Hoermann G, Greiner G, Griesmacher A, Valent P. Clonal Hematopoiesis of Indeterminate Potential: A Multidisciplinary Challenge in Personalized Hematology.
J Pers Med 2020;
10:jpm10030094. [PMID:
32825226 PMCID:
PMC7564336 DOI:
10.3390/jpm10030094]
[Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) is a common age-related condition that represents a potential pre-phase of hematologic neoplasm. Next-generation sequencing (NGS) is used to detect and monitor clonal hematopoiesis, and the spectrum of mutations substantially overlaps with that of myeloid neoplasms with DNMT3A, TET2, ASXL1, and JAK2 being the most frequently mutated. While, in general, the risk of progression to an overt myeloid neoplasm is only modest, the progression risk increases in patients with unexplained cytopenia or multiple mutations. In addition, CHIP represents a previously unrecognized major risk factor for atherosclerosis and cardiovascular disease (CVD), including coronary heart disease, degenerative aortic valve stenosis, and chronic heart failure; and a causative role of CHIP in the development of CVD has been demonstrated in vitro and in vivo. The management of patients with CHIP is a rapidly emerging topic in personalized medicine, as NGS has become widely available for clinical medicine. It requires a highly multidisciplinary setting, including hematology/oncology, cardiology, (clinical) pathology, and genetics for individualized guidance. Further research is urgently needed to provide robust evidence for future guidelines and recommendations on the management of patients with CHIP in the era of personalized medicine.
Collapse