1
|
Niu ZX, Wang YT, Sun JF, Nie P, Herdewijn P. Recent advance of clinically approved small-molecule drugs for the treatment of myeloid leukemia. Eur J Med Chem 2023; 261:115827. [PMID: 37757658 DOI: 10.1016/j.ejmech.2023.115827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Myeloid leukemia denotes a hematologic malignancy characterized by aberrant proliferation and impaired differentiation of blood progenitor cells within the bone marrow. Despite the availability of several treatment options, the clinical outlook for individuals afflicted with myeloid leukemia continues to be unfavorable, making it a challenging disease to manage. Over the past, substantial endeavors have been dedicated to the identification of novel targets and the advancement of enhanced therapeutic modalities to ameliorate the management of this disease, resulting in the discovery of many clinically approved small-molecule drugs for myeloid leukemia, including histone deacetylase inhibitors, hypomethylating agents, and tyrosine kinase inhibitors. This comprehensive review succinctly presents an up-to-date assessment of the application and synthetic routes of clinically sanctioned small-molecule drugs employed in the treatment of myeloid leukemia. Additionally, it provides a concise exploration of the pertinent challenges and prospects encompassing drug resistance and toxicity. Overall, this review effectively underscores the considerable promise exhibited by clinically endorsed small-molecule drugs in the therapeutic realm of myeloid leukemia, while concurrently shedding light on the prospective avenues that may shape the future landscape of drug development within this domain.
Collapse
Affiliation(s)
- Zhen-Xi Niu
- Department of Pharmacy, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China
| | - Ya-Tao Wang
- First People's Hospital of Shangqiu, Henan Province, Shangqiu, 476100, China; Department of Orthopedics, China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| | - Jin-Feng Sun
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, College of Pharmacy, Yanji, Jilin, 133002, China.
| | - Peng Nie
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| | - Piet Herdewijn
- Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49-Box 1041, 3000, Leuven, Belgium.
| |
Collapse
|
2
|
Ansar SA, Aggarwal S, Arya S, Haq MA, Mittal V, Gared F. An intuitionistic approach for the predictability of anti-angiogenic inhibitors in cancer diagnosis. Sci Rep 2023; 13:7051. [PMID: 37120640 PMCID: PMC10148825 DOI: 10.1038/s41598-023-32850-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 04/03/2023] [Indexed: 05/01/2023] Open
Abstract
Malignant cancer angiogenesis has historically attracted enormous scientific attention. Although angiogenesis is requisite for a child's development and conducive to tissue homeostasis, it is deleterious when cancer lurks. Today, anti-angiogenic biomolecular receptor tyrosine kinase inhibitors (RTKIs) to target angiogenesis have been prolific in treating various carcinomas. Angiogenesis is a pivotal component in malignant transformation, oncogenesis, and metastasis that can be activated by a multiplicity of factors (e.g., VEGF (Vascular endothelial growth factor), (FGF) Fibroblast growth factor, (PDGF) Platelet-derived growth factor and others). The advent of RTKIs, which primarily target members of the VEGFR (VEGF Receptor) family of angiogenic receptors has greatly ameliorated the outlook for some cancer forms, including hepatocellular carcinoma, malignant tumors, and gastrointestinal carcinoma. Cancer therapeutics have evolved steadily with active metabolites and strong multi-targeted RTK inhibitors such as E7080, CHIR-258, SU 5402, etc. This research intends to determine the efficacious anti-angiogenesis inhibitors and rank them by using the Preference Ranking Organization Method for Enrichment Evaluation (PROMETHEE- II) decision-making algorithm. The PROMETHEE-II approach assesses the influence of growth factors (GFs) in relation to the anti-angiogenesis inhibitors. Due to their capacity to cope with the frequently present vagueness while ranking alternatives, fuzzy models constitute the most suitable tools for producing results for analyzing qualitative information. This research's quantitative methodology focuses on ranking the inhibitors according to their significance concerning criteria. The evaluation findings indicate the most efficacious and idle alternative for inhibiting angiogenesis in cancer.
Collapse
Affiliation(s)
- Syed Anas Ansar
- Department of Computer Application, Babu Banarasi Das University, Lucknow, India
| | - Shruti Aggarwal
- Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - Swati Arya
- Department of Computer Application, Babu Banarasi Das University, Lucknow, India
| | - Mohd Anul Haq
- Department of Computer Science, College of Computer and Information Sciences, Majmaah University, Al Majmaáh, Saudi Arabia
| | - Vikas Mittal
- Department of Electronics and Communication Engineering, Chandigarh University, Mohali, India
| | - Fikreselam Gared
- Faculty of Electrical and Computer Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia.
| |
Collapse
|
3
|
Recent Studies on Ponatinib in Cancers Other Than Chronic Myeloid Leukemia. Cancers (Basel) 2018; 10:cancers10110430. [PMID: 30423915 PMCID: PMC6267038 DOI: 10.3390/cancers10110430] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/24/2018] [Accepted: 11/07/2018] [Indexed: 02/08/2023] Open
Abstract
Ponatinib is a third line drug for the treatment of chronic myeloid leukemia patients, especially those that develop the gatekeeper mutation T315I, which is resistant to the first and the second line drugs imatinib, nilotinib, dasatinib and bosutinib. The compound was first identified as a pan Bcr-Abl and Src kinase inhibitor. Further studies have indicated that it is a multitargeted inhibitor that is active on FGFRs, RET, AKT, ERK1/2, KIT, MEKK2 and other kinases. For this reason, the compound has been evaluated on several cancers in which these kinases play important roles, including thyroid, breast, ovary and lung cancer, neuroblastoma, rhabdoid tumours and in myeloproliferative disorders. Ponatinib is also being tested in clinical trials to evaluate its activity in FLT3-ITD acute myelogenous leukemia, head and neck cancers, certain type of lung cancer, gastrointestinal stromal tumours and other malignancies. In this review we report the most recent preclinical and clinical studies on ponatinib in cancers other than CML, with the aim of giving a complete overview of this interesting compound.
Collapse
|
4
|
Kawabata KC, Hayashi Y, Inoue D, Meguro H, Sakurai H, Fukuyama T, Tanaka Y, Asada S, Fukushima T, Nagase R, Takeda R, Harada Y, Kitaura J, Goyama S, Harada H, Aburatani H, Kitamura T. High expression of ABCG2 induced by EZH2 disruption has pivotal roles in MDS pathogenesis. Leukemia 2017; 32:419-428. [PMID: 28720764 DOI: 10.1038/leu.2017.227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 06/28/2017] [Accepted: 07/04/2017] [Indexed: 01/10/2023]
Abstract
Both proto-oncogenic and tumor-suppressive functions have been reported for enhancer of zeste homolog 2 (EZH2). To investigate the effects of its inactivation, a mutant EZH2 lacking its catalytic domain was prepared (EZH2-dSET). In a mouse bone marrow transplant model, EZH2-dSET expression in bone marrow cells induced a myelodysplastic syndrome (MDS)-like disease in transplanted mice. Analysis of these mice identified Abcg2 as a direct target of EZH2. Intriguingly, Abcg2 expression alone induced the same disease in the transplanted mice, where stemness genes were enriched. Interestingly, ABCG2 expression is specifically high in MDS patients. The present results indicate that ABCG2 de-repression induced by EZH2 mutations have crucial roles in MDS pathogenesis.
Collapse
Affiliation(s)
- K C Kawabata
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan.,Division of Hematology/Medical Oncology, Department of Medicine, Weill-Cornell Medical College, Cornell University, New York, NY, USA
| | - Y Hayashi
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan
| | - D Inoue
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan.,Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - H Meguro
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - H Sakurai
- Division of Hematology, Department of Medicine, Juntendo University, Bunkyo, Japan.,Division of Hemalogy, Shizuoka Hospital, Juntendo University, Izunokuni, Japan
| | - T Fukuyama
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan
| | - Y Tanaka
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan
| | - S Asada
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan
| | - T Fukushima
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan
| | - R Nagase
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan
| | - R Takeda
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan
| | - Y Harada
- Division of Hematology, Department of Medicine, Juntendo University, Bunkyo, Japan.,Department of Clinical Laboratory Medicine, Faculty of Health Science Technology, Bunkyo Gakuin University, Bunkyo, Japan
| | - J Kitaura
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan.,Atopy Research Center, Juntendo University. School of Medicine, Bunkyo-ku, Japan
| | - S Goyama
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan
| | - H Harada
- Laboratory of Oncology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan.,Division of Hematology, Department of Medicine, Juntendo University, Bunkyo, Japan
| | - H Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro, Japan
| | - T Kitamura
- Division of Cellular Therapy, Institute of Medical Science, The University of Tokyo, Minato, Tokyo, Japan
| |
Collapse
|
5
|
Tzeng TJ, Cao L, Fu Y, Zeng H, Cheng WH. Methylseleninic acid sensitizes Notch3-activated OVCA429 ovarian cancer cells to carboplatin. PLoS One 2014; 9:e101664. [PMID: 25010594 PMCID: PMC4092030 DOI: 10.1371/journal.pone.0101664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/10/2014] [Indexed: 11/18/2022] Open
Abstract
Ovarian cancer, the deadliest of gynecologic cancers, is usually not diagnosed until advanced stages. Although carboplatin has been popular for treating ovarian cancer for decades, patients eventually develop resistance to this platinum-containing drug. Expression of neurogenic locus notch homolog 3 (Notch3) is associated with chemoresistance and poor overall survival in ovarian cancer patients. Overexpression of NICD3 (the constitutively active form of Notch3) in OVCA429 ovarian cancer cells (OVCA429/NICD3) renders them resistance to carboplatin treatment compared to OVCA429/pCEG cells expressing an empty vector. We have previously shown that methylseleninic acid (MSeA) induces oxidative stress and activates ataxia-telangiectasia mutated and DNA-dependent protein kinase in cancer cells. Here we tested the hypothesis that MSeA and carboplatin exerted a synthetic lethal effect on OVCA429/NICD3 cells. Co-treatment with MSeA synergistically sensitized OVCA429/NICD3 but not OVCA429/pCEG cells to the killing by carboplatin. This synergism was associated with a cell cycle exit at the G2/M phase and the induction of NICD3 target gene HES1. Treatment of N-acetyl cysteine or inhibitors of the above two kinases did not directly impact on the synergism in OVCA429/NICD3 cells. Taken together, these results suggest that the efficacy of carboplatin in the treatment of high grade ovarian carcinoma can be enhanced by a combinational therapy with MSeA.
Collapse
Affiliation(s)
- Tiffany J. Tzeng
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States of America
| | - Lei Cao
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - YangXin Fu
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Huawei Zeng
- USDA, Agriculture Research Service, Grand Forks Human Research Center, Grand Forks, North Dakota, United States of America
| | - Wen-Hsing Cheng
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, United States of America
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Mississippi State, Mississippi, United States of America
- * E-mail:
| |
Collapse
|