiency of delivery systems. Further, these compounds exert anti-tumor roles through the stimulation of apoptosis, immune enhancing potency, anti-oxidative features and anti-angiogenic roles. Due to the importance of PI3K-AKT signaling in cancer targeting and treatment resistance, this review discusses the involvement of chitosan, oligochitosaccharides and carriers based on these chemicals in the regulation of this pathway in different tumors.
Collapse
Affiliation(s)
- Elaheh Amirani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Small molecule targeting of SHIP1 and SHIP2. Biochem Soc Trans 2020; 48:291-300. [DOI: 10.1042/bst20190775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 02/07/2023]
Abstract
Modulating the activity of the Src Homology 2 (SH2) — containing Inositol 5′-Phosphatase (SHIP) enzyme family with small molecule inhibitors provides a useful and unconventional method of influencing cell signaling in the PI3K pathway. The development of small molecules that selectively target one of the SHIP paralogs (SHIP1 or SHIP2) as well as inhibitors that simultaneously target both enzymes have provided promising data linking the phosphatase activity of the SHIP enzymes to disorders and disease states that are in dire need of new therapeutic targets. These include cancer, immunotherapy, diabetes, obesity, and Alzheimer's disease. In this mini-review, we will provide a brief overview of research in these areas that support targeting SHIP1, SHIP2 or both enzymes for therapeutic purposes.
Collapse
|
17
|
Microglia Mediated Neuroinflammation: Focus on PI3K Modulation. Biomolecules 2020; 10:biom10010137. [PMID: 31947676 PMCID: PMC7022557 DOI: 10.3390/biom10010137] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/21/2022] Open
Abstract
Immune activation in the central nervous system involves mostly microglia in response to pathogen invasion or tissue damage, which react, promoting a self-limiting inflammatory response aimed to restore homeostasis. However, prolonged, uncontrolled inflammation may result in the production by microglia of neurotoxic factors that lead to the amplification of the disease state and tissue damage. In particular, specific inducers of inflammation associated with neurodegenerative diseases activate inflammatory processes that result in the production of a number of mediators and cytokines that enhance neurodegenerative processes. Phosphoinositide 3-kinases (PI3Ks) constitute a family of enzymes regulating a wide range of activity, including signal transduction. Recent studies have focused attention on the intracellular role of PI3K and its contribution to neurodegenerative processes. This review illustrates and discusses recent findings about the role of this signaling pathway in the modulation of microglia neuroinflammatory responses linked to neurodegeneration. Finally, we discuss the modulation of PI3K as a potential therapeutic approach helpful for developing innovative therapeutic strategies in neurodegenerative diseases.
Collapse
|
18
|
Beyond the Cell Surface: Targeting Intracellular Negative Regulators to Enhance T cell Anti-Tumor Activity. Int J Mol Sci 2019; 20:ijms20235821. [PMID: 31756921 PMCID: PMC6929154 DOI: 10.3390/ijms20235821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 02/07/2023] Open
Abstract
It is well established that extracellular proteins that negatively regulate T cell function, such as Cytotoxic T-Lymphocyte-Associated protein 4 (CTLA-4) and Programmed Cell Death protein 1 (PD-1), can be effectively targeted to enhance cancer immunotherapies and Chimeric Antigen Receptor T cells (CAR-T cells). Intracellular proteins that inhibit T cell receptor (TCR) signal transduction, though less well studied, are also potentially useful therapeutic targets to enhance T cell activity against tumor. Four major classes of enzymes that attenuate TCR signaling include E3 ubiquitin kinases such as the Casitas B-lineage lymphoma proteins (Cbl-b and c-Cbl), and Itchy (Itch), inhibitory tyrosine phosphatases, such as Src homology region 2 domain-containing phosphatases (SHP-1 and SHP-2), inhibitory protein kinases, such as C-terminal Src kinase (Csk), and inhibitory lipid kinases such as Src homology 2 (SH2) domain-containing inositol polyphosphate 5-phosphatase (SHIP) and Diacylglycerol kinases (DGKs). This review describes the mechanism of action of eighteen intracellular inhibitory regulatory proteins in T cells within these four classes, and assesses their potential value as clinical targets to enhance the anti-tumor activity of endogenous T cells and CAR-T cells.
Collapse
|
19
|
Ijuin T. Phosphoinositide phosphatases in cancer cell dynamics-Beyond PI3K and PTEN. Semin Cancer Biol 2019; 59:50-65. [PMID: 30922959 DOI: 10.1016/j.semcancer.2019.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 03/18/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
Phosphoinositides are a group of lipids that regulate intracellular signaling and subcellular biological events. The signaling by phosphatidylinositol-3,4,5-trisphosphate and Akt mediates the action of growth factors that are essential for cell proliferation, gene transcription, cell migration, and polarity. The hyperactivation of this signaling has been identified in different cancer cells; and, it has been implicated in oncogenic transformation and cancer cell malignancy. Recent studies have argued the role of phosphoinositides in cancer cell dynamics, including actin cytoskeletal rearrangement at the plasma membrane and the organization of intracellular compartments. The focus of this review is to summarize the impact of the activities of phosphoinositide phosphatases on intracellular signaling related to cancer cell dynamics and to discuss how the abnormalities in the activities of the enzymes alter the levels of phosphoinositides in cancer cells.
Collapse
Affiliation(s)
- Takeshi Ijuin
- Division of Biochemistry, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki, Chu-o, Kobe 650-0017, Japan.
| |
Collapse
|
20
|
Dobranowski P, Sly LM. SHIP negatively regulates type II immune responses in mast cells and macrophages. J Leukoc Biol 2018; 103:1053-1064. [PMID: 29345374 DOI: 10.1002/jlb.3mir0817-340r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
SHIP is a hematopoietic-specific lipid phosphatase that dephosphorylates PI3K-generated PI(3,4,5)-trisphosphate. SHIP removes this second messenger from the cell membrane blunting PI3K activity in immune cells. Thus, SHIP negatively regulates mast cell activation downstream of multiple receptors. SHIP has been referred to as the "gatekeeper" of mast cell degranulation as loss of SHIP dramatically increases degranulation or permits degranulation in response to normally inert stimuli. SHIP also negatively regulates Mϕ activation, including both pro-inflammatory cytokine production downstream of pattern recognition receptors, and alternative Mϕ activation by the type II cytokines, IL-4, and IL-13. In the SHIP-deficient (SHIP-/- ) mouse, increased mast cell and Mϕ activation leads to spontaneous inflammatory pathology at mucosal sites, which is characterized by high levels of type II inflammatory cytokines. SHIP-/- mast cells and Mϕs have both been implicated in driving inflammation in the SHIP-/- mouse lung. SHIP-/- Mϕs drive Crohn's disease-like intestinal inflammation and fibrosis, which is dependent on heightened responses to innate immune stimuli generating IL-1, and IL-4 inducing abundant arginase I. Both lung and gut pathology translate to human disease as low SHIP levels and activity have been associated with allergy and with Crohn's disease in people. In this review, we summarize seminal literature and recent advances that provide insight into SHIP's role in mast cells and Mϕs, the contribution of these cell types to pathology in the SHIP-/- mouse, and describe how these findings translate to human disease and potential therapies.
Collapse
Affiliation(s)
- Peter Dobranowski
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura M Sly
- Division of Gastroenterology, Department of Pediatrics, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Krystal G, Hamilton MJ, Bennewith KL. SHIP prevents metastasis. Aging (Albany NY) 2018; 8:837-8. [PMID: 27208543 PMCID: PMC4931836 DOI: 10.18632/aging.100964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/16/2016] [Indexed: 11/25/2022]
Affiliation(s)
- Gerald Krystal
- Terry Fox Laboratory, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Melisa J Hamilton
- Department of Integrative Oncology, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Kevin L Bennewith
- Department of Integrative Oncology, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| |
Collapse
|
22
|
Lu ZJ, Wu JJ, Jiang WL, Xiao JH, Tao KZ, Ma L, Zheng P, Wan R, Wang XP. MicroRNA-155 promotes the pathogenesis of experimental colitis by repressing SHIP-1 expression. World J Gastroenterol 2017; 23:976-985. [PMID: 28246471 PMCID: PMC5311107 DOI: 10.3748/wjg.v23.i6.976] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/27/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
AIM
To explore the mechanism by which microRNA-155 (miR-155) regulates the pathogenesis of experimental colitis.
METHODS
A luciferase assay was performed to confirm the binding of miR-155 to the SHIP-1 3’-UTR. MiR-155 mimics, negative controls and SHIP-1 expression/knockdown vectors were established and then utilized in gain- and loss-of-function studies performed in raw264.7 cells and primary bone marrow-derived macrophages (BMDMs). Thereafter, dextran sulfate sodium (DSS)-induced colitis mouse model with or without antagomiR-155 treatment was established, and the levels of miR-155 and SHIP-1, as well as the pro-inflammatory capabilities, were measured by western blot, quantitative polymerase chain reaction, and immunohistochemistry.
RESULTS
MiR-155 directly bound to the 3’-UTR of SHIP-1 mRNA and induced a significant decrease in SHIP-1 expression in both raw264.7 cells and primary BMDMs. MiR-155 markedly promoted cell proliferation and pro-inflammatory secretions including IL-6, TNF-α, IL-1β, and IFN-γ, whereas these effects could be reversed by the restoration of SHIP-1 expression. In vivo studies showed that antagomiR-155 administration could alleviate DSS-induced intestinal inflammation in Balb/c mice. Moreover, significantly increased SHIP-1 expression, as well as decreased Akt activation and inflammatory response, were observed in the antagomiR-155-treated mice.
CONCLUSION
MiR-155 promotes experimental colitis by repressing SHIP-1 expression. Thus, the inhibition of miR-155 might be a promising strategy for therapy.
Collapse
MESH Headings
- 3' Untranslated Regions
- Animals
- Antagomirs/administration & dosage
- Antagomirs/therapeutic use
- Blotting, Western
- Colitis, Ulcerative/chemically induced
- Colitis, Ulcerative/drug therapy
- Colitis, Ulcerative/metabolism
- Cytokines/metabolism
- Dextran Sulfate/toxicity
- Disease Models, Animal
- Down-Regulation
- Female
- Immunohistochemistry
- Mice
- Mice, Inbred BALB C
- MicroRNAs/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism
- Primary Cell Culture
- Proto-Oncogene Proteins c-akt/metabolism
- RAW 264.7 Cells
- RNA Interference
- RNA, Small Interfering
- Signal Transduction
Collapse
|
23
|
Zhang SX, Duan LH, He SJ, Zhuang GF, Yu X. Phosphatidylinositol 3,4-bisphosphate regulates neurite initiation and dendrite morphogenesis via actin aggregation. Cell Res 2017; 27:253-273. [PMID: 28106075 DOI: 10.1038/cr.2017.13] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 07/24/2016] [Accepted: 10/19/2016] [Indexed: 12/16/2022] Open
Abstract
Neurite initiation is critical for neuronal morphogenesis and early neural circuit development. Recent studies showed that local actin aggregation underneath the cell membrane determined the site of neurite initiation. An immediately arising question is what signaling mechanism initiated actin aggregation. Here we demonstrate that local clustering of phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2), a phospholipid with relatively few known signaling functions, is necessary and sufficient for aggregating actin and promoting neuritogenesis. In contrast, the related and more extensively studied phosphatidylinositol 4,5-bisphosphate or phosphatidylinositol (3,4,5)-trisphosphate (PIP3) molecules did not have such functions. Specifically, we showed that beads coated with PI(3,4)P2 promoted actin aggregation and neurite initiation, while pharmacological interference with PI(3,4)P2 synthesis inhibited both processes. PI(3,4)P2 clustering occurred even when actin aggregation was pharmacologically blocked, demonstrating that PI(3,4)P2 functioned as the upstream signaling molecule. Two enzymes critical for PI(3,4)P2 generation, namely, SH2 domain-containing inositol 5-phosphatase and class II phosphoinositide 3-kinase α, were complementarily and non-redundantly required for actin aggregation and neuritogenesis, as well as for subsequent dendritogenesis. Finally, we demonstrate that neural Wiskott-Aldrich syndrome protein and the Arp2/3 complex functioned downstream of PI(3,4)P2 to mediate neuritogenesis and dendritogenesis. Together, our results identify PI(3,4)P2 as an important signaling molecule during early development and demonstrate its critical role in regulating actin aggregation and neuritogenesis.
Collapse
Affiliation(s)
- Shu-Xin Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Hui Duan
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shun-Ji He
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gui-Feng Zhuang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang Yu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Hamilton MJ, Halvorsen EC, LePard NE, Bosiljcic M, Ho VW, Lam V, Banáth J, Bennewith KL, Krystal G. SHIP represses lung inflammation and inhibits mammary tumor metastasis in BALB/c mice. Oncotarget 2016; 7:3677-91. [PMID: 26683227 PMCID: PMC4826161 DOI: 10.18632/oncotarget.6611] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/26/2015] [Indexed: 11/25/2022] Open
Abstract
SH2-containing-inositol-5'-phosphatase (SHIP) is a negative regulator of the phosphatidylinositol-3-kinase pathway in hematopoietic cells and limits the development of leukemias and lymphomas. The potential role of SHIP in solid tumor development and metastasis remains unknown. While SHIP restricts the aberrant development of myeloid cells in C57BL/6 mice, there are conflicting reports regarding the effect of SHIP deletion in BALB/c mice with important consequences for determining the influence of SHIP in different model tumor systems. We generated SHIP-/- BALB/c mice and challenged them with syngeneic non-metastatic 67NR or metastatic 4T1 mammary tumors. We demonstrate that SHIP restricts the development, alternative-activation, and immunosuppressive function of myeloid cells in tumor-free and tumor-bearing BALB/c mice. Tumor-free SHIP-/- BALB/c mice exhibited pulmonary inflammation, myeloid hyperplasia, and M2-polarized macrophages and this phenotype was greatly exacerbated by 4T1, but not 67NR, tumors. 4T1-bearing SHIP-/- mice rapidly lost weight and died from necrohemorrhagic inflammatory pulmonary disease, characterized by massive infiltration of pulmonary macrophages and myeloid-derived suppressor cells that were more M2-polarized and immunosuppressive than wild-type cells. Importantly, while SHIP loss did not affect primary tumor growth, 4T1-bearing SHIP-/- mice had 7.5-fold more metastatic tumor cells in their lungs than wild-type mice, consistent with the influence of immunosuppressive myeloid cells on metastatic growth. Our findings identify the hematopoietic cell-restricted protein SHIP as an intriguing target to influence the development of solid tumor metastases, and support development of SHIP agonists to prevent the accumulation of immunosuppressive myeloid cells and tumor metastases in the lungs to improve treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Melisa J Hamilton
- Department of Integrative Oncology, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Elizabeth C Halvorsen
- Department of Integrative Oncology, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Nancy E LePard
- Department of Integrative Oncology, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Momir Bosiljcic
- Department of Integrative Oncology, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Victor W Ho
- Terry Fox Laboratory, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Vivian Lam
- Terry Fox Laboratory, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Judit Banáth
- Department of Integrative Oncology, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Kevin L Bennewith
- Department of Integrative Oncology, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| | - Gerald Krystal
- Terry Fox Laboratory, British Columbia Cancer Agency Research Centre, Vancouver, BC, Canada
| |
Collapse
|
25
|
Expression, Purification, Crystallisation and X-ray Crystallographic Analysis of a Truncated Form of Human Src Homology 2 Containing Inositol 5-Phosphatase 2. Protein J 2016; 35:225-30. [DOI: 10.1007/s10930-016-9665-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Regulation of PtdIns(3,4,5)P3/Akt signalling by inositol polyphosphate 5-phosphatases. Biochem Soc Trans 2016; 44:240-52. [DOI: 10.1042/bst20150214] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The phosphoinositide 3-kinase (PI3K) generated lipid signals, PtdIns(3,4,5)P3 and PtdIns(3,4)P2, are both required for the maximal activation of the serine/threonine kinase proto-oncogene Akt. The inositol polyphosphate 5-phosphatases (5-phosphatases) hydrolyse the 5-position phosphate from the inositol head group of PtdIns(3,4,5)P3 to yield PtdIns(3,4)P2. Extensive work has revealed several 5-phosphatases inhibit PI3K-driven Akt signalling, by decreasing PtdIns(3,4,5)P3 despite increasing cellular levels of PtdIns(3,4)P2. The roles that 5-phosphatases play in suppressing cell proliferation and transformation are slow to emerge; however, the 5-phosphatase PIPP [proline-rich inositol polyphosphate 5-phosphatase; inositol polyphosphate 5-phosphatase (INPP5J)] has recently been identified as a putative tumour suppressor in melanoma and breast cancer and SHIP1 [SH2 (Src homology 2)-containing inositol phosphatase 1] inhibits haematopoietic cell proliferation. INPP5E regulates cilia stability and INPP5E mutations have been implicated ciliopathy syndromes. This review will examine 5-phosphatase regulation of PI3K/Akt signalling, focussing on the role PtdIns(3,4,5)P3 5-phosphatases play in developmental diseases and cancer.
Collapse
|
27
|
Chen L, Yang J, Huang T, Kong X, Lu L, Cai YD. Mining for novel tumor suppressor genes using a shortest path approach. J Biomol Struct Dyn 2015. [PMID: 26209080 DOI: 10.1080/07391102.2015.1042915] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancer, being among the most serious diseases, causes many deaths every year. Many investigators have devoted themselves to designing effective treatments for this disease. Cancer always involves abnormal cell growth with the potential to invade or spread to other parts of the body. In contrast, tumor suppressor genes (TSGs) act as guardians to prevent a disordered cell cycle and genomic instability in normal cells. Studies on TSGs can assist in the design of effective treatments against cancer. In this study, we propose a computational method to discover potential TSGs. Based on the known TSGs, a number of candidate genes were selected by applying the shortest path approach in a weighted graph that was constructed using protein-protein interaction network. The analysis of selected genes shows that some of them are new TSGs recently reported in the literature, while others may be novel TSGs.
Collapse
Affiliation(s)
- Lei Chen
- a College of Life Science , Shanghai University , Shanghai 200444 , P.R. China.,b College of Information Engineering , Shanghai Maritime University , Shanghai 201306 , P.R. China
| | - Jing Yang
- c The Key Laboratory of Stem Cell Biology , Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) , Shanghai 200025 , P.R. China
| | - Tao Huang
- c The Key Laboratory of Stem Cell Biology , Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) , Shanghai 200025 , P.R. China
| | - Xiangyin Kong
- c The Key Laboratory of Stem Cell Biology , Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) , Shanghai 200025 , P.R. China
| | - Lin Lu
- d Department of Radiology , Columbia University Medical Center , New York , NY 10032 , USA
| | - Yu-Dong Cai
- a College of Life Science , Shanghai University , Shanghai 200444 , P.R. China
| |
Collapse
|
28
|
Macrophage polarization: the link between inflammation and related diseases. Inflamm Res 2015; 65:1-11. [DOI: 10.1007/s00011-015-0874-1] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/16/2015] [Accepted: 08/25/2015] [Indexed: 01/04/2023] Open
|
29
|
Tan J, Yu CY, Wang ZH, Chen HY, Guan J, Chen YX, Fang JY. Genetic variants in the inositol phosphate metabolism pathway and risk of different types of cancer. Sci Rep 2015; 5:8473. [PMID: 25683757 PMCID: PMC4329558 DOI: 10.1038/srep08473] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/21/2015] [Indexed: 12/23/2022] Open
Abstract
Members of the inositol phosphate metabolism pathway regulate cell proliferation, migration and phosphatidylinositol-3-kinase (PI3K)/Akt signaling, and are frequently dysregulated in cancer. Whether germline genetic variants in inositol phosphate metabolism pathway are associated with cancer risk remains to be clarified. We examined the association between inositol phosphate metabolism pathway genes and risk of eight types of cancer using data from genome-wide association studies. Logistic regression models were applied to evaluate SNP-level associations. Gene- and pathway-based associations were tested using the permutation-based adaptive rank-truncated product method. The overall inositol phosphate metabolism pathway was significantly associated with risk of lung cancer (P = 2.00 × 10−4), esophageal squamous cell carcinoma (P = 5.70 × 10−3), gastric cancer (P = 3.03 × 10−2) and renal cell carcinoma (P = 1.26 × 10−2), but not with pancreatic cancer (P = 1.40 × 10−1), breast cancer (P = 3.03 × 10−1), prostate cancer (P = 4.51 × 10−1), and bladder cancer (P = 6.30 × 10−1). Our results provide a link between inherited variation in the overall inositol phosphate metabolism pathway and several individual genes and cancer. Further studies will be needed to validate these positive findings, and to explore its mechanisms.
Collapse
Affiliation(s)
- Juan Tan
- State Key Laboratory of Oncogene and Related Genes, Key Laboratory of Gastroenterology &Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institution of Digestive Disease, 145 Middle Shandong Rd, Shanghai 200001, China
| | - Chen-Yang Yu
- State Key Laboratory of Oncogene and Related Genes, Key Laboratory of Gastroenterology &Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institution of Digestive Disease, 145 Middle Shandong Rd, Shanghai 200001, China
| | - Zhen-Hua Wang
- State Key Laboratory of Oncogene and Related Genes, Key Laboratory of Gastroenterology &Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institution of Digestive Disease, 145 Middle Shandong Rd, Shanghai 200001, China
| | - Hao-Yan Chen
- State Key Laboratory of Oncogene and Related Genes, Key Laboratory of Gastroenterology &Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institution of Digestive Disease, 145 Middle Shandong Rd, Shanghai 200001, China
| | - Jian Guan
- Department of Otolaryngology, The Affiliated Sixth People's Hospital, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai 200233, China
| | - Ying-Xuan Chen
- State Key Laboratory of Oncogene and Related Genes, Key Laboratory of Gastroenterology &Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institution of Digestive Disease, 145 Middle Shandong Rd, Shanghai 200001, China
| | - Jing-Yuan Fang
- State Key Laboratory of Oncogene and Related Genes, Key Laboratory of Gastroenterology &Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institution of Digestive Disease, 145 Middle Shandong Rd, Shanghai 200001, China
| |
Collapse
|
30
|
PI3K signalling in inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:882-97. [PMID: 25514767 DOI: 10.1016/j.bbalip.2014.12.006] [Citation(s) in RCA: 365] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/24/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022]
Abstract
PI3Ks regulate several key events in the inflammatory response to damage and infection. There are four Class I PI3K isoforms (PI3Kα,β,γ,δ), three Class II PI3K isoforms (PI3KC2α, C2β, C2γ) and a single Class III PI3K. The four Class I isoforms synthesise the phospholipid 'PIP3'. PIP3 is a 'second messenger' used by many different cell surface receptors to control cell movement, growth, survival and differentiation. These four isoforms have overlapping functions but each is adapted to receive efficient stimulation by particular receptor sub-types. PI3Kγ is highly expressed in leukocytes and plays a particularly important role in chemokine-mediated recruitment and activation of innate immune cells at sites of inflammation. PI3Kδ is also highly expressed in leukocytes and plays a key role in antigen receptor and cytokine-mediated B and T cell development, differentiation and function. Class III PI3K synthesises the phospholipid PI3P, which regulates endosome-lysosome trafficking and the induction of autophagy, pathways involved in pathogen killing, antigen processing and immune cell survival. Much less is known about the function of Class II PI3Ks, but emerging evidence indicates they can synthesise PI3P and PI34P2 and are involved in the regulation of endocytosis. The creation of genetically-modified mice with altered PI3K signalling, together with the development of isoform-selective, small-molecule PI3K inhibitors, has allowed the evaluation of the individual roles of Class I PI3K isoforms in several mouse models of chronic inflammation. Selective inhibition of PI3Kδ, γ or β has each been shown to reduce the severity of inflammation in one or more models of autoimmune disease, respiratory disease or allergic inflammation, with dual γ/δ or β/δ inhibition generally proving more effective. The inhibition of Class I PI3Ks may therefore offer a therapeutic opportunity to treat non-resolving inflammatory pathologies in humans. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
|
31
|
Abstract
Myeloid derived suppressor cells (MDSC) suppress anti-tumor immune responses. Our recent publication provides evidence that SHIP-1 plays a prominent role in pancreatic tumor development by regulating MDSC. Therefore, SHIP-1 may be a potential therapeutic target for the treatment of MDSC-related hematological malignancies and solid tumors.
Collapse
Affiliation(s)
- Tomar Ghansah
- University of South Florida; Department of Molecular Medicine; Tampa, FL USA
| |
Collapse
|
32
|
Xue H, Hua LM, Guo M, Luo JM. SHIP1 is targeted by miR-155 in acute myeloid leukemia. Oncol Rep 2014; 32:2253-9. [PMID: 25175984 DOI: 10.3892/or.2014.3435] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/29/2014] [Indexed: 11/06/2022] Open
Abstract
The SH2 domain-containing inositol 5'-phosphatase 1 (SHIP1) has been implicated as a suppressor of hematopoietic transformation as its activity can inhibit the PI3K/Akt signaling pathway. Reduced activity of SHIP1 has been observed in acute myeloid leukemia (AML). SHIP1 is a target of microRNA-155 (miR-155). Therefore, the aim of the present study was to investigate the role of miR-155/SHIP1 in the pathogenesis of AML. We examined the levels of SHIP1 protein and miR-155 in tissue samples of patients with AML and in AML cell lines. In addition, we investigated cell proliferation, apoptosis and expression of SHIP1/PI3K/AKT pathway molecules in the THP-1 and U937 cell lines after miR-155 inhibitor or mimics were transfected. We showed that the levels of SHIP1 protein were significantly decreased in tissue samples of patients with some subtypes of AML (M4 or M5) and in AML cell lines with concomitant overexpression of miR-155. In addition, we demonstrated that decreased expression of SHIP1 in the AML cell lines was a consequence of increased levels of miR-155 and can therefore be reversed in vitro through inhibition of miR-155, with subsequent inhibition of cell proliferation and promotion of cell apoptosis. In conclusion, expression of the SHIP1 protein is targeted by miR-155 in AML. miR-155 acts as an onco-miR, and the miR-155/SHIP1/PI3K/AKT signaling pathway could play an important role in the pathogenesis of AML.
Collapse
Affiliation(s)
- Hua Xue
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Luo-Ming Hua
- Department of Hematology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Ming Guo
- Department of Hematology, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Jian-Min Luo
- Department of Hematology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
33
|
Abstract
The specific interaction of phosphoinositides with proteins is critical for a plethora of cellular processes, including cytoskeleton remodelling, mitogenic signalling, ion channel regulation and membrane traffic. The spatiotemporal restriction of different phosphoinositide species helps to define compartments within the cell, and this is particularly important for membrane trafficking within both the secretory and endocytic pathways. Phosphoinositide homoeostasis is tightly regulated by a large number of inositol kinases and phosphatases, which respectively phosphorylate and dephosphorylate distinct phosphoinositide species. Many of these enzymes have been implicated in regulating membrane trafficking and, accordingly, their dysregulation has been linked to a number of human diseases. In the present review, we focus on the inositol phosphatases, concentrating on their roles in membrane trafficking and the human diseases with which they have been associated.
Collapse
|
34
|
Elong Edimo W, Schurmans S, Roger PP, Erneux C. SHIP2 signaling in normal and pathological situations: Its impact on cell proliferation. Adv Biol Regul 2014; 54:142-151. [PMID: 24091101 DOI: 10.1016/j.jbior.2013.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
Phosphoinositide 5-phosphatases are critical enzymes in modulating the concentrations of PI(3,4,5)P3, PI(4,5)P2 and PI(3,5)P2. The SH2 domain containing inositol 5-phosphatases SHIP1 and SHIP2 belong to this family of enzymes that dephosphorylate the 5 position of PI(3,4,5)P3 to produce PI(3,4)P2. Data obtained in zebrafish and in mice have shown that SHIP2 is critical in development and growth. Exome sequencing identifies mutations in the coding region of SHIP2 as a cause of opsismodysplasia, a severe but rare chondrodysplasia in human. SHIP2 has been reported to have both protumorigenic and tumor suppressor function in human cancer very much depending on the cell model. This could be linked to the relative importance of PI(3,4)P2 (a product of SHIP2 phosphatase activity) which is also controlled by the PI 4-phosphatase and tumor suppressor INPP4B. In the glioblastoma cell line 1321 N1, that do not express PTEN, lowering SHIP2 expression has an impact on the levels of PI(3,4,5)P3, cell morphology and cell proliferation. It positively stimulates cell proliferation by decreasing the expression of key regulatory proteins of the cell cycle such as p27. Together the data point out to a role of SHIP2 in development in normal cells and at least in cell proliferation in some cancer derived cells.
Collapse
Affiliation(s)
- William's Elong Edimo
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium
| | - Stéphane Schurmans
- Laboratoire de Génétique fonctionnelle, GIGA-Research Centre, Secteur de Biochimie Métabolique, Département des Sciences Fonctionnelles (Faculté de Médecine vétérinaire), Université de Liège, 1 rue de l'Hôpital, 4000 Liège, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Belgium
| | - Pierre P Roger
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium; Walloon Excellence in Lifesciences and Biotechnology (WELBIO), Belgium
| | - Christophe Erneux
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg C, 808 Route de Lennik, 1070 Brussels, Belgium.
| |
Collapse
|
35
|
Viernes DR, Choi LB, Kerr WG, Chisholm JD. Discovery and development of small molecule SHIP phosphatase modulators. Med Res Rev 2013; 34:795-824. [PMID: 24302498 DOI: 10.1002/med.21305] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Inositol phospholipids play an important role in the transfer of signaling information across the cell membrane in eukaryotes. These signals are often governed by the phosphorylation patterns on the inositols, which are mediated by a number of inositol kinases and phosphatases. The src homology 2 (SH2) containing inositol 5-phosphatase (SHIP) plays a central role in these processes, influencing signals delivered through the PI3K/Akt/mTOR pathway. SHIP modulation by small molecules has been implicated as a treatment in a number of human disease states, including cancer, inflammatory diseases, diabetes, atherosclerosis, and Alzheimer's disease. In addition, alteration of SHIP phosphatase activity may provide a means to facilitate bone marrow transplantation and increase blood cell production. This review discusses the cellular signaling pathways and protein-protein interactions that provide the molecular basis for targeting the SHIP enzyme in these disease states. In addition, a comprehensive survey of small molecule modulators of SHIP1 and SHIP2 is provided, with a focus on the structure, potency, selectivity, and solubility properties of these compounds.
Collapse
Affiliation(s)
- Dennis R Viernes
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244
| | - Lydia B Choi
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244
| | - William G Kerr
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244.,Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA 13210.,Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY, USA 13210
| | - John D Chisholm
- Department of Chemistry, Syracuse University, Syracuse, NY, USA 13244
| |
Collapse
|
36
|
Cheung ST, So EY, Chang D, Ming-Lum A, Mui ALF. Interleukin-10 inhibits lipopolysaccharide induced miR-155 precursor stability and maturation. PLoS One 2013; 8:e71336. [PMID: 23951138 PMCID: PMC3741136 DOI: 10.1371/journal.pone.0071336] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/25/2013] [Indexed: 12/16/2022] Open
Abstract
The anti-inflammatory cytokine interleukin-10 (IL-10) is essential for attenuating the inflammatory response, which includes reducing the expression of pro-inflammatory microRNA-155 (miR-155) in lipopolysaccharide (LPS) activated macrophages. miR-155 enhances the expression of pro-inflammatory cytokines such as TNFα and suppresses expression of anti-inflammatory molecules such as SOCS1. Therefore, we examined the mechanism by which IL-10 inhibits miR-155. We found that IL-10 treatment did not affect the transcription of the miR-155 host gene nor the nuclear export of pre-miR-155, but rather destabilized both pri-miR-155 and pre-miR-155 transcripts, as well as interfered with the final maturation of miR-155. This inhibitory effect of IL-10 on miR-155 expression involved the contribution of both the STAT3 transcription factor and the phosphoinositol phosphatase SHIP1. This is the first report showing evidence that IL-10 regulates miRNA expression post-transcriptionally.
Collapse
Affiliation(s)
- Sylvia T. Cheung
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eva Y. So
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Chang
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Ming-Lum
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alice L-F. Mui
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
37
|
Xie J, Erneux C, Pirson I. How does SHIP1/2 balance PtdIns(3,4)P2 and does it signal independently of its phosphatase activity? Bioessays 2013; 35:733-43. [PMID: 23650141 DOI: 10.1002/bies.201200168] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The number of cellular events identified as being directly or indirectly modulated by phosphoinositides dramatically increased in the recent years. Part of the complexity results from the fact that the seven phosphoinositides play second messenger functions in many different areas of growth factors and insulin signaling, cytoskeletal organization, membrane dynamics, trafficking, or nuclear signaling. PtdIns(3,4)P2 is commonly reported as a product of the SH2 domain-containing inositol 5-phosphatases 1/2 (SHIP1 and SHIP2) that dephosphorylate PtdIns(3,4,5)P3 at the 5-position. Here we discuss recent interest in PtdIns(3,4)P2 signaling highlighting its involvement in key cellular mechanisms such as cell adhesion, migration, and cytoskeletal regulation. We question and discuss the involvement of SHIP2 either as a PI 5-phosphatase or as a scaffold protein in insulin signaling, cytoskeletal dynamics, and endocytosis of growth factor receptors.
Collapse
Affiliation(s)
- Jingwei Xie
- Department of Pathophysiology, China Medical University, Heping District, Shenyang Liaoning Province, China
| | | | | |
Collapse
|
38
|
Abstract
Phosphoinositide signalling molecules interact with a plethora of effector proteins to regulate cell proliferation and survival, vesicular trafficking, metabolism, actin dynamics and many other cellular functions. The generation of specific phosphoinositide species is achieved by the activity of phosphoinositide kinases and phosphatases, which phosphorylate and dephosphorylate, respectively, the inositol headgroup of phosphoinositide molecules. The phosphoinositide phosphatases can be classified as 3-, 4- and 5-phosphatases based on their specificity for dephosphorylating phosphates from specific positions on the inositol head group. The SAC phosphatases show less specificity for the position of the phosphate on the inositol ring. The phosphoinositide phosphatases regulate PI3K/Akt signalling, insulin signalling, endocytosis, vesicle trafficking, cell migration, proliferation and apoptosis. Mouse knockout models of several of the phosphoinositide phosphatases have revealed significant physiological roles for these enzymes, including the regulation of embryonic development, fertility, neurological function, the immune system and insulin sensitivity. Importantly, several phosphoinositide phosphatases have been directly associated with a range of human diseases. Genetic mutations in the 5-phosphatase INPP5E are causative of the ciliopathy syndromes Joubert and MORM, and mutations in the 5-phosphatase OCRL result in Lowe's syndrome and Dent 2 disease. Additionally, polymorphisms in the 5-phosphatase SHIP2 confer diabetes susceptibility in specific populations, whereas reduced protein expression of SHIP1 is reported in several human leukaemias. The 4-phosphatase, INPP4B, has recently been identified as a tumour suppressor in human breast and prostate cancer. Mutations in one SAC phosphatase, SAC3/FIG4, results in the degenerative neuropathy, Charcot-Marie-Tooth disease. Indeed, an understanding of the precise functions of phosphoinositide phosphatases is not only important in the context of normal human physiology, but to reveal the mechanisms by which these enzyme families are implicated in an increasing repertoire of human diseases.
Collapse
|
39
|
Elong Edimo W, Vanderwinden JM, Erneux C. SHIP2 signalling at the plasma membrane, in the nucleus and at focal contacts. Adv Biol Regul 2013; 53:28-37. [PMID: 23040614 DOI: 10.1016/j.jbior.2012.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/04/2012] [Indexed: 06/01/2023]
Abstract
Phosphoinositide 5-phosphatases are critical enzymes in modulating the concentrations of PI(3,4,5)P(3), PI(4,5)P(2) and PI(3,5)P(2). The SH2 domain containing inositol 5-phosphatases SHIP1 and SHIP2 belong to this family of enzymes very much involved in physiopathology and development. Therefore activity and localization of the enzymes are particularly important taking into account both catalytic and non-catalytic mechanisms of the SHIP phosphatases. Several different mechanisms have been reported for SHIP2 targeting that often result from specific protein:protein interactions. In unstimulated astrocytoma cells, SHIP2 has a perinuclear and cytoplasmic localization. In serum-stimulated cells, SHIP2 can be localized at the plasma membrane and at focal contacts in polarized cells. A phosphorylated form of SHIP2 on S132 can be found in the nucleus and nuclear speckles. When present at the plasma membrane, SHIP2 may control the intracellular level of PI(3,4,5)P(3) thereby producing PI(3,4)P(2). When present in the nucleus, SHIP2 probably associates to other nuclear proteins such as lamin A/C and could potentially control nuclear PI(4,5)P(2). Finally, its presence at focal adhesions and lamellipodia could suggest a role in cell adhesion and migration. It is proposed that the complex phenotype observed in SHIP2 mutant mice in tissue development and growth could result from the addition of plasma membrane and nuclear effects consecutive to SHIP2 alteration.
Collapse
Affiliation(s)
- William's Elong Edimo
- Interdisciplinary Research Institute (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg. C, 808 Route de Lennik, 1070 Brussels, Belgium
| | | | | |
Collapse
|
40
|
Cytotoxicity of pomegranate polyphenolics in breast cancer cells in vitro and vivo: potential role of miRNA-27a and miRNA-155 in cell survival and inflammation. Breast Cancer Res Treat 2012; 136:21-34. [PMID: 22941571 DOI: 10.1007/s10549-012-2224-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 08/17/2012] [Indexed: 12/18/2022]
Abstract
Several studies have demonstrated that polyphenolics from pomegranate (Punica granatum L.) are potent inhibitors of cancer cell proliferation and induce apoptosis, cell cycle arrest, and also decrease inflammation in vitro and vivo. There is growing evidence that botanicals exert their cytotoxic and anti-inflammatory activities, at least in part, by decreasing specificity protein (Sp) transcription factors. These are overexpressed in breast tumors and regulate genes important for cancer cell survival and inflammation such as the p65 unit of NF-κB. Moreover, previous studies have shown that Pg extracts decrease inflammation in lung cancer cell lines by inhibiting phosphatidylinositol-3,4,5-trisphosphate (PI3K)-dependent phosphorylation of AKT in vitro and inhibiting the activation of NF-kB in vivo. The objective of this study was to investigate the roles of miR-27a-ZBTB10-Sp and miR-155-SHIP-1-PI3K on the anti-inflammatory and cytotoxic activity of pomegranate extract. Pg extract (2.5-50 μg/ml) inhibited growth of BT-474 and MDA-MB-231 cells but not the non-cancer MCF-10F and MCF-12F cells. Pg extract significantly decreased Sp1, Sp3, and Sp4 as well as miR-27a in BT474 and MDA-MB-231 cells and increased expression of the transcriptional repressor ZBTB10. A significant decrease in Sp proteins and Sp-regulated genes was also observed. Pg extract also induced SHIP-1 expression and this was accompanied by downregulation of miRNA-155 and inhibition of PI3K-dependent phosphorylation of AKT. Similar results were observed in tumors from nude mice bearing BT474 cells as xenografts and treated with Pg extract. The effects of antagomirs and knockdown of SHIP-1 by RNA interference confirmed that the anti-inflammatory and cytotoxic effects of Pg extract were partly due to the disruption of both miR-27a-ZBTB10 and miR-155-SHIP-1. In summary, the anticancer activities of Pg extract in breast cancer cells were due in part to targeting microRNAs155 and 27a. Both pathways play an important role in the proliferative/inflammatory phenotype exhibited by these cell lines.
Collapse
|
41
|
Blunt MD, Ward SG. Pharmacological targeting of phosphoinositide lipid kinases and phosphatases in the immune system: success, disappointment, and new opportunities. Front Immunol 2012; 3:226. [PMID: 22876243 PMCID: PMC3410520 DOI: 10.3389/fimmu.2012.00226] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/12/2012] [Indexed: 12/24/2022] Open
Abstract
The predominant expression of the γ and δ isoforms of PI3K in cells of hematopoietic lineage prompted speculation that inhibitors of these isoforms could offer opportunities for selective targeting of PI3K in the immune system in a range of immune-related pathologies. While there has been some success in developing PI3Kδ inhibitors, progress in developing selective inhibitors of PI3Kγ has been rather disappointing. This has prompted the search for alternative targets with which to modulate PI3K signaling specifically in the immune system. One such target is the SH2 domain-containing inositol-5-phosphatase-1 (SHIP-1) which de-phosphorylates PI(3,4,5)P3 at the D5 position of the inositol ring to create PI(3,4)P2. In this article, we first describe the current state of PI3K isoform-selective inhibitor development. We then focus on the structure of SHIP-1 and its function in the immune system. Finally, we consider the current state of development of small molecule compounds that potently and selectively modulate SHIP activity and which offer novel opportunities to manipulate PI3K mediated signaling in the immune system.
Collapse
Affiliation(s)
- Matthew D Blunt
- Inflammatory Cell Biology Laboratory, Department of Pharmacy and Pharmacology, University of Bath Bath, UK
| | | |
Collapse
|
42
|
Identification of nuclear protein targets for six leukemogenic tyrosine kinases governed by post-translational regulation. PLoS One 2012; 7:e38928. [PMID: 22745689 PMCID: PMC3382166 DOI: 10.1371/journal.pone.0038928] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/14/2012] [Indexed: 11/19/2022] Open
Abstract
Mutated tyrosine kinases are associated with a number of different haematological malignancies including myeloproliferative disorders, lymphoma and acute myeloid leukaemia. The potential commonalities in the action of six of these leukemogenic proteins on nuclear proteins were investigated using systematic proteomic analysis. The effects on over 3600 nuclear proteins and 1500 phosphopeptide sites were relatively quantified in seven isogenic cell lines. The effects of the kinases were diverse although some commonalities were found. Comparison of the nuclear proteomic data with transcriptome data and cytoplasmic proteomic data indicated that the major changes are due to post-translational mechanisms rather than changes in mRNA or protein distribution. Analysis of the promoter regions of genes whose protein levels changed in response to the kinases showed the most common binding site found was that for NFκB whilst other sites such as those for the glucocorticoid receptor were also found. Glucocorticoid receptor levels and phosphorylation were decreased by all 6 PTKs. Whilst Glucocorticoid receptor action can potentiate NFκB action those proteins where genes have NFκB binding sites were in often regulated post-translationally. However all 6 PTKs showed evidence of NFkB pathway modulation via activation via altered IkB and NFKB levels. Validation of a common change was also undertaken with PMS2, a DNA mismatch repair protein. PMS2 nuclear levels were decreased in response to the expression of all 6 kinases, with no concomitant change in mRNA level or cytosolic protein level. Response to thioguanine, that requires the mismatch repair pathway, was modulated by all 6 oncogenic kinases. In summary common targets for 6 oncogenic PTKs have been found that are regulated by post-translational mechanisms. They represent potential new avenues for therapies but also demonstrate the post-translational regulation is a key target of leukaemogenic kinases.
Collapse
|
43
|
Edimo WE, Janssens V, Waelkens E, Erneux C. Reversible Ser/Thr SHIP phosphorylation: a new paradigm in phosphoinositide signalling?: Targeting of SHIP1/2 phosphatases may be controlled by phosphorylation on Ser and Thr residues. Bioessays 2012; 34:634-42. [PMID: 22641604 DOI: 10.1002/bies.201100195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Phosphoinositide (PI) phosphatases such as the SH2 domain-containing inositol 5-phosphatases 1/2 (SHIP1 and 2) are important signalling enzymes in human physiopathology. SHIP1/2 interact with a large number of immune and growth factor receptors. Tyrosine phosphorylation of SHIP1/2 has been considered to be the determining regulatory modification. However, here we present a hypothesis, based on recent key publications, highlighting the determining role of Ser/Thr phosphorylation in regulating several key properties of SHIP1/2. Since a subunit of the Ser/Thr phosphatase PP2A has been shown to interact with SHIP2, a putative mechanism for reversing SHIP2 Ser/Thr phosphorylation can be anticipated. PI phosphatases are potential target molecules in human diseases, particularly, but not exclusively, in cancer and diabetes. Therefore, this novel regulatory mechanism deserves further attention in the hunt for discovering novel or complementary therapeutic strategies. This mechanism may be more broadly involved in regulating PI signalling in the case of synaptojanin1 or the phosphatase, tensin homolog, deleted on chromosome TEN.
Collapse
Affiliation(s)
- William's Elong Edimo
- Institut de Recherche Interdisciplinaire (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | | | | | | |
Collapse
|
44
|
Ruschmann J, Antignano F, Lam V, Snyder K, Kim C, Essak M, Zhang A, Lin AHA, Mali RS, Kapur R, Krystal G. The role of SHIP in the development and activation of mouse mucosal and connective tissue mast cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:3839-50. [PMID: 22430739 DOI: 10.4049/jimmunol.1003875] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Although SHIP is a well-established suppressor of IgE plus Ag-induced degranulation and cytokine production in bone marrow-derived mast cells (BMMCs), little is known about its role in connective tissue (CTMCs) or mucosal (MMCs) mast cells. In this study, we compared SHIP's role in the development as well as the IgE plus Ag and TLR-induced activation of CTMCs, MMCs, and BMMCs and found that SHIP delays the maturation of all three mast cell subsets and, surprisingly, that it is a positive regulator of IgE-induced BMMC survival. We also found that SHIP represses IgE plus Ag-induced degranulation of all three mast cell subsets and that TLR agonists do not trigger their degranulation, whether SHIP is present or not, nor do they enhance IgE plus Ag-induced degranulation. In terms of cytokine production, we found that in MMCs and BMMCs, which are poor producers of TLR-induced cytokines, SHIP is a potent negative regulator of IgE plus Ag-induced IL-6 and TNF-α production. Surprisingly, however, in splenic or peritoneal derived CTMCs, which are poor producers of IgE plus Ag-induced cytokines, SHIP is a potent positive regulator of TLR-induced cytokine production. Lastly, cell signaling and cytokine production studies with and without LY294002, wortmannin, and PI3Kα inhibitor-2, as well as with PI3K p85α(-/-) BMMCs and CTMCs, are consistent with SHIP positively regulating TLR-induced cytokine production via an adaptor-mediated pathway while negatively regulating IgE plus Ag-induced cytokine production by repressing the PI3K pathway.
Collapse
Affiliation(s)
- Jens Ruschmann
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Fuhler GM, Brooks R, Toms B, Iyer S, Gengo EA, Park MY, Gumbleton M, Viernes DR, Chisholm JD, Kerr WG. Therapeutic potential of SH2 domain-containing inositol-5'-phosphatase 1 (SHIP1) and SHIP2 inhibition in cancer. Mol Med 2012; 18:65-75. [PMID: 22033675 DOI: 10.2119/molmed.2011.00178] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 10/20/2011] [Indexed: 11/06/2022] Open
Abstract
Many tumors present with increased activation of the phosphatidylinositol 3-kinase (PI3K)-PtdIns(3,4,5)P(3)-protein kinase B (PKB/Akt) signaling pathway. It has long been thought that the lipid phosphatases SH2 domain-containing inositol-5'-phosphatase 1 (SHIP1) and SHIP2 act as tumor suppressors by counteracting with the survival signal induced by this pathway through hydrolysis or PtdIns(3,4,5)P(3) to PtdIns(3,4)P(2). However, a growing body of evidence suggests that PtdInd(3,4)P(2) is capable of, and essential for, Akt activation, thus suggesting a potential role for SHIP1/2 enzymes as proto-oncogenes. We recently described a novel SHIP1-selective chemical inhibitor (3α-aminocholestane [3AC]) that is capable of killing malignant hematologic cells. In this study, we further investigate the biochemical consequences of 3AC treatment in multiple myeloma (MM) and demonstrate that SHIP1 inhibition arrests MM cell lines in either G0/G1 or G2/M stages of the cell cycle, leading to caspase activation and apoptosis. In addition, we show that in vivo growth of MM cells is blocked by treatment of mice with the SHIP1 inhibitor 3AC. Furthermore, we identify three novel pan-SHIP1/2 inhibitors that efficiently kill MM cells through G2/M arrest, caspase activation and apoptosis induction. Interestingly, in SHIP2-expressing breast cancer cells that lack SHIP1 expression, pan-SHIP1/2 inhibition also reduces viable cell numbers, which can be rescued by addition of exogenous PtdIns(3,4)P(2). In conclusion, this study shows that inhibition of SHIP1 and SHIP2 may have broad clinical application in the treatment of multiple tumor types.
Collapse
Affiliation(s)
- Gwenny M Fuhler
- Department of Microbiology and Immunology, State University of New York Upstate Medical University, Syracuse, New York 13210, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Dyson JM, Fedele CG, Davies EM, Becanovic J, Mitchell CA. Phosphoinositide phosphatases: just as important as the kinases. Subcell Biochem 2012; 58:215-279. [PMID: 22403078 DOI: 10.1007/978-94-007-3012-0_7] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phosphoinositide phosphatases comprise several large enzyme families with over 35 mammalian enzymes identified to date that degrade many phosphoinositide signals. Growth factor or insulin stimulation activates the phosphoinositide 3-kinase that phosphorylates phosphatidylinositol (4,5)-bisphosphate [PtdIns(4,5)P(2)] to form phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P(3)], which is rapidly dephosphorylated either by PTEN (phosphatase and tensin homologue deleted on chromosome 10) to PtdIns(4,5)P(2), or by the 5-phosphatases (inositol polyphosphate 5-phosphatases), generating PtdIns(3,4)P(2). 5-phosphatases also hydrolyze PtdIns(4,5)P(2) forming PtdIns(4)P. Ten mammalian 5-phosphatases have been identified, which regulate hematopoietic cell proliferation, synaptic vesicle recycling, insulin signaling, and embryonic development. Two 5-phosphatase genes, OCRL and INPP5E are mutated in Lowe and Joubert syndrome respectively. SHIP [SH2 (Src homology 2)-domain inositol phosphatase] 2, and SKIP (skeletal muscle- and kidney-enriched inositol phosphatase) negatively regulate insulin signaling and glucose homeostasis. SHIP2 polymorphisms are associated with a predisposition to insulin resistance. SHIP1 controls hematopoietic cell proliferation and is mutated in some leukemias. The inositol polyphosphate 4-phosphatases, INPP4A and INPP4B degrade PtdIns(3,4)P(2) to PtdIns(3)P and regulate neuroexcitatory cell death, or act as a tumor suppressor in breast cancer respectively. The Sac phosphatases degrade multiple phosphoinositides, such as PtdIns(3)P, PtdIns(4)P, PtdIns(5)P and PtdIns(3,5)P(2) to form PtdIns. Mutation in the Sac phosphatase gene, FIG4, leads to a degenerative neuropathy. Therefore the phosphatases, like the lipid kinases, play major roles in regulating cellular functions and their mutation or altered expression leads to many human diseases.
Collapse
Affiliation(s)
- Jennifer M Dyson
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, 3800, Clayton, Australia
| | | | | | | | | |
Collapse
|
47
|
Erneux C, Edimo WE, Deneubourg L, Pirson I. SHIP2 multiple functions: a balance between a negative control of PtdIns(3,4,5)P₃ level, a positive control of PtdIns(3,4)P₂ production, and intrinsic docking properties. J Cell Biochem 2011; 112:2203-9. [PMID: 21503961 DOI: 10.1002/jcb.23146] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The SH2 domain containing inositol 5-phosphatase 2 (SHIP2) belongs to the family of the mammalian inositol polyphosphate 5-phosphatases. The two closely related isoenzymes SHIP1 (or SHIP) and SHIP2 contain a N-terminal SH2 domain, a catalytic domain, potential PTB domain-binding sites (NPXY), and C-terminal proline-rich regions with consensus sites for SH3 domain interactions. In addition, SHIP2 contains a unique sterile alpha motif (SAM) domain that could be involved in SAM-SAM domain interactions with other proteins or receptors. SHIP2 also shows the presence of an ubiquitin interacting motif at the C-terminal end. SHIP2 is essentially a PI(3,4,5)P(3) 5-phosphatase that negatively controls PI(3,4,5)P(3) levels in intact cells and produce PI(3,4)P(2) . Depending on the cells and stimuli, PI(3,4)P(2) could accumulate at important levels and be a "second messenger" by its own. It could interact with a very large number of target proteins such as PKB or TAPP1 and 2 that control insulin sensitivity. In addition to its catalytic activity, SHIP2 is also a docking protein for a large number of proteins: Cytoskeletal, focal adhesion proteins, scaffold proteins, adaptors, protein phosphatases, and tyrosine kinase associated receptors. These interactions could play a role in the control of cell adhesion, migration, or endocytosis of some receptors. SHIP2 could be acting independently of its phosphatase activity being part of a protein network of some receptors, e.g., the EGF receptor or BCR/ABL. These non-catalytic properties associated to a PI phosphatase have also been reported for other enzymes of the metabolism of myo-inositol such as Ins(1,4,5)P(3) 3-kinases, inositol phosphate multikinase (IPMK), or PTEN.
Collapse
Affiliation(s)
- Christophe Erneux
- Institut de Recherche Interdisciplinaire (IRIBHM), Université Libre de Bruxelles, Campus Erasme, Bldg. C, 808 Route de Lennik, 1070 Brussels, Belgium.
| | | | | | | |
Collapse
|
48
|
Pilon-Thomas S, Nelson N, Vohra N, Jerald M, Pendleton L, Szekeres K, Ghansah T. Murine pancreatic adenocarcinoma dampens SHIP-1 expression and alters MDSC homeostasis and function. PLoS One 2011; 6:e27729. [PMID: 22132131 PMCID: PMC3222660 DOI: 10.1371/journal.pone.0027729] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/23/2011] [Indexed: 01/04/2023] Open
Abstract
Background Pancreatic cancer is one of the most aggressive cancers, with tumor-induced myeloid-derived suppressor cells (MDSC) contributing to its pathogenesis and ineffective therapies. In response to cytokine/chemokine receptor activation, src homology 2 domain-containing inositol 5′-phosphatase-1 (SHIP-1) influences phosphatidylinositol-3-kinase (PI3K) signaling events, which regulate immunohomeostasis. We hypothesize that factors from murine pancreatic cancer cells cause the down-regulation of SHIP-1 expression, which may potentially contribute to MDSC expansion, and the suppression of CD8+ T cell immune responses. Therefore, we sought to determine the role of SHIP-1 in solid tumor progression, such as murine pancreatic cancer. Methodology and Principal Findings Immunocompetent C57BL/6 mice were inoculated with either murine Panc02 cells (tumor-bearing [TB] mice) or Phosphate Buffer Saline (PBS) (control mice). Cytometric Bead Array (CBA) analysis of supernatants of cultured Panc02 detected pro-inflammatory cytokines such as IL-6, IL-10 and MCP-1. TB mice showed a significant increase in serum levels of pro-inflammatory factors IL-6 and MCP-1 measured by CBA. qRT-PCR and Western blot analyses revealed the in vivo down-regulation of SHIP-1 expression in splenocytes from TB mice. Western blot analyses also detected reduced SHIP-1 activity, increased AKT-1 and BAD hyper-phosphorylation and up-regulation of BCL-2 expression in splenocytes from TB mice. In vitro, qRT-PCR and Western blot analyses detected reduced SHIP-1 mRNA and protein expression in control splenocytes co-cultured with Panc02 cells. Flow cytometry results showed significant expansion of MDSC in peripheral blood and splenocytes from TB mice. AutoMACS sorted TB MDSC exhibited hyper-phosphorylation of AKT-1 and over-expression of BCL-2 detected by western blot analysis. TB MDSC significantly suppressed antigen-specific CD8+ T cell immune responses in vitro. Conclusion/Significance SHIP-1 may regulate immune development that impacts MDSC expansion and function, contributing to pancreatic tumor progression. Thus, SHIP-1 can be a potential therapeutic target to help restore immunohomeostasis and improve therapeutic responses in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Shari Pilon-Thomas
- Immunology Program, H. Lee Moffitt Comprehensive Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Nadine Nelson
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Nasreen Vohra
- Immunology Program, H. Lee Moffitt Comprehensive Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Maya Jerald
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Laura Pendleton
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Karoly Szekeres
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, Florida, United States of America
| | - Tomar Ghansah
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
49
|
Affiliation(s)
- Carol L Nilsson
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-0617, United States.
| |
Collapse
|
50
|
Phosphoinositide phosphatase SHIP-1 regulates apoptosis induced by edelfosine, Fas ligation and DNA damage in mouse lymphoma cells. Biochem J 2011; 440:127-35. [DOI: 10.1042/bj20110125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
S49 mouse lymphoma cells undergo apoptosis in response to the ALP (alkyl-lysophospholipid) edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine), FasL (Fas ligand) and DNA damage. S49 cells made resistant to ALP (S49AR) are defective in sphingomyelin synthesis and ALP uptake, and also have acquired resistance to FasL and DNA damage. However, these cells can be re-sensitized following prolonged culturing in the absence of ALP. The resistant cells show sustained ERK (extracellular-signal-regulated kinase)/Akt activity, consistent with enhanced survival signalling. In search of a common mediator of the observed cross-resistance, we found that S49AR cells lacked the PtdIns(3,4,5)P3 phosphatase SHIP-1 [SH2 (Src homology 2)-domain-containing inositol phosphatase 1], a known regulator of the Akt survival pathway. Re-sensitization of the S49AR cells restored SHIP-1 expression as well as phosphoinositide and sphingomyelin levels. Knockdown of SHIP-1 mimicked the S49AR phenotype in terms of apoptosis cross-resistance, sphingomyelin deficiency and altered phosphoinositide levels. Collectively, the results of the present study suggest that SHIP-1 collaborates with sphingomyelin synthase to regulate lymphoma cell death irrespective of the nature of the apoptotic stimulus.
Collapse
|