1
|
Sun Q, Lei X, Yang X. CircRNAs as upstream regulators of miRNA//HMGA2 axis in human cancer. Pharmacol Ther 2024; 263:108711. [PMID: 39222752 DOI: 10.1016/j.pharmthera.2024.108711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/21/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
High mobility group protein A2 (HMGA2) is widely recognized as a chromatin-binding protein, whose overexpression is observed in nearly all human cancers. It exerts its oncogenic effects by influencing various cellular processes such as the epithelial-mesenchymal transition, cell differentiation, and DNA damage repair. MicroRNA (miRNA) serves as a pivotal gene expression regulator, concurrently modulating multiple genes implicated in cancer progression, including HMGA2. It also serves as a significant biomarker for cancer. Circular RNA (circRNA) plays a crucial role in gene regulation primarily by sequestering miRNAs and impeding their ability to enhance the expression of other genes, including HMGA2. Increasingly, studies have underscored the vital role of miRNA/HMGA2 interactions in cancer. Given the significance of circRNA as an upstream regulatory mediator and the complexity of regulatory mechanisms, we hereby present a comprehensive overview of the pivotal role of circRNAs as upstream regulators of the miRNA//HMGA2 axis in human cancers. This insight may herald a novel direction for future cancer research.
Collapse
Affiliation(s)
- Qiqi Sun
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 28 Western Changsheng Road, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Jung YY, Ahn KS, Shen M. Unveiling autophagy complexity in leukemia: The molecular landscape and possible interactions with apoptosis and ferroptosis. Cancer Lett 2024; 582:216518. [PMID: 38043785 DOI: 10.1016/j.canlet.2023.216518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/05/2023]
Abstract
Autophagy is a self-digestion multistep process in which causes the homeostasis through degradation of macromolecules and damaged organelles. The autophagy-mediated tumor progression regulation has been a critical point in recent years, revealing the function of this process in reduction or acceleration of carcinogenesis. Leukemia is a haematological malignancy in which abnormal expansion of hematopoietic cells occurs. The current and conventional therapies from chemotherapy to cell transplantation have failed to appropriately treat the leukemia patients. Among the mechanisms dysregulated in leukemia, autophagy is a prominent one in which can regulate the hallmarks of this tumor. The protective autophagy inhibits apoptosis and ferroptosis in leukemia, while toxic autophagy accelerates cell death. The proliferation and invasion of tumor cells are tightly regulated by the autophagy. The direction of regulation depends on the function of autophagy that is protective or lethal. The protective autophagy accelerates chemoresistance and radio-resistsance. The non-coding RNAs, histone transferases and other pathways such as PI3K/Akt/mTOR are among the regulators of autophagy in leukemia progression. The pharmacological intervention for the inhibition or induction of autophagy by the compounds including sesamine, tanshinone IIA and other synthetic compounds can chance progression of leukemia.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Mingzhi Shen
- Department of General Medicine, Hainan Hospital of PLA General Hospital, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Sanya, China.
| |
Collapse
|
3
|
Role of Heterogeneous Nuclear Ribonucleoproteins in the Cancer-Immune Landscape. Int J Mol Sci 2023; 24:ijms24065086. [PMID: 36982162 PMCID: PMC10049280 DOI: 10.3390/ijms24065086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer remains the second leading cause of death, accounting for approximately 20% of all fatalities. Evolving cancer cells and a dysregulated immune system create complex tumor environments that fuel tumor growth, metastasis, and resistance. Over the past decades, significant progress in deciphering cancer cell behavior and recognizing the immune system as a hallmark of tumorigenesis has been achieved. However, the underlying mechanisms controlling the evolving cancer-immune landscape remain mostly unexplored. Heterogeneous nuclear ribonuclear proteins (hnRNP), a highly conserved family of RNA-binding proteins, have vital roles in critical cellular processes, including transcription, post-transcriptional modifications, and translation. Dysregulation of hnRNP is a critical contributor to cancer development and resistance. HnRNP contribute to the diversity of tumor and immune-associated aberrant proteomes by controlling alternative splicing and translation. They can also promote cancer-associated gene expression by regulating transcription factors, binding to DNA directly, or promoting chromatin remodeling. HnRNP are emerging as newly recognized mRNA readers. Here, we review the roles of hnRNP as regulators of the cancer-immune landscape. Dissecting the molecular functions of hnRNP will provide a better understanding of cancer-immune biology and will impact the development of new approaches to control and treat cancer.
Collapse
|
4
|
González-Rodríguez P, Klionsky DJ, Joseph B. Autophagy regulation by RNA alternative splicing and implications in human diseases. Nat Commun 2022; 13:2735. [PMID: 35585060 PMCID: PMC9117662 DOI: 10.1038/s41467-022-30433-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
Autophagy and RNA alternative splicing are two evolutionarily conserved processes involved in overlapping physiological and pathological processes. However, the extent of functional connection is not well defined. Here, we consider the role for alternative splicing and generation of autophagy-related gene isoforms in the regulation of autophagy in recent work. The impact of changes to the RNA alternative splicing machinery and production of alternative spliced isoforms on autophagy are reviewed with particular focus on disease relevance. The use of drugs targeting both alternative splicing and autophagy as well as the selective regulation of single autophagy-related protein isoforms, are considered as therapeutic strategies.
Collapse
Affiliation(s)
- Patricia González-Rodríguez
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden
- Division of Biochemistry, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Daniel J Klionsky
- Life Sciences Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Bertrand Joseph
- Institute of Environmental Medicine, Toxicology Unit, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Riccioni V, Trionfetti F, Montaldo C, Garbo S, Marocco F, Battistelli C, Marchetti A, Strippoli R, Amicone L, Cicchini C, Tripodi M. SYNCRIP Modulates the Epithelial-Mesenchymal Transition in Hepatocytes and HCC Cells. Int J Mol Sci 2022; 23:ijms23020913. [PMID: 35055098 PMCID: PMC8780347 DOI: 10.3390/ijms23020913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) control gene expression by acting at multiple levels and are often deregulated in epithelial tumors; however, their roles in the fine regulation of cellular reprogramming, specifically in epithelial–mesenchymal transition (EMT), remain largely unknown. Here, we focused on the hnRNP-Q (also known as SYNCRIP), showing by molecular analysis that in hepatocytes it acts as a “mesenchymal” gene, being induced by TGFβ and modulating the EMT. SYNCRIP silencing limits the induction of the mesenchymal program and maintains the epithelial phenotype. Notably, in HCC invasive cells, SYNCRIP knockdown induces a mesenchymal–epithelial transition (MET), negatively regulating their mesenchymal phenotype and significantly impairing their migratory capacity. In exploring possible molecular mechanisms underlying these observations, we identified a set of miRNAs (i.e., miR-181-a1-3p, miR-181-b1-3p, miR-122-5p, miR-200a-5p, and miR-let7g-5p), previously shown to exert pro- or anti-EMT activities, significantly impacted by SYNCRIP interference during EMT/MET dynamics and gathered insights, suggesting the possible involvement of this RNA binding protein in their transcriptional regulation.
Collapse
Affiliation(s)
- Veronica Riccioni
- Department of Molecular Medicine, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (V.R.); (F.T.); (S.G.); (F.M.); (C.B.); (A.M.); (R.S.); (L.A.)
| | - Flavia Trionfetti
- Department of Molecular Medicine, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (V.R.); (F.T.); (S.G.); (F.M.); (C.B.); (A.M.); (R.S.); (L.A.)
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, 00149 Rome, Italy;
| | - Claudia Montaldo
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, 00149 Rome, Italy;
| | - Sabrina Garbo
- Department of Molecular Medicine, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (V.R.); (F.T.); (S.G.); (F.M.); (C.B.); (A.M.); (R.S.); (L.A.)
| | - Francesco Marocco
- Department of Molecular Medicine, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (V.R.); (F.T.); (S.G.); (F.M.); (C.B.); (A.M.); (R.S.); (L.A.)
| | - Cecilia Battistelli
- Department of Molecular Medicine, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (V.R.); (F.T.); (S.G.); (F.M.); (C.B.); (A.M.); (R.S.); (L.A.)
| | - Alessandra Marchetti
- Department of Molecular Medicine, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (V.R.); (F.T.); (S.G.); (F.M.); (C.B.); (A.M.); (R.S.); (L.A.)
| | - Raffaele Strippoli
- Department of Molecular Medicine, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (V.R.); (F.T.); (S.G.); (F.M.); (C.B.); (A.M.); (R.S.); (L.A.)
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, 00149 Rome, Italy;
| | - Laura Amicone
- Department of Molecular Medicine, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (V.R.); (F.T.); (S.G.); (F.M.); (C.B.); (A.M.); (R.S.); (L.A.)
| | - Carla Cicchini
- Department of Molecular Medicine, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (V.R.); (F.T.); (S.G.); (F.M.); (C.B.); (A.M.); (R.S.); (L.A.)
- Correspondence: (C.C.); (M.T.)
| | - Marco Tripodi
- Department of Molecular Medicine, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, 00161 Rome, Italy; (V.R.); (F.T.); (S.G.); (F.M.); (C.B.); (A.M.); (R.S.); (L.A.)
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, 00149 Rome, Italy;
- Correspondence: (C.C.); (M.T.)
| |
Collapse
|
6
|
Zhang J, Liu X, Yin C, Zong S. hnRNPK/Beclin1 signaling regulates autophagy to promote imatinib resistance in Philadelphia chromosome-positive acute lymphoblastic leukemia cells. Exp Hematol 2022; 108:46-54. [PMID: 35038545 DOI: 10.1016/j.exphem.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/28/2021] [Accepted: 01/09/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND This study sought to clarify the role of hnRNPK as a regulator of imatinib resistance in Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL). METHODS The expression of hnRNPK was assessed in Ph+ ALL leukemia cells in vitro and in vivo, while imatinib susceptibility was assessed via CCK-8 assay. In cells in which hnRNPK levels had or had not been modulated, LC3Ⅰ/Ⅱ and mTOR/p-ERK/Beclin1levels were assessed via western blotting, while electron microscopy was used to evaluate autophagic vacuole formation. Interactions between hnRNPK and Beclin1 were assessed through an RNA binding protein immunoprecipitation assay. RESULTS Imatinib-resistant Ph+ ALL cell lines and patient bone marrow samples exhibited significant hnRNPK overexpression. The knockdown of hnRNPK increased the imatinib sensitivity of these tumor cells and decreased in vivo tumor burden in a xenograft model system as evidenced by a reduction in tumor volume. Levels of LC3Ⅰ/Ⅱand Beclin1, but not p-ERK and mTOR, were consistent with the regulatory activity of hnRNPK.Electronmicroscopy revealed that imatinib-resistant cells harbored significantly more autophagic vacuoles relative to wild-type cells, while hnRNPK knockdown reduced the number of these vacuoles. In an RNA binding protein immunoprecipitation assay, anti-hnRNPK was able to precipitate the Beclin1 mRNA. CONCLUSIONS These results suggest that the hnRNPK/Beclin1 signaling pathway may play a role in shaping imatinib resistance in Ph+ ALL cells.
Collapse
Affiliation(s)
- JinFang Zhang
- Department of Paediatric Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China.
| | - XiaoLi Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - ChangXin Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Sa Zong
- Department of Paediatric Hematology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province, China
| |
Collapse
|
7
|
Zhao H, Wei Z, Shen G, Chen Y, Hao X, Li S, Wang R. Poly(rC)-binding proteins as pleiotropic regulators in hematopoiesis and hematological malignancy. Front Oncol 2022; 12:1045797. [PMID: 36452487 PMCID: PMC9701828 DOI: 10.3389/fonc.2022.1045797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Poly(rC)-binding proteins (PCBPs), a defined subfamily of RNA binding proteins, are characterized by their high affinity and sequence-specific interaction with poly-cytosine (poly-C). The PCBP family comprises five members, including hnRNP K and PCBP1-4. These proteins share a relatively similar structure motif, with triple hnRNP K homology (KH) domains responsible for recognizing and combining C-rich regions of mRNA and single- and double-stranded DNA. Numerous studies have indicated that PCBPs play a prominent role in hematopoietic cell growth, differentiation, and tumorigenesis at multiple levels of regulation. Herein, we summarized the currently available literature regarding the structural and functional divergence of various PCBP family members. Furthermore, we focused on their roles in normal hematopoiesis, particularly in erythropoiesis. More importantly, we also discussed and highlighted their involvement in carcinogenesis, including leukemia and lymphoma, aiming to clarify the pleiotropic roles and molecular mechanisms in the hematopoietic compartment.
Collapse
Affiliation(s)
- Huijuan Zhao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Guomin Shen
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Yixiang Chen
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Henan University of Science and Technology, Luoyang, China.,Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Xueqin Hao
- Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Sanqiang Li
- Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Rong Wang
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Palrasu M, Knapinska AM, Diez J, Smith L, LaVoi T, Giulianotti M, Houghten RA, Fields GB, Minond D. A Novel Probe for Spliceosomal Proteins that Induces Autophagy and Death of Melanoma Cells Reveals New Targets for Melanoma Drug Discovery. Cell Physiol Biochem 2019; 53:656-686. [PMID: 31573152 PMCID: PMC6990463 DOI: 10.33594/000000164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022] Open
Abstract
Background/Aims: Despite recent advances in melanoma drug discovery, the average overall survival of patients with late stage metastatic melanoma is approximately 3 years, suggesting a need for approaches that identify new melanoma targets. We have previously reported a discovery of novel anti-melanoma compound 2155–14 (Onwuha-Ekpete et al., J Med Chem. 2014 Feb 27; 57(4):1599–608). In the report presented herein we aim to identify its target(s) and mechanism of action. Methods: We utilized biotinylated analog of 2155–14 to pull down its targets from melanoma cells. Proteomics in combination with western blot were used to identify the targets. Mechanism of action of 2155–14 was determined using flow cytometry, RT-PCR, microscopy, western blot, and enzymatic activity assays. Where applicable, one-way analysis of variance (ANOVA) was used followed by Dunnett post hoc test. Results: In the present study, we identified ATP-dependent RNA helicase DDX1 and heterogeneous nuclear ribonucleoproteins (hnRNPs) H1, H2 and A2/B1 as targets of anti-melanoma compound 2155–14. To the best of our knowledge, this is a first report suggesting that these proteins could be targeted for melanoma therapy. Mechanistic investigations showed that 2155–14 induces ER stress leading to potentiation of basal autophagy resulting in melanoma cell death in BRAF and NRAS mutated melanoma cells. Conclusion: Identification of mode of action of 2155–14 may provide insight into novel therapies against a broad range of melanoma subtypes. These studies were enabled by the novel probe derived from a mixture-based library, an important class of chemical biology tools for discovering novel targets.
Collapse
Affiliation(s)
- Manikandan Palrasu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, USA
| | - Anna M Knapinska
- Department of Chemistry & Biochemistry, Center for Molecular Biology & Biotechnology, Florida Atlantic University, Jupiter, FL, USA
| | - Juan Diez
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Lyndsay Smith
- Department of Chemistry & Biochemistry, Center for Molecular Biology & Biotechnology, Florida Atlantic University, Jupiter, FL, USA
| | - Travis LaVoi
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, USA
| | - Marc Giulianotti
- Torrey Pines Institute for Molecular Studies, Port St. Lucie, FL, USA
| | | | - Gregg B Fields
- Department of Chemistry & Biochemistry, Center for Molecular Biology & Biotechnology, Florida Atlantic University, Jupiter, FL, USA
| | - Dmitriy Minond
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, Fort Lauderdale, FL, USA.,Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA,
| |
Collapse
|
9
|
Liu XH, Ma J, Feng JX, Feng Y, Zhang YF, Liu LX. Regulation and related mechanism of GSN mRNA level by hnRNPK in lung adenocarcinoma cells. Biol Chem 2019; 400:951-963. [PMID: 30771276 DOI: 10.1515/hsz-2018-0417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/11/2019] [Indexed: 01/20/2023]
Abstract
Gelsolin (GSN) is an actin filament-capping protein that plays a key role in cell migration. Here we show that heterogeneous nuclear ribonucleoprotein K (hnRNPK) regulates GSN expression level by binding to the 3'-untranslated region (3'UTR) of GSN mRNA in non-small cell lung cancers (NSCLC) H1299 cells which are highly metastatic and express high level of GSN. We found that hnRNPK overexpression increased the mRNA and protein level of GSN, whereas hnRNPK knockdown by siRNA decreased the mRNA and protein level of GSN in both H1299 and A549 cells, indicating a positive role of hnRNPK in the regulation of GSN expression. Furthermore, hnRNPK knockdown affected the migration ability of H1299 and A549 cells which could be rescued by ectopic expression of GSN in those cells. Conversely, GSN knockdown in hnRNPK-overexpressing cells could abort the stimulatory effect of hnRNPK on the cell migration. These results suggest that hnRNPK function in the regulation of cell migration is GSN-dependent. Taken together, these data unveiled a new mechanism of regulation of the GSN expression by hnRNPK and provides new clues for the discovery of new anti-metastatic therapy.
Collapse
Affiliation(s)
- Xiao-Hui Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jie Ma
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jun-Xia Feng
- Department of Nephrology, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou 510800, China
| | - Yuan Feng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yun-Fang Zhang
- Department of Nephrology, Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou 510800, China
| | - Lang-Xia Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
10
|
Shin CH, Kim HH. Functional roles of heterogeneous nuclear ribonucleoprotein K in post-transcriptional gene regulation. PRECISION AND FUTURE MEDICINE 2018. [DOI: 10.23838/pfm.2018.00107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
11
|
Wang F, Chen J, Zhang Z, Yi J, Yuan M, Wang M, Zhang N, Qiu X, Wei H, Wang L. Differences of basic and induced autophagic activity between K562 and K562/ADM cells. Intractable Rare Dis Res 2017; 6:281-290. [PMID: 29259857 PMCID: PMC5735282 DOI: 10.5582/irdr.2017.01069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Patients with acute myeloid leukemia (AML) often have a poor prognosis due to drug resistance, which is regarded as a tough problem during the period of clinical therapeutics. It has been reported that autophagy, an important event in various cellular processes, plays a crucial role in mediating drug-resistance to cancer cells. Our study attempts to comparatively investigate the differences of basic and induced autophagic activity between drug-sensitive and multidrug-resistant AML cells. The level of basic autophagy in K562/ADM cells was higher than that in K562 cells, which could be characterized by more cytosolic contents-packaged autophagic vacuoles in K562/ADM cells when compared to that in K562 cells. The observation of MDC staining showed that the fluorescent intensity of autophagosomes in K562/ADM cells was stronger than that in K562 cells. The expression of Beclin1 and the ratio of LC3-II to LC3-I were distinctly higher in K562/ADM cells, however, P62 protein was relatively lower in K562/ADM cells. Furthermore, we found that nutrient depletion could induce autophagic activity of both cell lines. However, autophagic activity of K562/ADM cells was always maintained at a higher level in contrast with K562 cells. ADM (Adriamycin) was also capable of inducing autophagic activity of K562 and K562/ADM cells, but the autophagic alteration in K562 cells appeared earlier. Taken together, our findings suggest that autophagy exerts an important effect on formation and maintenance of drug-resistance in AML cells.
Collapse
Affiliation(s)
- Feifei Wang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Jing Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Zhewen Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Juan Yi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
| | - Minmin Yuan
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Mingyan Wang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Na Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xuemin Qiu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Hulai Wei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province, China
- Dr. Hulai Wei, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000 Gansu Province, China. E-mail:
| | - Ling Wang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- The Academy of Integrative Medicine of Fudan University, Shanghai, China
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- Address correspondence to: Dr. Ling Wang, Obstetrics and Gynecology Hospital, Fudan University, 413 Zhaozhou Road, Shanghai 200011, China. E-mail:
| |
Collapse
|