1
|
Lu Y, Lin L, Lin J, Wu B, Cai G, Wang X, Ma X. Superior detection of low-allele burden Janus kinase 2 V617F mutation and monitoring clonal evolution in myeloproliferative neoplasms using chip-based digital PCR. Ann Hematol 2024; 103:3553-3562. [PMID: 39043913 PMCID: PMC11358234 DOI: 10.1007/s00277-024-05896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
The JAK2 V617F is a prevalent driver mutation in Philadelphia chromosome-negative myeloproliferative neoplasms (Ph-MPNs), significantly affecting disease progression, immunophenotype, and patient outcomes. The World Health Organization (WHO) guidelines highlight the JAK2 V617F mutation as one of the key diagnostic criterions for Ph-MPNs. In this study, we analyzed 283 MPN samples with the JAK2 V617F mutation to assess the effectiveness of three detection technologies: chip-based digital PCR (cdPCR), real-time quantitative PCR (qPCR), and next-generation sequencing (NGS). Additionally, we investigated the relationship between JAK2 V617F mutant allele burden (% JAK2 V617F) and various laboratory characteristics to elucidate potential implications in MPN diagnosis. Our findings demonstrated high conformance of cdPCR with qPCR/NGS for detecting % JAK2 V617F, but the mutant allele burdens detected by qPCR/NGS were lower than those detected by cdPCR. Moreover, the cdPCR exhibited high sensitivity with a limit of detection (LoD) of 0.08% and a limit of quantification (LoQ) of 0.2% for detecting % JAK2 V617F in MPNs. Clinical implications were explored by correlating % JAK2 V617F with various laboratory characteristics in MPN patients, revealing significant associations with white blood cell counts, lactate dehydrogenase levels, and particularly β2-microglobulin (β2-MG) levels. Finally, a case report illustrated the application of cdPCR in detecting low-allele burdens in a de novo chronic myeloid leukemia (CML) patient with a hidden JAK2 V617F subclone, which expanded during tyrosine kinase inhibitor (TKI) treatment. Our findings underscore the superior sensitivity and accuracy of cdPCR, making it a valuable tool for early diagnosis and monitoring clonal evolution.
Collapse
Affiliation(s)
- Yiyi Lu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Lin Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Jiafei Lin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Beiying Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Gang Cai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Xuefei Ma
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China.
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Hansen MH, Maagaard M, Cédile O, Nyvold CG. SWIGH-SCORE: A translational light-weight approach in computational detection of rearranged immunoglobulin heavy chain to be used in monoclonal lymphoproliferative disorders. MethodsX 2024; 12:102741. [PMID: 38846434 PMCID: PMC11154698 DOI: 10.1016/j.mex.2024.102741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 05/02/2024] [Indexed: 06/09/2024] Open
Abstract
We present a lightweight tool for clonotyping and measurable residual disease (MRD) assessment in monoclonal lymphoproliferative disorders. It is a translational method that enables computational detection of rearranged immunoglobulin heavy chain gene sequences.•The swigh-score clonotyping tool emphasizes parallelization and applicability across sequencing platforms.•The algorithm is based on an adaptation of the Smith-Waterman algorithm for local alignment of reads generated by 2nd and 3rd generation of sequencers.For method validation, we demonstrate the targeted sequences of immunoglobulin heavy chain genes from diagnostic bone marrow using serial dilutions of CD138+ plasma cells from a patient with multiple myeloma. Sequencing libraries from diagnostic samples were prepared for the three sequencing platforms, Ion S5 (Thermo Fisher Scientific), MiSeq (Illumina), and MinION (Oxford Nanopore), using the LymphoTrack assay. Basic quality filtering was performed, and a Smith-Waterman-based swigh-score algorithm was developed in shell and C for clonotyping and MRD assessment using FASTQ data files. Performance is demonstrated across the three different sequencing platforms.
Collapse
Affiliation(s)
- Marcus Høy Hansen
- Haematology-Pathology Research Laboratory, Research Unit of Haematology, Department of Hematology, and Research Unit of Pathology, Department of Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Markus Maagaard
- Haematology-Pathology Research Laboratory, Research Unit of Haematology, Department of Hematology, and Research Unit of Pathology, Department of Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Oriane Cédile
- Haematology-Pathology Research Laboratory, Research Unit of Haematology, Department of Hematology, and Research Unit of Pathology, Department of Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
- OPEN, Odense Patient data Explorative Network, Haematology-Pathology Research Laboratory, Odense University Hospital, Odense, Denmark
| | - Charlotte Guldborg Nyvold
- Haematology-Pathology Research Laboratory, Research Unit of Haematology, Department of Hematology, and Research Unit of Pathology, Department of Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
- OPEN, Odense Patient data Explorative Network, Haematology-Pathology Research Laboratory, Odense University Hospital, Odense, Denmark
| |
Collapse
|
3
|
Hansen MH, Cédile O, Abildgaard N, Nyvold CG. The potential of 3rd-generation nanopore sequencing for B-cell clonotyping in lymphoproliferative disorders. EJHAEM 2024; 5:290-293. [PMID: 38406528 PMCID: PMC10887334 DOI: 10.1002/jha2.815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 09/29/2023] [Accepted: 10/24/2023] [Indexed: 02/27/2024]
Abstract
Lymphoid malignancies are characterized by clonal cell expansion, often identifiable by unique immunoglobulin rearrangements. Heavy (IGH) and light-chain gene usage offers diagnostic insights and enables sensitive residual disease detection via next-generation sequencing. With its adaptable throughput and variable read lengths, Oxford Nanopore thirdgeneration sequencing now holds promise for clonotyping. This study analyzed CD138+ plasma-cell DNA from eight multiple myeloma patients, comparing clonotyping performance between Nanopore sequencing, Illumina MiSeq, and Ion Torrent S5. We demonstrated clonotype consistency across platforms through Smith-Waterman local alignment of nanopore reads. The mean clonal percentage of IGH V and J gene usage in the CD138+ cells was 69% for Nanopore, 67% for S5, and 76% for MiSeq. When aligned with known clonotypes, clonal cells averaged a 91% similarity, exceeding 85%. In summary, Nanopore sequencing, with its capacity for generating millions of high-quality reads, proves effective for detecting clonal IGH rearrangements. This versatile platform offers the potential for measuring residual disease down to a sensitivity level of 10-6 at a lower cost, marking a significant advancement in clonotyping techniques.
Collapse
Affiliation(s)
- Marcus H. Hansen
- Haematology‐Pathology Research Laboratory, Research Unit of HaematologyDepartment of Haematology, and Research Unit of PathologyDepartment of PathologyUniversity of Southern Denmark and Odense University HospitalOdenseDenmark
| | - Oriane Cédile
- Haematology‐Pathology Research Laboratory, Research Unit of HaematologyDepartment of Haematology, and Research Unit of PathologyDepartment of PathologyUniversity of Southern Denmark and Odense University HospitalOdenseDenmark
- OPEN, Odense Patient data Explorative Network, Odense University HospitalOdenseDenmark
| | - Niels Abildgaard
- Haematology‐Pathology Research Laboratory, Research Unit of HaematologyDepartment of Haematology, and Research Unit of PathologyDepartment of PathologyUniversity of Southern Denmark and Odense University HospitalOdenseDenmark
| | - Charlotte G. Nyvold
- Haematology‐Pathology Research Laboratory, Research Unit of HaematologyDepartment of Haematology, and Research Unit of PathologyDepartment of PathologyUniversity of Southern Denmark and Odense University HospitalOdenseDenmark
- OPEN, Odense Patient data Explorative Network, Odense University HospitalOdenseDenmark
| |
Collapse
|
4
|
Momen N, Tario J, Fu K, Qian YW. Multiparameter flow cytometry and ClonoSEQ correlation to evaluate precursor B-lymphoblastic leukemia measurable residual disease. J Hematop 2023; 16:85-94. [PMID: 38175444 DOI: 10.1007/s12308-023-00544-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/03/2023] [Indexed: 01/05/2024] Open
Abstract
Measurable residual disease (MRD) detection for precursor B-lymphoblastic leukemia (B-ALL) has become the standard of care. However, the testing methodology has not been standardized. We aim to correlate COG multiparameter flow cytometry (MFC) and ClonoSEQ techniques to assess the test characteristics, to study abnormal immunophenotype for B-ALL MRD, and to observe B-ALL clonal evolution and the impact of blinatumomab therapy on MFC testing. MFC and molecular reports were retrieved from electronic medical records and data was reviewed. Included in this study were 74 bone marrow samples collected from 31 B-ALL patients at our institution between January 2021 and March 2022. COG MFC and ClonoSEQ results were concordant in 59/74 samples (80%) with positive concordant results in 12 samples (16%) and negative concordant results in 47 samples (64%). Discordant results were seen in 15/74 samples (20%), with 14 samples (19%) showing ClonoSEQ + /MFC- results and only 1 sample (1%) showing MFC + /ClonoSEQ- result. ClonoSEQ + /MFC- cases had MRD values ranging from 1 to 1400 cells/million nucleated cells with 86% of cases showing MRD values of < 100 cells/million nucleated cells. Newly identified dominant sequences were detected using ClonoSEQ in 2/31 patients (6%) during follow-up. All 14 bone marrow samples from 8 patients, who had gone through blinatumomab immunotherapy, were MRD negative by MFC, but 3 cases were MRD positive by ClonoSEQ. Our results show strong correlation between COG MFC and ClonoSEQ (r = 0.96), and both methods are complementary. Clonal evolution may occur, and blinatumomab immunotherapy may impact MFC B-ALL MRD evaluation.
Collapse
Affiliation(s)
- Nouran Momen
- Department of Pathology, Roswell Park Cancer Institute, Basic Science Building, Room 529, Elm St & Carlton St, Buffalo, NY, 14203, USA
- Clinical & Chemical Pathology Department, Cairo University, Cairo, Egypt
| | - Joseph Tario
- Department of Pathology, Roswell Park Cancer Institute, Basic Science Building, Room 529, Elm St & Carlton St, Buffalo, NY, 14203, USA
| | - Kai Fu
- Department of Pathology, Roswell Park Cancer Institute, Basic Science Building, Room 529, Elm St & Carlton St, Buffalo, NY, 14203, USA
| | - You-Wen Qian
- Department of Pathology, Roswell Park Cancer Institute, Basic Science Building, Room 529, Elm St & Carlton St, Buffalo, NY, 14203, USA.
| |
Collapse
|
5
|
Cédile O, Hansen MH, Dahlmann SK, Kristensen TK, Abildgaard N, Nyvold CG. Reproducibility of low-level residual myeloma immunoglobulin detection using ultra-deep sequencing. Exp Hematol 2023; 119-120:14-20. [PMID: 36708872 DOI: 10.1016/j.exphem.2023.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/20/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023]
Abstract
Multiple myeloma, a mature B-cell neoplasm, is the second most common hematologic malignancy. Despite advancements in treatment, the disease remains incurable, with more than 100,000 annual deaths worldwide. As recommended by the International Myeloma Working Group, measurable residual disease (MRD) should be addressed at a 10-5 sensitivity level or beyond for practical purposes. Next-generation sequencing (NGS) has provided new opportunities with deep sequencing of clonal rearrangements of the immunoglobulin heavy chain (IGH) locus in B-cell malignancies. Although the ability to resolve one cancerous cell in a million other B cells is becoming attractive as a prognostic indicator in sustained patients who are MRD-negative, reaching consistent sensitivity levels is challenging because of sample stochasticity and the substantial amount of deoxyribonucleic acid (DNA) required for library preparation. Thus, in the presented study, we implemented ultra-deep sequencing of rearranged IGH to investigate the reproducibility and consistency aimed at the 10-5 sensitivity level. In this controlled setup, our data provided stable MRD detection of 1.2 clonal cells per 100,000 analyzed cells and longitudinal reproducibility. We also demonstrated a low false-negative rate using 4-5 replicates and 700-800 ng DNA per sequencing replicate. In conclusion, adding an internal control to the replicates enabled clonal cell normalization for MRD evaluation as a stable reference. These findings may guide MRD-level reporting and comparisons between laboratories.
Collapse
Affiliation(s)
- Oriane Cédile
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark; OPEN, Odense Patient Data Explorative Network, Odense University Hospital, Odense, Denmark
| | - Marcus Høy Hansen
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark.
| | - Sara Kamuk Dahlmann
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Thomas Kielsgaard Kristensen
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark; Department of Clinical Development, Odense University Hospital, Odense, Denmark
| | - Niels Abildgaard
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark
| | - Charlotte Guldborg Nyvold
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, Odense, Denmark; OPEN, Odense Patient Data Explorative Network, Odense University Hospital, Odense, Denmark
| |
Collapse
|
6
|
Svaton M, Skotnicova A, Reznickova L, Rennerova A, Valova T, Kotrova M, van der Velden VHJ, Brüggemann M, Darzentas N, Langerak AW, Zuna J, Stary J, Trka J, Fronkova E. NGS better discriminates true MRD positivity for the risk stratification of childhood ALL treated on an MRD-based protocol. Blood 2023; 141:529-533. [PMID: 36240445 PMCID: PMC10651772 DOI: 10.1182/blood.2022017003] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/02/2022] [Accepted: 10/06/2022] [Indexed: 02/07/2023] Open
Abstract
We compared minimal/measurable residual disease (MRD) levels evaluated by routinely used real-time quantitative polymerase chain reaction (qPCR) patient-specific assays and by next-generation sequencing (NGS) approach in 780 immunoglobulin (IG) and T-cell receptor (TR) markers in 432 children with B-cell precursor acute lymphoblastic leukemia treated on the AIEOP-BFM ALL 2009 protocol. Our aim was to compare the MRD-based risk stratification at the end of induction. The results were concordant in 639 of 780 (81.9%) of these markers; 37 of 780 (4.7%) markers were detected only by NGS. In 104 of 780 (13.3%) markers positive only by qPCR, a large fraction (23/104; 22.1%) was detected also by NGS, however, owing to the presence of identical IG/TR rearrangements in unrelated samples, we classified those as nonspecific/false-positive. Risk group stratification based on the MRD results by qPCR and NGS at the end of induction was concordant in 76% of the patients; 19% of the patients would be assigned to a lower risk group by NGS, largely owing to the elimination of false-positive qPCR results, and 5% of patients would be assigned to a higher risk group by NGS. NGS MRD is highly concordant with qPCR while providing more specific results and can be an alternative in the front line of MRD evaluation in forthcoming MRD-based protocols.
Collapse
Affiliation(s)
- Michael Svaton
- CLIP–Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Aneta Skotnicova
- CLIP–Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Leona Reznickova
- CLIP–Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Andrea Rennerova
- CLIP–Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Tatana Valova
- CLIP–Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Michaela Kotrova
- Department of Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Vincent H. J. van der Velden
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Monika Brüggemann
- Department of Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nikos Darzentas
- Department of Medicine II, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Anton W. Langerak
- Department of Immunology, Laboratory Medical Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jan Zuna
- CLIP–Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan Stary
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jan Trka
- CLIP–Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Eva Fronkova
- CLIP–Childhood Leukaemia Investigation Prague, Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
7
|
Detecting measurable residual disease beyond 10-4 by an IGHV leader-based NGS approach improves prognostic stratification in CLL. Blood 2023; 141:519-528. [PMID: 36084320 DOI: 10.1182/blood.2022017411] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 02/07/2023] Open
Abstract
The sensitivity of conventional techniques for reliable quantification of minimal/measurable residual disease (MRD) in chronic lymphocytic leukemia (CLL) is limited to MRD 10-4. Measuring MRD <10-4 could help to further distinguish between patients with CLL with durable remission and those at risk of early relapse. We herein present an academically developed immunoglobulin heavy-chain variable (IGHV) leader-based next-generation sequencing (NGS) assay for the quantification of MRD in CLL. We demonstrate, based on measurements in contrived MRD samples, that the linear range of detection and quantification of our assay reaches beyond MRD 10-5. If provided with sufficient DNA input, MRD can be detected down to MRD 10-6. There was high interassay concordance between measurements of the IGHV leader-based NGS assay and allele-specific oligonucleotide quantitative polymerase chain reaction (PCR) (r = 0.92 [95% confidence interval {CI}, 0.86-0.96]) and droplet digital PCR (r = 0.93 [95% CI, 0.88-0.96]) on contrived MRD samples. In a cohort of 67 patients from the CLL11 trial, using MRD 10-5 as a cutoff, undetectable MRD was associated with superior progression-free survival (PFS) and time to next treatment. More important, deeper MRD measurement allowed for additional stratification of patients with MRD <10-4 but ≥10-5. PFS of patients in this MRD range was significantly shorter, compared with patients with MRD <10-5 (hazard ratio [HR], 4.0 [95% CI, 1.6-10.3]; P = .004), but significantly longer, compared with patients with MRD ≥10-4 (HR, 0.44 [95% CI, 0.23-0.87]; P = .018). These results support the clinical utility of the IGHV leader-based NGS assay.
Collapse
|
8
|
Ferla V, Antonini E, Perini T, Farina F, Masottini S, Malato S, Marktel S, Lupo Stanghellini MT, Tresoldi C, Ciceri F, Marcatti M. Minimal residual disease detection by next-generation sequencing in multiple myeloma: Promise and challenges for response-adapted therapy. Front Oncol 2022; 12:932852. [PMID: 36052251 PMCID: PMC9426755 DOI: 10.3389/fonc.2022.932852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Assessment of minimal residual disease (MRD) is becoming a standard diagnostic tool for curable hematological malignancies such as chronic and acute myeloid leukemia. Multiple myeloma (MM) remains an incurable disease, as a major portion of patients even in complete response eventually relapse, suggesting that residual disease remains. Over the past decade, the treatment landscape of MM has radically changed with the introduction of new effective drugs and the availability of immunotherapy, including targeted antibodies and adoptive cell therapy. Therefore, conventional serological and morphological techniques have become suboptimal for the evaluation of depth of response. Recently, the International Myeloma Working Group (IMWG) introduced the definition of MRD negativity as the absence of clonal Plasma cells (PC) with a minimum sensitivity of <10−5 either by next-generation sequencing (NGS) using the LymphoSIGHT platform (Sequenta/Adaptative) or by next-generation flow cytometry (NGF) using EuroFlow approaches as the reference methods. While the definition of the LymphoSIGHT platform (Sequenta/Adaptive) as the standard method derives from its large use and validation in clinical studies on the prognostic value of NGS-based MRD, other commercially available options exist. Recently, the LymphoTrack assay has been evaluated in MM, demonstrating a sensitivity level of 10−5, hence qualifying as an alternative effective tool for MRD monitoring in MM. Here, we will review state-of-the-art methods for MRD assessment by NGS. We will summarize how MRD testing supports clinical trials as a useful tool in dynamic risk-adapted therapy. Finally, we will also discuss future promise and challenges of NGS-based MRD determination for clinical decision-making. In addition, we will present our real-life single-center experience with the commercially available NGS strategy LymphoTrack-MiSeq. Even with the limitation of a limited number of patients, our results confirm the LymphoTrack-MiSeq platform as a cost-effective, readily available, and standardized workflow with a sensitivity of 10−5. Our real-life data also confirm that achieving MRD negativity is an important prognostic factor in MM.
Collapse
Affiliation(s)
- Valeria Ferla
- Hematology and Bone Marrow Transplantation, San Raffaele Scientific Institute, Milan, Italy
- *Correspondence: Valeria Ferla,
| | - Elena Antonini
- Molecular Hematology Laboratory, San Raffaele Scientific Institute, Milan, Italy
| | - Tommaso Perini
- Hematology and Bone Marrow Transplantation, San Raffaele Scientific Institute, Milan, Italy
- Age Related Diseases Laboratory, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Farina
- Hematology and Bone Marrow Transplantation, San Raffaele Scientific Institute, Milan, Italy
| | - Serena Masottini
- Molecular Hematology Laboratory, San Raffaele Scientific Institute, Milan, Italy
| | - Simona Malato
- Hematology and Bone Marrow Transplantation, San Raffaele Scientific Institute, Milan, Italy
| | - Sarah Marktel
- Hematology and Bone Marrow Transplantation, San Raffaele Scientific Institute, Milan, Italy
| | | | - Cristina Tresoldi
- Molecular Hematology Laboratory, San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation, San Raffaele Scientific Institute, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Magda Marcatti
- Hematology and Bone Marrow Transplantation, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
9
|
Elkjær LAL, Cédile O, Hansen MH, Nielsen C, Møller MB, Abildgaard N, Haaber J, Nyvold CG. Exploration of residual disease in stem cell products from mantle cell lymphoma using next-generation sequencing. Leuk Res Rep 2022; 18:100341. [PMID: 36039182 PMCID: PMC9418493 DOI: 10.1016/j.lrr.2022.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 07/01/2022] [Accepted: 08/07/2022] [Indexed: 11/05/2022] Open
Abstract
High-dose chemotherapy followed by autologous stem cell transplantation (ASCT) has become a treatment option for fit patients with mantle cell lymphoma (MCL). However, these patients often relapse within few years, potentially caused by contaminating lymphoma cells within the reinfused stem cell product (SCP). Studies have shown that measurable residual disease, also termed minimal residual disease (MRD), following ASCT predicts shorter survival. Using next-generation sequencing, we explore whether the diagnostic MCL clonotype is present within the infused SCP. MRD was detected in 4/17 of the SCPs, ranging 4–568 clonal cells/100,000 cells. With a median survival of 17 months, 3/4 of patients with MRD+ graft succumbed from MCL relapse versus 2/13 in the MRD– fraction. Patients receiving MRD+ grafts had increased risk of mortality, and thus screening of SCPs may be important for clinical decision-making.
Collapse
|
10
|
Immune Gene Rearrangements: Unique Signatures for Tracing Physiological Lymphocytes and Leukemic Cells. Genes (Basel) 2021; 12:genes12070979. [PMID: 34198966 PMCID: PMC8329920 DOI: 10.3390/genes12070979] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/25/2021] [Indexed: 02/07/2023] Open
Abstract
The tremendous diversity of the human immune repertoire, fundamental for the defense against highly heterogeneous pathogens, is based on the ingenious mechanism of immune gene rearrangements. Rearranged immune genes encoding the immunoglobulins and T-cell receptors and thus determining each lymphocyte's antigen specificity are very valuable molecular markers for tracing malignant or physiological lymphocytes. One of their most significant applications is tracking residual leukemic cells in patients with lymphoid malignancies. This so called 'minimal residual disease' (MRD) has been shown to be the most important prognostic factor across various leukemia subtypes and has therefore been given enormous attention. Despite the current rapid development of the molecular methods, the classical real-time PCR based approach is still being regarded as the standard method for molecular MRD detection due to the cumbersome standardization of the novel approaches currently in progress within the EuroMRD and EuroClonality NGS Consortia. Each of the molecular methods, however, poses certain benefits and it is therefore expectable that none of the methods for MRD detection will clearly prevail over the others in the near future.
Collapse
|