1
|
Salu P, Tuvin D, Reindl KM. AGR2 knockdown induces ER stress and mitochondria fission to facilitate pancreatic cancer cell death. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1872:119854. [PMID: 39353469 DOI: 10.1016/j.bbamcr.2024.119854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/10/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Anterior gradient 2 (AGR2) is often overexpressed in many human cancers, including pancreatic ductal adenocarcinoma (PDAC). Elevated AGR2 expression is known to play a critical role in tumor development, progression, and metastasis and positively correlates with poor patient survival. However, the relationship between AGR2 expression and tumor growth is not fully understood. Our study aims to investigate the impact of AGR2 knockdown on the survival of two pancreatic cancer cell lines, HPAF-II and PANC-1, that exhibit high AGR2 expression. This study revealed that the knockdown of AGR2 expression through an inducible shRNA-mediated approach reduced the proliferative ability and colony-forming potential of PDAC cells compared to scramble controls. Significantly, knocking down AGR2 led to the inhibition of multiple protein biosynthesis pathways and induced ER stress through unfolded protein response (UPR) activation. AGR2 knockdown induced ER stress and increased mitochondrial fission, while mitochondrial fusion remained unaffected. Ultimately, apoptotic cell death was heightened in AGR2 knockdown PDAC cells compared to the controls. Overall, these data reveal a new axis involving AGR2-ER stress-associated mitochondrial fission that could be targeted to improve PDAC patient outcomes.
Collapse
Affiliation(s)
- Philip Salu
- North Dakota State University, Department of Biological Sciences, Fargo, ND, United States of America
| | - Daniel Tuvin
- Roger Maris Cancer Center, Sanford Health, Fargo, ND, United States of America
| | - Katie M Reindl
- North Dakota State University, Department of Biological Sciences, Fargo, ND, United States of America.
| |
Collapse
|
2
|
Kawata-Shimamura Y, Eguchi H, Kawabata-Iwakawa R, Nakahira M, Okazaki Y, Yoda T, Grénman R, Sugasawa M, Nishiyama M. Biomarker discovery for practice of precision medicine in hypopharyngeal cancer: a theranostic study on response prediction of the key therapeutic agents. BMC Cancer 2022; 22:779. [PMID: 35841085 PMCID: PMC9288037 DOI: 10.1186/s12885-022-09853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hypopharyngeal cancer is a relatively rare malignancy with poor prognosis. Current chemotherapeutic algorithm is still far from personalized medicine, and the identification of the truly active therapeutic biomarkers and/or targets is eagerly awaited. METHODS Venturing to focus on the conventional key chemotherapeutic drugs, we identified the most correlative genes (and/or proteins) with cellular sensitivity to docetaxel (TXT), cisplatin (CDDP) and 5-fluorouracil (5-FU) in the expression levels, through 3 steps approach: genome-wide screening, confirmation study on the quantified expression levels, and knock-down and transfection analyses of the candidates. The probable action pathways of selected genes were examined by Ingenuity Pathway Analysis using a large-scale database, The Cancer Genome Atlas. RESULTS The first genome-wide screening study derived 16 highly correlative genes with cellular drug sensitivity in 15 cell lines (|R| > 0.8, P < 0.01 for CDDP and 5-FU; |R| > 0.5, P < 0.05 for TXT). Among 10 genes the observed correlations were confirmed in the quantified gene expression levels, and finally knock-down and transfection analyses provided 4 molecules as the most potent predictive markers-AGR2 (anterior gradient 2 homolog gene), and PDE4D (phosphodiesterase 4D, cAMP-specific gene) for TXT; NINJ2 (nerve Injury-induced protein 2); CDC25B (cell division cycle 25 homolog B gene) for 5-FU- in both gene and protein expression levels. Overexpression of AGR2, PDE4D signified worse response to TXT, and the repressed expression sensitized TXT activity. Contrary to the findings, in the other 2 molecules, NINJ2 and CDC25, there observed opposite relationship to cellular drug response to the relevant drugs. IPA raised the potential that each selected molecule functionally interacts with main action pathway (and/or targets) of the relevant drug such as tubulin β chain genes for TXT, DNA replication pathway for CDDP, and DNA synthesis pathway and thymidylate synthetase gene for 5-FU. CONCLUSION We newly propose 4 molecules -AGR2, PDE4D,NINJ2 and CDC25B) as the powerful exploratory markers for prediction of cellular response to 3 key chemotherapeutic drugs in hypopharyngeal cancers and also suggest their potentials to be the therapeutic targets, which could contribute to the development of precision medicine of the essential chemotherapy in hypopharyngeal patients. (339 words).
Collapse
Affiliation(s)
- Yumiko Kawata-Shimamura
- Department of Head and Neck Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.,Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.,Department of Oral Surgery, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Hidetaka Eguchi
- Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.,Intractable Disease Research Center, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Mitsuhiko Nakahira
- Department of Head and Neck Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Yasushi Okazaki
- Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan.,Intractable Disease Research Center, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tetsuya Yoda
- Department of Oral Surgery, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan.,Department of Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Reidar Grénman
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Turku and Turku University Hospital, PO Box 52, 20521, Turku, Finland
| | - Masashi Sugasawa
- Department of Head and Neck Surgery, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan
| | - Masahiko Nishiyama
- Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1298, Japan. .,Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan. .,Higashi Sapporo Hospital, 7-35, 3-3 Higashi-Sapporo, Shiroishi-ku, Sapporo, 003-8585, Japan.
| |
Collapse
|
3
|
The role of microRNAs in the development, progression and drug resistance of chronic myeloid leukemia and their potential clinical significance. Life Sci 2022; 296:120437. [DOI: 10.1016/j.lfs.2022.120437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/26/2022]
|
4
|
Ly TTG, Yun J, Ha JS, Kim YJ, Jang WB, Van Le TH, Rethineswaran VK, Choi J, Kim JH, Min SH, Lee DH, Yang JS, Chung JS, Kwon SM. Inhibitory Effect of Etravirine, a Non-Nucleoside Reverse Transcriptase Inhibitor, via Anterior Gradient Protein 2 Homolog Degradation against Ovarian Cancer Metastasis. Int J Mol Sci 2022; 23:944. [PMID: 35055132 PMCID: PMC8777939 DOI: 10.3390/ijms23020944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Anterior gradient protein 2 homolog (AGR2), an endoplasmic reticulum protein, is secreted in the tumor microenvironment. AGR2 is a member of the disulfide isomerase family, is highly expressed in multiple cancers, and promotes cancer metastasis. In this study, we found that etravirine, which is a non-nucleoside reverse transcriptase inhibitor, could induce AGR2 degradation via autophagy. Moreover, etravirine diminished proliferation, migration, and invasion in vitro. Moreover, in an orthotopic xenograft mouse model, the combination of etravirine and paclitaxel significantly suppressed cancer progression and metastasis. This drug may be a promising therapeutic agent for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Thanh Truong Giang Ly
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Jisoo Yun
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Jong-Seong Ha
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Yeon-Ju Kim
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Woong-Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Thi Hong Van Le
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Vinoth Kumar Rethineswaran
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Jaewoo Choi
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Jae-Ho Kim
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| | - Sang-Hyun Min
- New Drug Development Center, Deagu Gyeongbuk Medical Innovation Foundation, Deagu 41061, Korea;
| | - Dong-Hyung Lee
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; (D.-H.L.); (J.-S.Y.)
| | - Ju-Seok Yang
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea; (D.-H.L.); (J.-S.Y.)
| | - Joo-Seop Chung
- Department of Hematology-Oncology, Pusan National University Hospital Medical Research Institute, Busan 49241, Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.); (J.-S.H.); (Y.-J.K.); (W.-B.J.); (T.H.V.L.); (V.K.R.); (J.C.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea;
| |
Collapse
|
5
|
Shafabakhsh R, Arianfar F, Vosough M, Mirzaei HR, Mahjoubin-Tehran M, Khanbabaei H, Kowsari H, Shojaie L, Azar MEF, Hamblin MR, Mirzaei H. Autophagy and gastrointestinal cancers: the behind the scenes role of long non-coding RNAs in initiation, progression, and treatment resistance. Cancer Gene Ther 2021; 28:1229-1255. [PMID: 33432087 DOI: 10.1038/s41417-020-00272-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers comprise a heterogeneous group of complex disorders that affect different organs, including esophagus, stomach, gallbladder, liver, biliary tract, pancreas, small intestine, colon, rectum, and anus. Recently, an explosion in nucleic acid-based technologies has led to the discovery of long non-coding RNAs (lncRNAs) that have been found to possess unique regulatory functions. This class of RNAs is >200 nucleotides in length, and is characterized by their lack of protein coding. LncRNAs exert regulatory effects in GI cancer development by affecting different functions such as the proliferation and metastasis of cancer cells, apoptosis, glycolysis and angiogenesis. Over the past few decades, considerable evidence has revealed the important role of autophagy in both GI cancer progression and suppression. In addition, recent studies have confirmed a significant correlation between lncRNAs and the regulation of autophagy. In this review, we summarize how lncRNAs play a behind the scenes role in the pathogenesis of GI cancers through regulation of autophagy.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Arianfar
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamed Kowsari
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Li Y, Tian M, Zhang D, Zhuang Y, Li Z, Xie S, Sun K. Long Non-Coding RNA Myosin Light Chain Kinase Antisense 1 Plays an Oncogenic Role in Gallbladder Carcinoma by Promoting Chemoresistance and Proliferation. Cancer Manag Res 2021; 13:6219-6230. [PMID: 34393514 PMCID: PMC8357316 DOI: 10.2147/cmar.s323759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/29/2021] [Indexed: 12/20/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have been reported to play critical roles in human tumours, including gallbladder carcinoma (GBC). However, their biological functions and molecular mechanisms in tumorigenesis and progression remain largely unknown. Methods Quantitative polymerase chain reaction (qPCR) was used to verify the expression of lncRNA myosin light chain kinase antisense RNA 1 (MYLK-AS1) in 120 pairs of GBC tissues and paired adjacent non-tumour tissues, as well as in six different GBC cell lines (NOZ, EH-GB1, OCUG-1, GBC-SD, SGC-996 and QBC-939). Cell counting kit 8 was applied to explore cell proliferation and drug sensitivity assays. The target miRNAs (miR) of MYLK-AS1 and downstream target genes were predicted using Starbase 3.0 software and confirmed by double luciferase reporting test. The expression of proteins was assessed using Western blot assay. Results Here, we demonstrated that MYLK-AS1 was significantly upregulated and correlated with a poor prognosis and poor clinical characteristics in GBC. Furthermore, the forced expression of MYLK-AS1 significantly promoted GBC cell proliferation and resistance to gemcitabine in vitro. Mechanistically, MYLK-AS1 functioned as an efficient miR-217 sponge, thereby releasing the inhibition of enhancer of zeste 2 polycomb repressive complex 2 (EZH2) subunit expression. MYLK-AS1 promoted GBC cell proliferation and resistance to gemcitabine by upregulating EZH2 expression, and EZH2 was confirmed as a direct target of miR-217. Discussion Our results confirmed that the chemoresistant driver MYLK-AS1 might be a promising candidate as a therapeutic target for the treatment of advanced GBC.
Collapse
Affiliation(s)
- Yongliang Li
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Mi Tian
- Department of Intensive Care Unit, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Dongqing Zhang
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Yifei Zhuang
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Zhimin Li
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Shenqi Xie
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Keyu Sun
- Department of Emergency, Minhang Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| |
Collapse
|
7
|
Panebianco C, Trivieri N, Villani A, Terracciano F, Latiano TP, Potenza A, Perri F, Binda E, Pazienza V. Improving Gemcitabine Sensitivity in Pancreatic Cancer Cells by Restoring miRNA-217 Levels. Biomolecules 2021; 11:639. [PMID: 33925948 PMCID: PMC8146031 DOI: 10.3390/biom11050639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/02/2021] [Accepted: 04/23/2021] [Indexed: 12/21/2022] Open
Abstract
Chemoresistance is a major problem in the therapeutic management of pancreatic cancer, concurring to poor clinical outcome. A number of mechanisms have been proposed to explain resistance to gemcitabine, a standard of care for this malignancy, among which is included aberrant miRNA expression. In the current study, we investigated the role of miR-217, which is strongly down-regulated in cancerous, compared to normal, pancreatic tissues or cells, in sensitizing human pancreatic cancer cell lines to this drug. The low expression of miR-217 in pancreatic cancer patients was confirmed in two gene expression datasets (GSE41372 and GSE60980), and the prognostic value of two target genes (ANLN and TRPS1), was estimated on clinical data from the Tumor Cancer Genome Atlas (TCGA). Transfecting miR-217 mimic in pancreatic cancer cells reduced viability, enhanced apoptosis, and affected cell cycle by promoting a S phase arrest in gemcitabine-treated cells. Moreover, in drug-exposed cells subjected to miR-217 forced expression, a down-regulation for several genes involved in cancer drug resistance was observed, many of which are cell cycle regulators, such as CCND1, CCNE1, CDK2, CDKN1A, CDKN1B, while others, such as ARNT, BRCA1, BRCA2, ELK1, EGFR, ERBB4, and RARA are involved in proliferation and cell cycle progression. Our results support the notion that miR-217 enhances pancreatic cancer sensitivity to gemcitabine, mainly impairing cell cycle progression.
Collapse
Affiliation(s)
- Concetta Panebianco
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (C.P.); (A.V.); (F.T.); (F.P.)
| | - Nadia Trivieri
- Cancer Stem Cell Unit, Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Annacandida Villani
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (C.P.); (A.V.); (F.T.); (F.P.)
| | - Fulvia Terracciano
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (C.P.); (A.V.); (F.T.); (F.P.)
| | - Tiziana Pia Latiano
- Oncology Unit Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Adele Potenza
- Dietetic and Clinical Nutrition Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Francesco Perri
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (C.P.); (A.V.); (F.T.); (F.P.)
| | - Elena Binda
- Cancer Stem Cell Unit, Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy;
| | - Valerio Pazienza
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy; (C.P.); (A.V.); (F.T.); (F.P.)
| |
Collapse
|
8
|
Peixoto da Silva S, Caires HR, Bergantim R, Guimarães JE, Vasconcelos MH. miRNAs mediated drug resistance in hematological malignancies. Semin Cancer Biol 2021; 83:283-302. [PMID: 33757848 DOI: 10.1016/j.semcancer.2021.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/11/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Despite improvements in the therapeutic approaches for hematological malignancies in the last decades, refractory disease still occurs, and cancer drug resistance still remains a major hurdle in the clinical management of these cancer patients. The investigation of this problem has been extensive and different mechanism and molecules have been associated with drug resistance. MicroRNAs (miRNAs) have been described as having an important action in the emergence of cancer, including hematological tumors, and as being major players in their progression, aggressiveness and response to treatments. Moreover, miRNAs have been strongly associated with cancer drug resistance and with the modulation of the sensitivity of cancer cells to a wide array of anticancer drugs. Furthermore, this role has also been reported for miRNAs packaged into extracellular vesicles (EVs-miRNAs), which in turn have been described as essential for the horizontal transfer of drug resistance to sensitive cells. Several studies have been suggesting the use of miRNAs as biomarkers for drug response and clinical outcome prediction, as well as promising therapeutic tools in hematological diseases. Indeed, the combination of miRNA-based therapeutic tools with conventional drugs contributes to overcome drug resistance. This review addresses the role of miRNAs in the pathogenesis of hematological malignances, namely multiple myeloma, leukemias and lymphomas, highlighting their important action (either in their cell-free circulating form or within circulating EVs) in drug resistance and their potential clinical applications.
Collapse
Affiliation(s)
- Sara Peixoto da Silva
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal
| | - Hugo R Caires
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal
| | - Rui Bergantim
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal; Clinical Hematology, Hospital São João, 4200-319, Porto, Portugal; Clinical Hematology, FMUP - Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - José E Guimarães
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal; Clinical Hematology, FMUP - Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal; Instituto Universitário de Ciências da Saúde, Cooperativa de Ensino Superior Politécnico e Universitário, IUCSCESPU, 4585-116, Gandra, Paredes, Portugal
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
9
|
Wang MC, McCown PJ, Schiefelbein GE, Brown JA. Secondary Structural Model of MALAT1 Becomes Unstructured in Chronic Myeloid Leukemia and Undergoes Structural Rearrangement in Cervical Cancer. Noncoding RNA 2021; 7:6. [PMID: 33450947 PMCID: PMC7838788 DOI: 10.3390/ncrna7010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) influence cellular function through binding events that often depend on the lncRNA secondary structure. One such lncRNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), is upregulated in many cancer types and has a myriad of protein- and miRNA-binding sites. Recently, a secondary structural model of MALAT1 in noncancerous cells was proposed to form 194 hairpins and 13 pseudoknots. That study postulated that, in cancer cells, the MALAT1 structure likely varies, thereby influencing cancer progression. This work analyzes how that structural model is expected to change in K562 cells, which originated from a patient with chronic myeloid leukemia (CML), and in HeLa cells, which originated from a patient with cervical cancer. Dimethyl sulfate-sequencing (DMS-Seq) data from K562 cells and psoralen analysis of RNA interactions and structure (PARIS) data from HeLa cells were compared to the working structural model of MALAT1 in noncancerous cells to identify sites that likely undergo structural alterations. MALAT1 in K562 cells is predicted to become more unstructured, with almost 60% of examined hairpins in noncancerous cells losing at least half of their base pairings. Conversely, MALAT1 in HeLa cells is predicted to largely maintain its structure, undergoing 18 novel structural rearrangements. Moreover, 50 validated miRNA-binding sites are affected by putative secondary structural changes in both cancer types, such as miR-217 in K562 cells and miR-20a in HeLa cells. Structural changes unique to K562 cells and HeLa cells provide new mechanistic leads into how the structure of MALAT1 may mediate cancer in a cell-type specific manner.
Collapse
Affiliation(s)
| | | | | | - Jessica A. Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.C.W.); (P.J.M.); (G.E.S.)
| |
Collapse
|
10
|
Yung Y, Lee E, Chu HT, Yip PK, Gill H. Targeting Abnormal Hematopoietic Stem Cells in Chronic Myeloid Leukemia and Philadelphia Chromosome-Negative Classical Myeloproliferative Neoplasms. Int J Mol Sci 2021; 22:ijms22020659. [PMID: 33440869 PMCID: PMC7827471 DOI: 10.3390/ijms22020659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/02/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are unique hematopoietic stem cell disorders sharing mutations that constitutively activate the signal-transduction pathways involved in haematopoiesis. They are characterized by stem cell-derived clonal myeloproliferation. The key MPNs comprise chronic myeloid leukemia (CML), polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF). CML is defined by the presence of the Philadelphia (Ph) chromosome and BCR-ABL1 fusion gene. Despite effective cytoreductive agents and targeted therapy, complete CML/MPN stem cell eradication is rarely achieved. In this review article, we discuss the novel agents and combination therapy that can potentially abnormal hematopoietic stem cells in CML and MPNs and the CML/MPN stem cell-sustaining bone marrow microenvironment.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Autophagy
- Biomarkers, Tumor
- Cell Survival/drug effects
- Cell Transformation, Neoplastic/genetics
- Combined Modality Therapy
- Disease Susceptibility
- Genetic Predisposition to Disease
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/etiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Molecular Targeted Therapy
- Myeloproliferative Disorders/etiology
- Myeloproliferative Disorders/pathology
- Myeloproliferative Disorders/therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Philadelphia Chromosome
- Signal Transduction/drug effects
- Stem Cell Niche
- Tumor Microenvironment
Collapse
Affiliation(s)
| | | | | | | | - Harinder Gill
- Correspondence: ; Tel.: +852-2255-4542; Fax: +852-2816-2863
| |
Collapse
|
11
|
Gong X, Zhu Z. Long Noncoding RNA HOTAIR Contributes to Progression in Hepatocellular Carcinoma by Sponging miR-217-5p. Cancer Biother Radiopharm 2020; 35:387-396. [PMID: 32315535 DOI: 10.1089/cbr.2019.3070] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background: Hepatocellular carcinoma (HCC) is an aggressive primary hepatic cancer with high malignancy and poor prognosis. Long noncoding RNA HOTAIR has been classified as an oncogene to accelerate cell proliferation, migration, and invasion in many cancer types by interacting with the miRNA. Therefore, we assumed that HOTAIR might participate in HCC cell progression by interacting with miR-217-5p expression. Materials and Methods: The expression of HOTAIR and miR-217-5p in 35 HCC patients and HCC cells was measured by quantitative real-time polymerase chain reaction. Cell transfection was conducted using Lipofectamine 2000 transfection reagent. CCK8 and flow cytometry was applied for the measurement of cell proliferation and apoptosis. Cell migration and invasion capacities were carried out by transwell assay. Xenograft mice were constructed by subcutaneously injecting of stably transfected Huh-7 cells in mice. The interaction between HOTAIR and miR-217-5p was determined by luciferase reporter system. Protein expression of P13K, p-P13K, AKT, p-AKT, MMP-2, and MMP-9 was analyzed using Western blot assay. Results: The expression of HOTAIR was upregulated, whereas miR-217-5p was downregulated in HCC tumor tissues and cell lines (Hep3B and Huh-7) compared with normal tissues and human normal liver cell line MIHA. In addition, HOTAIR expression was negatively correlated with miR-217-5p expression in HCC (r2 = 0.1867, p = 0.0171). More importantly, HOTAIR knockdown induced apoptosis and inhibited cell proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT). In vivo experiments revealed that the interference of HOTAIR inhibited tumor growth. Subsequently, luciferase reporter system confirmed the interaction between HOTAIR and miR-217-5p. The rescue experiments clarified that miR-217-5p inhibitor attenuated the suppression of HOTAIR silencing on HCC cell proliferation, migration, invasion, and EMT. Furthermore, miR-217-5p inhibitor restored the inhibition of HOTAIR silencing mediated p-PI3K/p-AKT/MMP-2/9 protein expression. Conclusions: HOTAIR contributes to cell progression in HCC by sponging miR-217-5p, representing promising biomarkers for HCC treatment.
Collapse
Affiliation(s)
- Ximing Gong
- Department of General Surgery, New Area People's Hospital of Pudong, Shanghai, China
| | - Zhenya Zhu
- Department of General Surgery, New Area People's Hospital of Pudong, Shanghai, China
| |
Collapse
|
12
|
Jiang W, Hou L, Wei J, Du Y, Zhao Y, Deng X, Lin X. Hsa-miR-217 Inhibits the Proliferation, Migration, and Invasion in Non-small Cell Lung Cancer Cells Via Targeting SIRT1 and P53/KAI1 Signaling. Balkan Med J 2020; 37:208-214. [PMID: 32267139 PMCID: PMC7285661 DOI: 10.4274/balkanmedj.galenos.2020.2019.9.91] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Brain metastasis is a major cause of cancer death in patients with lung cancer. Sirtuin 1 and hsa-miR-217 have been identified to mediate the development of non-small cell lung cancer. Aims: To investigate the roles of hsa-miR-217, its target sirtuin 1, and the P53/KAI1 axis in the brain metastasis from non-small cell lung cancer. Study Design: Cell culture study. Methods: Human pulmonary adenocarcinoma brain metastasis cell line PC-14/B were incubated and treated with constructed lentiviral plasmids expressing miR-217 and/or sirtuin 1. BEAS-2B cell line was used as a control. The targeted regulation of miR-217 to sirtuin 1was examined using a dual-luciferase reporter assay. Cell proliferation, migration, invasion, and related protein expression were detected to examine the effect of the miR-217/sirtuin 1 expression on metastasis. Results: PC-14/B cells expressed higher sirtuin 1 and lower P53 and KAI1 compared with BEAS-2B control cells (p<0.05). Sirtuin 1 was a direct target of miR-217. MiR-217 expression suppressed PC-14/B cell invasion (p=0.004), migration (p=0.001), and proliferation (p<0.05), whereas sirtuin 1 overexpression reversed all processes. sirtuin 1 expression inhibited P53, KAI1/CD82, matrix metalloproteinase-9, and β-catenin but upregulated E-cadherin protein. MiR-217 overexpression induced reverse changes. Conclusion: Hsa-miR-217 and its target sirtuin 1 acted as metastasis suppressor and promoter gene in non-small cell lung cancer, respectively. The hsa-miR-217/sirtuin 1/P53/KAI1 metastasis regulatory pathway showed novel and crucial roles in brain metastasis from non-small cell lung cancer. This axis might be a potential target for the treatment of brain metastasis of lung cancer.
Collapse
Affiliation(s)
- Wenxia Jiang
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China,Experimental Centre of Medicine and Life Science, Tongji University, Shanghai, China
| | - Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Juan Wei
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, China
| | - Yifeng Du
- Experimental Centre of Medicine and Life Science, Tongji University, Shanghai, China
| | - Yan Zhao
- Experimental Centre of Medicine and Life Science, Tongji University, Shanghai, China
| | - Xue Deng
- Tongji University School of Medicine, Shanghai, China
| | - Xiangdong Lin
- Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Li Y, Fei L, Wang J, Niu Q. Inhibition of miR-217 Protects Against Myocardial Ischemia-Reperfusion Injury Through Inactivating NF-κB and MAPK Pathways. Cardiovasc Eng Technol 2020; 11:219-227. [PMID: 31916040 DOI: 10.1007/s13239-019-00452-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Recent studies have demonstrated that miRNAs play a vital role in regulating myocardial ischemia/reperfusion injury (MIRI). MiR-217 has been proven to be implicated in cardiac diseases such as chronic heart failure and cardiac myxoma. However, the role of miR-217 in MIRI is not clear. METHODS A mouse MIRI model was established and the myocardial infarct size was evaluated by TTC staining. The expression level of miR-217 in I/R group was determined by real-time polymerase chain reaction. Subsequently, MIRI mice and H9C2 cells were administrated with miR-217 inhibitor in vivo and in vitro, respectively. The levels of TNF-α and IL-6 were measured by commercially available ELISA kits. Blood and cell samples were collected for the measurement of lactate dehydrogenase (LDH) level and caspase-3 activity. Cell viability was assessed with the CCK-8 assay. We then explored the detailed molecular mechanisms by TargetScan 7.1 database and further studies were performed to prove the prediction by dual-luciferase reporter assay. RESULTS Larger stainless infarct areas were observed in the MIRI group, accompanied by inceased serum LDH activity, indicating the mouse MIRI model was successfully established. MiR-217 was up-regulated in MIRI mice and hypoxia/reoxygenation-treated H9C2 cells. MiR-217 knockdown alleviated the MIRI in MIRI mouse model, and also attenuated the myocardial hypoxia/reoxygenation injury in H9C2 cells. Moreover, dual specificity protein phosphatase 14 (DUSP14) was proved to be a target of miR-217. Besides, further study indicated that inhibition of miR-217 protected against MIRI through inactivating NF-κB and MAPK pathways via targeting DUSP14. CONCLUSIONS MiR-217 inhibition protected against MIRI through inactivating NF-κB and MAPK pathways by targeting DUSP14. This study may provide valuable diagnostic and factors and therapeutic agents for MIRI.
Collapse
Affiliation(s)
- Yanfang Li
- Department of Cardiovascular Medicine, Heji Hospital Affiliated to Changzhi Medical College, 271 East Taihang Street, Changzhi, 046000, Shanxi, China.
| | - Liping Fei
- Department of Cardiovascular Medicine, Heji Hospital Affiliated to Changzhi Medical College, 271 East Taihang Street, Changzhi, 046000, Shanxi, China
| | - Junli Wang
- Department of Cardiovascular Medicine, Heji Hospital Affiliated to Changzhi Medical College, 271 East Taihang Street, Changzhi, 046000, Shanxi, China
| | - Qingying Niu
- Department of Cardiovascular Medicine, Heji Hospital Affiliated to Changzhi Medical College, 271 East Taihang Street, Changzhi, 046000, Shanxi, China
| |
Collapse
|
14
|
Liu C, Wang JO, Zhou WY, Chang XY, Zhang MM, Zhang Y, Yang XH. Long non-coding RNA LINC01207 silencing suppresses AGR2 expression to facilitate autophagy and apoptosis of pancreatic cancer cells by sponging miR-143-5p. Mol Cell Endocrinol 2019; 493:110424. [PMID: 30991076 DOI: 10.1016/j.mce.2019.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is a serious malignancy accompanied by a well-documented poor prognosis. Accumulating studies have indicated the crucial roles played by long non-coding RNAs (lncRNAs) in proliferation, apoptosis and invasion of cancer cells. The aim of the current study was to investigate the role of lncRNA LINC01207 in autophagy and apoptosis of pancreatic cancer cells and its regulatory mechanism interacting with miR-143-5p. Initially, expression profiles of lncRNAs and genes associated with pancreatic cancer were identified. The expression patterns of LINC01207, miR-143-5p and AGR2 in both pancreatic cancer and adjacent tissues were then determined. The binding relationship of LINC01207 to miR-143-5p and targeting relationship of miR-143-5p to AGR2 were subsequently verified. Silencing of LINC01207, or up-regulation or down-regulation of miR-143-5p was introduced into the pancreatic cancer cells, so as to analyze their effects on the cell growth, apoptosis and autophagy. Besides, these regulatory effects were further explored with the determination of the autophagy- and apoptosis-related gene or proteins. LINC01207 and AGR2 were highly expressed while miR-143-5p was poorly expressed in pancreatic cancer. Functionally, LINC01207 can bind to miR-143-5p, and AGR2 was a target gene of miR-143-5p. Importantly, silencing of LINC01207 down-regulated the expression of AGR2 by up-regulating miR-143-5p. Moreover, silencing of LINC01207 and up-regulation of miR-143-5p promoted cell apoptosis and autophagy, corresponding to increased expression of autophagy- and apoptosis-related proteins, in addition to inhibited cell growth. Taken together, silencing of LINC01207 prevents the progression of pancreatic cancer by impairing miR-143-5p-targeted AGR2 expression, providing a potential target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Chang Liu
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Jin-Ou Wang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Wen-Yang Zhou
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Xiao-Ying Chang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Ming-Ming Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Ying Zhang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Xiang-Hong Yang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China.
| |
Collapse
|
15
|
Alsereihi R, Schulten HJ, Bakhashab S, Saini K, Al-Hejin AM, Hussein D. Leveraging the Role of the Metastatic Associated Protein Anterior Gradient Homologue 2 in Unfolded Protein Degradation: A Novel Therapeutic Biomarker for Cancer. Cancers (Basel) 2019; 11:cancers11070890. [PMID: 31247903 PMCID: PMC6678570 DOI: 10.3390/cancers11070890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022] Open
Abstract
Effective diagnostic, prognostic and therapeutic biomarkers can help in tracking disease progress, predict patients’ survival, and considerably affect the drive for successful clinical management. The present review aims to determine how the metastatic-linked protein anterior gradient homologue 2 (AGR2) operates to affect cancer progression, and to identify associated potential diagnostic, prognostic and therapeutic biomarkers, particularly in central nervous system (CNS) tumors. Studies that show a high expression level of AGR2, and associate the protein expression with the resilience to chemotherapeutic treatments or with poor cancer survival, are reported. The primary protein structures of the seven variants of AGR2, including their functional domains, are summarized. Based on experiments in various biological models, this review shows an orchestra of multiple molecules that regulate AGR2 expression, including a feedback loop with p53. The AGR2-associated molecular functions and pathways including genomic integrity, proliferation, apoptosis, angiogenesis, adhesion, migration, stemness, and inflammation, are detailed. In addition, the mechanisms that can enable the rampant oncogenic effects of AGR2 are clarified. The different strategies used to therapeutically target AGR2-positive cancer cells are evaluated in light of the current evidence. Moreover, novel associated pathways and clinically relevant deregulated genes in AGR2 high CNS tumors are identified using a meta-analysis approach.
Collapse
Affiliation(s)
- Reem Alsereihi
- Neurooncology Translational Group, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia.
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Sherin Bakhashab
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
- Biochemistry Department, King Abdulaziz University, P.O. Box 80218, Jeddah 21589, Saudi Arabia.
| | - Kulvinder Saini
- School of Biotechnology, Eternal University, Baru Sahib-173101, Himachal Pradesh, India.
| | - Ahmed M Al-Hejin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
- Microbiology Unit, King Fahad Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| | - Deema Hussein
- Neurooncology Translational Group, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah, 21589, Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
16
|
miR-135b-5p enhances doxorubicin-sensitivity of breast cancer cells through targeting anterior gradient 2. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:26. [PMID: 30665445 PMCID: PMC6341729 DOI: 10.1186/s13046-019-1024-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/06/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The pro-oncogenic anterior gradient 2 (AGR2) is involved in tumor growth and drug resistance of breast cancer. Mechanisms that regulate expression of AGR2 still need to be elucidated. METHODS In this study, expression levels of AGR2 and miR-135b-5p were analyzed in different breast cancer cell lines as well as in clinical breast cancer tissues. The in vitro and in vivo functional effect of AGR2 and miR-135b-5p were also investigated. A luciferase reporter assay was applied to confirm the interaction between miR-135b-5p and AGR2 mRNA. RESULTS We identified AGR2 as a target of miR-135b-5p. Expression of AGR2 was up-regulated in doxorubicin-resistant breast cancer cells. AGR2 mediated doxorubicin-sensitivity of breast cancer cells both in vitro and in vivo. miR-135b-5p negatively regulated AGR2-expression of breast cancer cells increasing doxorubicin-sensitivity. However, miR-135b-5p was down-regulated in doxorubicin-resistant breast cancer cells as well as during treatment with doxorubicin, which might be a probable reason for over-expression of AGR2. Up-regulation of miR-135b-5p increased doxorubicin-sensitivity of breast cancer cells in vivo. In addition, levels of AGR2 negatively correlated with levels of miR-135b-5p in clinical breast cancer tissue samples. CONCLUSION Our results highlight the potential of miR-135b-5p as a target for treating AGR2-expressing breast cancer with doxorubicin-resistance.
Collapse
|