1
|
Shivarov V, Tsvetkova G, Micheva I, Hadjiev E, Petrova J, Ivanova A, Madjarova G, Ivanova M. Differential modulation of mutant CALR and JAK2 V617F-driven oncogenesis by HLA genotype in myeloproliferative neoplasms. Front Immunol 2024; 15:1427810. [PMID: 39351227 PMCID: PMC11439724 DOI: 10.3389/fimmu.2024.1427810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
It has been demonstrated previously that human leukocyte antigen class I (HLA-I) and class II (HLA-II) alleles may modulate JAK2 V617F and CALR mutation (CALRmut)-associated oncogenesis in myeloproliferative neoplasms (MPNs). However, the role of immunogenetic factors in MPNs remains underexplored. We aimed to investigate the potential involvement of HLA genes in CALRmut+ MPNs. High-resolution genotyping of HLA-I and -II loci was conducted in 42 CALRmut+ and 158 JAK2 V617F+ MPN patients and 1,083 healthy controls. A global analysis of the diversity of HLA-I genotypes revealed no significant differences between CALRmut+ patients and controls. However, one HLA-I allele (C*06:02) showed an inverse correlation with presence of CALR mutation. A meta-analysis across independent cohorts and healthy individuals from the 1000 Genomes Project confirmed an inverse correlation between the presentation capabilities of the HLA-I loci for JAK2 V617F and CALRmut-derived peptides in both patients and healthy individuals. scRNA-Seq analysis revealed low expression of TAP1 and CIITA genes in CALRmut+ hematopoietic stem and progenitor cells. In conclusion, the HLA-I genotype differentially restricts JAK2 V617F and CALRmut-driven oncogenesis potentially explaining the mutual exclusivity of the two mutations and differences in their presentation latency. These findings have practical implications for the development of neoantigen-based vaccines in MPNs.
Collapse
Affiliation(s)
- Velizar Shivarov
- Department of Experimental Research, Medical University Pleven, Pleven, Bulgaria
| | - Gergana Tsvetkova
- Department of Clinical Hematology, Alexandrovska University Hospital, Medical University Sofia, Sofia, Bulgaria
| | - Ilina Micheva
- Department of Clinical Hematology, Saint Marina University Hospital, Medical University Varna, Varna, Bulgaria
| | - Evgueniy Hadjiev
- Department of Clinical Hematology, Alexandrovska University Hospital, Medical University Sofia, Sofia, Bulgaria
| | - Jasmina Petrova
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, Sofia, Bulgaria
| | - Anela Ivanova
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, Sofia, Bulgaria
| | - Galia Madjarova
- Department of Physical Chemistry, Faculty of Chemistry and Pharmacy, Sofia University “St. Kl. Ohridski”, Sofia, Bulgaria
| | - Milena Ivanova
- Department of Clinical Immunology, Alexandrovska University Hospital, Medical University Sofia, Sofia, Bulgaria
| |
Collapse
|
2
|
Dvořáček L, Marková J, Holoubek A, Grebeňová D, Kundrát D, Kuželová K, Schwarz J. A novel germline hyperactivating JAK2 mutation L604F. Ann Hematol 2023; 102:2725-2734. [PMID: 37639050 PMCID: PMC10492870 DOI: 10.1007/s00277-023-05423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023]
Abstract
Somatic JAK2 mutations are the main molecular cause of the vast majority of polycythemia vera (PV) cases. According to a recent structural model, the prevalent acquired V617F mutation improves the stability of the JAK2 dimer, thereby enhancing the constitutive JAK2 kinase activity. Germline JAK2 mutations usually do not largely alter JAK2 signaling, although they may modulate the impact of V617F. We found an unusual germline JAK2 mutation L604F in homozygous form in a young PV patient, along with a low allele burden JAK2 V617F mutation, and in her apparently healthy sister. Their father with a PV-like disease had L604F in a heterozygous state, without V617F. The functional consequences of JAK2 L604Fmutation were compared with those induced by V617F in two different in vitro model systems: (i) HEK293T cells were transfected with plasmids for exogenous JAK2-GFP expression, and (ii) endogenous JAK2 modifications were introduced into HeLa cells using CRISPR/Cas9. Both mutations significantly increased JAK2 constitutive activity in transfected HEK293T cells. In the second model, JAK2 modification resulted in reduced total JAK2 protein levels. An important difference was also detected: as described previously, the effect of V617F on JAK2 kinase activity was abrogated in the absence of the aromatic residue F595. In contrast, JAK2 hyperactivation by L604F was only partially inhibited by the F595 change to alanine. We propose that the L604F mutation increases the probability of spontaneous JAK2 dimer formation, which is physiologically mediated by F595. In addition, L604F may contribute to dimer stabilization similarly to V617F.
Collapse
Affiliation(s)
- Lukáš Dvořáček
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Jana Marková
- Clinical Department, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Aleš Holoubek
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Dana Grebeňová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - David Kundrát
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Kateřina Kuželová
- Department of Proteomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.
| | - Jiří Schwarz
- Clinical Department, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
3
|
Ivanova M, Tsvetkova G, Lessichkova S, Gesheva N, Hadjiev E, Shivarov V. Exploration of the role of NKG2D ligands MICA and MICB in JAK2 V617F-positive myeloproliferative neoplasms. HLA 2023; 102:168-178. [PMID: 37002719 DOI: 10.1111/tan.15026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 04/04/2023]
Abstract
JAK2 V617F-driven myeloproliferative neoplasms (MPNs) can escape immune surveillance through PD-L1 up-regulation and HLA class I pathway down-regulation. To complement these data we assessed the role of major histocompatibility complex class I-related genes (MICA and MICB) in JAK2 V617F+ MPNs. Using high resolution genotyping we identified two protective alleles, MICA*008:01 and MICA*016. MPN patients had significantly higher levels of soluble sMICA molecules. Peripheral blood JAK2 V617F+ granulocytes had higher surface expression of MICB but did not differ in the amount of MICA and MICB transcripts from normal granulocytes. MICA and MICB genes were significantly down-regulated in JAK2 V617F+ CD34+ cells from primary myelofibrosis patients in comparison to normal CD34+ hematopoietic stem cells. These data suggest minor but significant role of MICA and MICB genes in the pathogenesis of MPNs. It is also possible that MICA targeting approaches could be of clinical benefit for some of those patients.
Collapse
Affiliation(s)
- Milena Ivanova
- Department of Clinical Immunology, University Hospital Alexandrovska, Medical University, Sofia, Bulgaria
| | - Gergana Tsvetkova
- Department of Clinical Hematology, University Hospital Alexandrovska, Medical University, Sofia, Bulgaria
| | - Spaska Lessichkova
- Department of Clinical Immunology, University Hospital Alexandrovska, Medical University, Sofia, Bulgaria
| | - Nevena Gesheva
- Department of Clinical Immunology, University Hospital Alexandrovska, Medical University, Sofia, Bulgaria
| | - Evgueniy Hadjiev
- Department of Clinical Hematology, University Hospital Alexandrovska, Medical University, Sofia, Bulgaria
| | - Velizar Shivarov
- Department of Experimental Research, Medical University, Pleven, Bulgaria
| |
Collapse
|
4
|
The relevance of HLA class II genes in JAK2 V617F-positive myeloproliferative neoplasms. Hum Immunol 2023; 84:199-207. [PMID: 36707384 DOI: 10.1016/j.humimm.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
In the present study we analyzed the relevance of HLA class II in JAK2 V617F-positive (JAK2 V617F+) myeloproliferative neoplasms (MPNs) focusing on genotype diversity, associations with specific alleles and haplotypes and the level of gene expression. One hundred and thirty-nine JAK2 V617F+ MPN patients and 1083 healthy controls, typed by Next generation sequencing (NGS) were included in the study. Multivariate generalized linear models with age as a covariate were applied for analysis of HLA-II allele and haplotype associations. Publicly available gene expression datasets were used to analyze HLA-II pathway genes expression in CD34+ stem cells (SCs) from MPN patients and healthy controls. We did not observe differences in HLA evolutionary divergence (HED) between JAK2 V617F+ MPNs and healthy controls. Two alleles: HLA-DPB1*03:01, DQB1*04:02 and 4 haplotypes: DPB1*02:01-DQA1*05:05-DQB1*03:01-DRB1*11:01, DPB1*04:02-DQA1*05:05-DQB1*03:01-DRB1*11:03, DPB1*02:01-DQA1*01:04-DQB1*05:03-DRB1*14:04, and DPB1*04:01-DQA1*03:01-DQB1*03:02-DRB1*04:01 had significantly lower frequency in MPN patients compared to controls. Additionally, we observed HLA-II alleles and haplotypes with statistically higher frequencies in JAK2 V617F+ patients. Differential gene expression analysis showed down-regulation of HLA-DRB1, -DRA, -DMA, -DMB, -DOA,-DRB4, CIITA, and CD74 genes in JAK2 V617F+ MPN CD34+ SCs as compared to normal CD34 + SCs. In conclusion, this study provides evidence for the pleiotropic effects of HLA-II genes in JAK2 V617F-driven MPNs.
Collapse
|
5
|
Proteomic Analysis of Hypoxia-Induced Senescence of Human Bone Marrow Mesenchymal Stem Cells. Stem Cells Int 2021; 2021:5555590. [PMID: 34484348 PMCID: PMC8416403 DOI: 10.1155/2021/5555590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/29/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
Methods Hypoxia in hBMSCs was induced for 0, 4, and 12 hours, and cellular senescence was evaluated by senescence-associated β-galactosidase (SA-β-gal) staining. Tandem mass tag (TMT) labeling was combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for differential proteomic analysis of hypoxia in hBMSCs. Parallel reaction monitoring (PRM) analysis was used to validate the candidate proteins. Verifications of signaling pathways were evaluated by western blotting. Cell apoptosis was evaluated using Annexin V/7-AAD staining by flow cytometry. The production of reactive oxygen species (ROS) was detected by the fluorescent probe 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA). Results Cell senescence detected by SA-β-gal activity was higher in the 12-hour hypoxia-induced group. TMT analysis of 12-hour hypoxia-induced cells identified over 6000 proteins, including 686 differentially expressed proteins. Based on biological pathway analysis, we found that the senescence-associated proteins were predominantly enriched in the cancer pathways, PI3K-Akt pathway, and cellular senescence signaling pathways. CDK1, CDK2, and CCND1 were important nodes in PPI analyses. Moreover, the CCND1, UQCRH, and COX7C expressions were verified by PRM. Hypoxia induction for 12 hours in hBMSCs reduced CCND1 expression but promoted ROS production and cell apoptosis. Such effects were markedly reduced by the PI3K agonist, 740 Y-P, and attenuated by LY294002. Conclusions Hypoxia of hBMSCs inhibited CCND1 expression but promoted ROS production and cell apoptosis through activating the PI3K-dependent signaling pathway. These findings provided a detailed characterization of the proteomic profiles related to hypoxia-induced senescence of hBMSCs and facilitated our understanding of the molecular mechanisms leading to stem cell senescence.
Collapse
|
6
|
Joyce S, Ternette N. Know thy immune self and non-self: Proteomics informs on the expanse of self and non-self, and how and where they arise. Proteomics 2021; 21:e2000143. [PMID: 34310018 PMCID: PMC8865197 DOI: 10.1002/pmic.202000143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022]
Abstract
T cells play an important role in the adaptive immune response to a variety of infections and cancers. Initiation of a T cell mediated immune response requires antigen recognition in a process termed MHC (major histocompatibility complex) restri ction. A T cell antigen is a composite structure made up of a peptide fragment bound within the antigen‐binding groove of an MHC‐encoded class I or class II molecule. Insight into the precise composition and biology of self and non‐self immunopeptidomes is essential to harness T cell mediated immunity to prevent, treat, or cure infectious diseases and cancers. T cell antigen discovery is an arduous task! The pioneering work in the early 1990s has made large‐scale T cell antigen discovery possible. Thus, advancements in mass spectrometry coupled with proteomics and genomics technologies make possible T cell antigen discovery with ease, accuracy, and sensitivity. Yet we have only begun to understand the breadth and the depth of self and non‐self immunopeptidomes because the molecular biology of the cell continues to surprise us with new secrets directly related to the source, and the processing and presentation of MHC ligands. Focused on MHC class I molecules, this review, therefore, provides a brief historic account of T cell antigen discovery and, against a backdrop of key advances in molecular cell biologic processes, elaborates on how proteogenomics approaches have revolutionised the field.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System and the Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nicola Ternette
- Centre for Cellular and Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Gao C, Han Y, Bai L, Wang Y, Xue F. IK: A novel cell mitosis regulator that contributes to carcinogenesis. Cell Biochem Funct 2021; 39:854-859. [PMID: 34250629 DOI: 10.1002/cbf.3660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 11/12/2022]
Abstract
Carcinogenesis is characterized by abnormal regulation of cell growth and cell death. IK is a novel cell mitosis regulator that may contribute to carcinogenesis. Previous studies showed that the loss of IK expression resulted in cell mitotic arrest and even cell death. Besides, IK can also inhibit the interferon gamma (IFN-γ)-induced expression of human leukocyte antigen (HLA) class II antigen, which is associated with tumour immune microenvironment. To gain insight into the current research progress regarding IK, we conducted a review and searched the limited literature on IK using PubMed or Web of Science. In this review, we discussed the possible biological functions and mechanisms of IK in cancer and its immune microenvironment. Future perspectives of IK were also mentioned to explore its clinical significance.
Collapse
Affiliation(s)
- Chao Gao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Yanyan Han
- Department of Pathology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Bai
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Department of Gynecology and Obstetrics, Nankai University Affiliated Hospital (Tianjin Fourth Hospital), Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin, China
| |
Collapse
|