1
|
Liu S, Vivona ES, Kurre P. Why hematopoietic stem cells fail in Fanconi anemia: Mechanisms and models. Bioessays 2025; 47:e2400191. [PMID: 39460396 DOI: 10.1002/bies.202400191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/27/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Fanconi anemia (FA) is generally classified as a DNA repair disorder, conferring a genetic predisposition to cancer and prominent bone marrow failure (BMF) in early childhood. Corroborative human and murine studies point to a fetal origin of hematopoietic stem cell (HSC) attrition under replicative stress. Along with intriguing recent insights into non-canonical roles and domain-specific functions of FA proteins, these studies have raised the possibility of a DNA repair-independent BMF etiology. However, deeper mechanistic insight is critical as current curative options of allogeneic stem cell transplantation and emerging gene therapy have limited eligibility, carry significant side effects, and involve complex procedures restricted to resource-rich environments. To develop rational and broadly accessible therapies for FA patients, the field will need more faithful disease models that overcome the scarcity of patient samples, leverage technological advances, and adopt investigational clinical trial designs tailored for rare diseases.
Collapse
Affiliation(s)
- Suying Liu
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - E S Vivona
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia, Philadelphia, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
2
|
Lee SY, Miller KM, Kim JJ. Clinical and Mechanistic Implications of R-Loops in Human Leukemias. Int J Mol Sci 2023; 24:ijms24065966. [PMID: 36983041 PMCID: PMC10052022 DOI: 10.3390/ijms24065966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Genetic mutations or environmental agents are major contributors to leukemia and are associated with genomic instability. R-loops are three-stranded nucleic acid structures consisting of an RNA-DNA hybrid and a non-template single-stranded DNA. These structures regulate various cellular processes, including transcription, replication, and DSB repair. However, unregulated R-loop formation can cause DNA damage and genomic instability, which are potential drivers of cancer including leukemia. In this review, we discuss the current understanding of aberrant R-loop formation and how it influences genomic instability and leukemia development. We also consider the possibility of R-loops as therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Seo-Yun Lee
- Department of Life Science and Multidisciplinary, Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jae-Jin Kim
- Department of Life Science and Multidisciplinary, Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
3
|
Malouf C, Loughran SJ, Wilkinson AC, Shimamura A, Río P. Translational research for bone marrow failure patients. Exp Hematol 2021; 105:18-21. [PMID: 34801643 DOI: 10.1016/j.exphem.2021.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/13/2021] [Indexed: 12/19/2022]
Abstract
Bone marrow failure syndromes encompass a range of inherited and acquired hematological diseases that result in insufficient blood cell production, which leads to severe complications including anemia, weakening of the immune system, impaired coagulation, and increased risk of cancer. Within inherited bone marrow failure syndromes, a number of genetically distinct diseases have been described including Shwachman-Diamond syndrome and Fanconi anemia. Given the genetic complexity and poor prognosis of these inherited bone marrow failure syndromes, there is increasing interest in both characterizing the genetic landscapes of these diseases and developing novel gene therapies to effectively monitor and cure patients. These topics were the focus of the winter 2021 International Society for Experimental Hematology New Investigator Webinar, which featured presentations by Dr. Akiko Shimamura and Dr. Paula Río. Here, we review the topics covered within this webinar.
Collapse
Affiliation(s)
- Camille Malouf
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Stephen J Loughran
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Adam C Wilkinson
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Akiko Shimamura
- Bone Marrow Failure and Myelodysplastic Syndrome Program, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA
| | - Paula Río
- Division of Hematopoietic Innovative Therapies, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER-ISCIII), Madrid, Spain; Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD/UAM), Madrid, Spain
| |
Collapse
|
5
|
Weinreb JT, Ghazale N, Pradhan K, Gupta V, Potts KS, Tricomi B, Daniels NJ, Padgett RA, De Oliveira S, Verma A, Bowman TV. Excessive R-loops trigger an inflammatory cascade leading to increased HSPC production. Dev Cell 2021; 56:627-640.e5. [PMID: 33651979 DOI: 10.1016/j.devcel.2021.02.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/01/2020] [Accepted: 02/03/2021] [Indexed: 02/07/2023]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) arise during embryonic development and are essential for sustaining the blood and immune systems throughout life. Tight regulation of HSPC numbers is critical for hematopoietic homeostasis. Here, we identified DEAD-box helicase 41 (Ddx41) as a gatekeeper of HSPC production. Using zebrafish ddx41 mutants, we unveiled a critical role for this helicase in regulating HSPC production at the endothelial-to-hematopoietic transition. We determined that Ddx41 suppresses the accumulation of R-loops, nucleic acid structures consisting of RNA:DNA hybrids and ssDNAs whose equilibrium is essential for cellular fitness. Excess R-loop levels in ddx41 mutants triggered the cGAS-STING inflammatory pathway leading to increased numbers of hemogenic endothelium and HSPCs. Elevated R-loop accumulation and inflammatory signaling were observed in human cells with decreased DDX41, suggesting possible conservation of mechanism. These findings delineate that precise regulation of R-loop levels during development is critical for limiting cGAS-STING activity and HSPC numbers.
Collapse
Affiliation(s)
- Joshua T Weinreb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Noura Ghazale
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kith Pradhan
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Varun Gupta
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kathryn S Potts
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Brad Tricomi
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Noah J Daniels
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Richard A Padgett
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Sofia De Oliveira
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine (Hepatology) and Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Amit Verma
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine (Oncology), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Teresa V Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA; Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine (Oncology), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
6
|
Kreutmair S, Erlacher M, Andrieux G, Istvanffy R, Mueller-Rudorf A, Zwick M, Rückert T, Pantic M, Poggio T, Shoumariyeh K, Mueller TA, Kawaguchi H, Follo M, Klingeberg C, Wlodarski M, Baumann I, Pfeifer D, Kulinski M, Rudelius M, Lemeer S, Kuster B, Dierks C, Peschel C, Cabezas-Wallscheid N, Duque-Afonso J, Zeiser R, Cleary ML, Schindler D, Schmitt-Graeff A, Boerries M, Niemeyer CM, Oostendorp RA, Duyster J, Illert AL. Loss of the Fanconi anemia-associated protein NIPA causes bone marrow failure. J Clin Invest 2020; 130:2827-2844. [PMID: 32338640 PMCID: PMC7260023 DOI: 10.1172/jci126215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFSs) are a heterogeneous group of disorders characterized by defective hematopoiesis, impaired stem cell function, and cancer susceptibility. Diagnosis of IBMFS presents a major challenge due to the large variety of associated phenotypes, and novel, clinically relevant biomarkers are urgently needed. Our study identified nuclear interaction partner of ALK (NIPA) as an IBMFS gene, as it is significantly downregulated in a distinct subset of myelodysplastic syndrome-type (MDS-type) refractory cytopenia in children. Mechanistically, we showed that NIPA is major player in the Fanconi anemia (FA) pathway, which binds FANCD2 and regulates its nuclear abundance, making it essential for a functional DNA repair/FA/BRCA pathway. In a knockout mouse model, Nipa deficiency led to major cell-intrinsic defects, including a premature aging phenotype, with accumulation of DNA damage in hematopoietic stem cells (HSCs). Induction of replication stress triggered a reduction in and functional decline of murine HSCs, resulting in complete bone marrow failure and death of the knockout mice with 100% penetrance. Taken together, the results of our study add NIPA to the short list of FA-associated proteins, thereby highlighting its potential as a diagnostic marker and/or possible target in diseases characterized by hematopoietic failure.
Collapse
Affiliation(s)
- Stefanie Kreutmair
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Miriam Erlacher
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, and
| | - Geoffroy Andrieux
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, University Medical Center — University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Rouzanna Istvanffy
- Department of Internal Medicine III, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Alina Mueller-Rudorf
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melissa Zwick
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tamina Rückert
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Milena Pantic
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Teresa Poggio
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Khalid Shoumariyeh
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tony A. Mueller
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hiroyuki Kawaguchi
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Marie Follo
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cathrin Klingeberg
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marcin Wlodarski
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, and
| | - Irith Baumann
- Institute of Pathology, Health Center Böblingen, Böblingen, Germany
| | - Dietmar Pfeifer
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michal Kulinski
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Martina Rudelius
- Institute of Pathology, Ludwig Maximilian University Munich, Munich, Germany
| | - Simone Lemeer
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Christine Dierks
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Peschel
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine III, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Jesus Duque-Afonso
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael L. Cleary
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Detlev Schindler
- Department of Human Genetics, Institute of Human Genetics, Biozentrum, University of Würzburg, Würzburg, Germany
| | | | - Melanie Boerries
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Medical Bioinformatics and Systems Medicine, University Medical Center — University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Charlotte M. Niemeyer
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, and
| | - Robert A.J. Oostendorp
- Department of Internal Medicine III, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Justus Duyster
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anna Lena Illert
- Department of Internal Medicine I, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|