1
|
Li L, Guo L, Gao R, Yao M, Qu X, Sun G, Fu Q, Hu C, Han G. Ferroptosis: a new regulatory mechanism in neuropathic pain. Front Aging Neurosci 2023; 15:1206851. [PMID: 37810619 PMCID: PMC10556472 DOI: 10.3389/fnagi.2023.1206851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Neuropathic pain (NP) is pain caused by damage to the somatosensory system. It is a common progressive neurodegenerative disease that usually presents with clinical features such as spontaneous pain, touch-evoked pain, nociceptive hyperalgesia, and sensory abnormalities. Due to the complexity of the mechanism, NP often persists. In addition to the traditionally recognized mechanisms of peripheral nerve damage and central sensitization, excessive iron accumulation, oxidative stress, neuronal inflammation, and lipid peroxidation damage are distinctive features of NP in pathophysiology. However, the mechanisms linking these pathological features to NP are not fully understood. The complexity of the pathogenesis of NP greatly limits the development of therapeutic approaches for NP. Ferroptosis is a novel form of cell death discovered in recent years, in which cell death is usually accompanied by massive iron accumulation and lipid peroxidation. Ferroptosis-inducing factors can affect glutathione peroxidase directly or indirectly through different pathways, leading to decreased antioxidant capacity and accumulation of lipid reactive oxygen species (ROS) in cells, ultimately leading to oxidative cell death. It has been shown that ferroptosis is closely related to the pathophysiological process of many neurological disorders such as NP. Possible mechanisms involved are changes in intracellular iron ion levels, alteration of glutamate excitability, and the onset of oxidative stress. However, the functional changes and specific molecular mechanisms of ferroptosis during this process still need to be further explored. How to intervene in the development of NP by regulating cellular ferroptosis has become a hot issue in etiological research and treatment. In this review, we systematically summarize the recent progress of ferroptosis research in NP, to provide a reference for further understanding of its pathogenesis and propose new targets for treatment.
Collapse
Affiliation(s)
- Lu Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lingling Guo
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rui Gao
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Mengwen Yao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinyu Qu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guangwei Sun
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cuntao Hu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guang Han
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Targeted muscle reinnervation prevents and reverses rat pain behaviors after nerve transection. Pain 2023; 164:316-324. [PMID: 35639439 DOI: 10.1097/j.pain.0000000000002702] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 05/23/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Targeted muscle reinnervation (TMR) is a clinical intervention that is rapidly becoming common in major limb amputation to prevent or reduce amputation-related pain. However, TMR is much less effective when applied long after injury compared with acute TMR. Since the mechanisms governing pain relief in TMR of amputated nerves are unknown, we developed a preclinical model as a platform for mechanistic examination. Following spared nerve injury (SNI), rats underwent either TMR, simple neuroma excision, or a sham manipulation of the injury site. These interventions were performed immediately or delayed (3 or 12 weeks) after SNI. Pain behavior was measured as sensitivity to mechanical stimuli (pin, von Frey, and dynamic brush) and thermal stimuli (acetone and radiant heat). Spared nerve injury produced hypersensitivity to all mechanical stimuli and cold, which persisted after sham surgery. Targeted muscle reinnervation at the time of SNI prevented the development of pain behaviors and performing TMR 3 weeks after SNI reversed pain behaviors to baseline. By contrast, TMR performed at 12 weeks after SNI had no effect on pain behaviors. Neuroma excision resulted in significantly less reduction in hyperalgesia compared with TMR when performed 3 weeks after SNI but had no effect at 12 weeks after SNI. In this model, the pain phenotype induced by nerve transection is reduced by TMR when performed within 3 weeks after injury. However, TMR delayed 12 weeks after injury fails to reduce pain behaviors. This replicates clinical experience with limb amputation, supporting validity of this model for examining the mechanisms of TMR analgesia.
Collapse
|
3
|
How Is Peripheral Injury Signaled to Satellite Glial Cells in Sensory Ganglia? Cells 2022; 11:cells11030512. [PMID: 35159321 PMCID: PMC8833977 DOI: 10.3390/cells11030512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 02/01/2023] Open
Abstract
Injury or inflammation in the peripheral branches of neurons of sensory ganglia causes changes in neuronal properties, including excessive firing, which may underlie chronic pain. The main types of glial cell in these ganglia are satellite glial cells (SGCs), which completely surround neuronal somata. SGCs undergo activation following peripheral lesions, which can enhance neuronal firing. How neuronal injury induces SGC activation has been an open question. Moreover, the mechanisms by which the injury is signaled from the periphery to the ganglia are obscure and may include electrical conduction, axonal and humoral transport, and transmission at the spinal level. We found that peripheral inflammation induced SGC activation and that the messenger between injured neurons and SGCs was nitric oxide (NO), acting by elevating cyclic guanosine monophosphate (cGMP) in SGCs. These results, together with work from other laboratories, indicate that a plausible (but not exclusive) mechanism for neuron-SGCs interactions can be formulated as follows: Firing due to peripheral injury induces NO formation in neuronal somata, which diffuses to SGCs. This stimulates cGMP synthesis in SGCs, leading to their activation and to other changes, which contribute to neuronal hyperexcitability and pain. Other mediators such as proinflammatory cytokines probably also contribute to neuron-SGC communications.
Collapse
|
4
|
Morgan M, Nazemian V, Harrington K, Ivanusic JJ. Mini review: The role of sensory innervation to subchondral bone in osteoarthritis pain. Front Endocrinol (Lausanne) 2022; 13:1047943. [PMID: 36605943 PMCID: PMC9808033 DOI: 10.3389/fendo.2022.1047943] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/30/2022] [Indexed: 01/07/2023] Open
Abstract
Osteoarthritis pain is often thought of as a pain driven by nerves that innervate the soft tissues of the joint, but there is emerging evidence for a role for nerves that innervate the underlying bone. In this mini review we cite evidence that subchondral bone lesions are associated with pain in osteoarthritis. We explore recent studies that provide evidence that sensory neurons that innervate bone are nociceptors that signal pain and can be sensitized in osteoarthritis. Finally, we describe neuronal remodeling of sensory and sympathetic nerves in bone and discuss how these processes can contribute to osteoarthritis pain.
Collapse
|
5
|
Qian J, Tu H, Zhang D, Barksdale AN, Patel KP, Wadman MC, Li YL. Therapeutic effects of masitinib on abnormal mechanoreception in a mouse model of tourniquet-induced extremity ischemia-reperfusion. Eur J Pharmacol 2021; 911:174549. [PMID: 34619116 DOI: 10.1016/j.ejphar.2021.174549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/01/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022]
Abstract
Tourniquets are widely used to stop extremity hemorrhage, but their use and subsequent release can result in nerve damage and degeneration, leading to neurological deficits. Increasing evidence has suggested a pivotal role of inflammation in nerve damage and abnormal mechanoreception. In this study, we investigated the therapeutic effects of masitinib (Mas), an anti-neuroinflammatory drug, on the mechanoreception of sensory neurons in a mouse model of tourniquet-induced hind paw ischemia-reperfusion (tourniquet/IR). C57BL/6 mice were subjected to 3 h of ischemia by placing a rubber band at the ankle joint and evaluated for subsequent reperfusion injury on day 1, 3, 7, 14, and 28 based on the experiments. Treatment with Mas (28 mg/kg/day, i.p.) began on the day of IR induction and lasted for 1, 3, 7, 14, or 28 days. Tourniquet/IR caused sensory nerve denervation in the skin of paw pads and abolished the hind paw mechanoreception to mechanical stimulation during the first 3 days of reperfusion. Sensory nerves gradually reinnervated in the skin of paw pads and allodynia began to appear on day 7. The maximum reaction occurred on day 14 and was maintained throughout the study period. Treatment with Mas mitigated nerve damage and improved hind paw mechanoreception to mechanical stimulation by decreasing the production of reactive oxygen species (ROS) during the early stages of tourniquet/IR. Mas also alleviated allodynia and decreased inflammatory cytokines (IL-1β and TNFα) in the skin of paw pads from days 7-28. Our data suggest that treatment with Mas significantly ameliorated paw numbness and allodynia in mouse hind paw tourniquet/IR.
Collapse
Affiliation(s)
- Junliang Qian
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dongze Zhang
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aaron N Barksdale
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kaushik P Patel
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael C Wadman
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
6
|
Murugappan SK, Xie L, Wong HY, Iqbal Z, Lei Z, Ramkrishnan AS, Li Y. Suppression of Pain in the Late Phase of Chronic Trigeminal Neuropathic Pain Failed to Rescue the Decision-Making Deficits in Rats. Int J Mol Sci 2021; 22:ijms22157846. [PMID: 34360612 PMCID: PMC8346079 DOI: 10.3390/ijms22157846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/16/2022] Open
Abstract
Trigeminal neuropathic pain (TNP) led to vital cognitive functional deficits such as impaired decision-making abilities in a rat gambling task. Chronic TNP caused hypomyelination in the anterior cingulate cortex (ACC) associated with decreased synchronization between ACC spikes and basal lateral amygdala (BLA) theta oscillations. The aim of this study was to investigate the effect of pain suppression on cognitive impairment in the early or late phases of TNP. Blocking afferent signals with a tetrodotoxin (TTX)-ELVAX implanted immediately following nerve lesion suppressed the allodynia and rescued decision-making deficits. In contrast, the TTX used at a later phase could not suppress the allodynia nor rescue decision-making deficits. Intra-ACC administration of riluzole reduced the ACC neural sensitization but failed to restore ACC-BLA spike-field phase synchrony during the late stages of chronic neuropathic pain. Riluzole suppressed allodynia but failed to rescue the decision-making deficits during the late phase of TNP, suggesting that early pain relief is important for recovering from pain-related cognitive impairments. The functional disturbances in ACC neural circuitry may be relevant causes for the deficits in decision making in the chronic TNP state.
Collapse
Affiliation(s)
- Suresh Kanna Murugappan
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China; (S.K.M.); (L.X.); (H.Y.W.); (Z.I.); (Z.L.); (A.S.R.)
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Li Xie
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China; (S.K.M.); (L.X.); (H.Y.W.); (Z.I.); (Z.L.); (A.S.R.)
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Heung Yan Wong
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China; (S.K.M.); (L.X.); (H.Y.W.); (Z.I.); (Z.L.); (A.S.R.)
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, China
| | - Zafar Iqbal
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China; (S.K.M.); (L.X.); (H.Y.W.); (Z.I.); (Z.L.); (A.S.R.)
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, China
| | - Zhuogui Lei
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China; (S.K.M.); (L.X.); (H.Y.W.); (Z.I.); (Z.L.); (A.S.R.)
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Aruna Surendran Ramkrishnan
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China; (S.K.M.); (L.X.); (H.Y.W.); (Z.I.); (Z.L.); (A.S.R.)
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Ying Li
- Department of Neuroscience, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China; (S.K.M.); (L.X.); (H.Y.W.); (Z.I.); (Z.L.); (A.S.R.)
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Hong Kong, China
- Centre for Biosystems, Neuroscience, and Nanotechnology, City University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +852-3442-2669
| |
Collapse
|
7
|
Pathophysiological roles and therapeutic potential of voltage-gated ion channels (VGICs) in pain associated with herpesvirus infection. Cell Biosci 2020; 10:70. [PMID: 32489585 PMCID: PMC7247163 DOI: 10.1186/s13578-020-00430-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
Herpesvirus is ranked as one of the grand old members of all pathogens. Of all the viruses in the superfamily, Herpes simplex virus type 1 (HSV-1) is considered as a model virus for a variety of reasons. In a permissive non-neuronal cell culture, HSV-1 concludes the entire life cycle in approximately 18–20 h, encoding approximately 90 unique transcriptional units. In latency, the robust viral gene expression is suppressed in neurons by a group of noncoding RNA. Historically the lesions caused by the virus can date back to centuries ago. As a neurotropic pathogen, HSV-1 is associated with painful oral lesions, severe keratitis and lethal encephalitis. Transmission of pain signals is dependent on the generation and propagation of action potential in sensory neurons. T-type Ca2+ channels serve as a preamplifier of action potential generation. Voltage-gated Na+ channels are the main components for action potential production. This review summarizes not only the voltage-gated ion channels in neuropathic disorders but also provides the new insights into HSV-1 induced pain.
Collapse
|
8
|
Holmes S, Barakat N, Bhasin M, Lopez N, Lebel A, Zurakowski D, Thomas B, Bhasin S, Silva K, Borra R, Burstein R, Simons L, Borsook D. Biological and behavioral markers of pain following nerve injury in humans. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 7:100038. [PMID: 31890990 PMCID: PMC6926375 DOI: 10.1016/j.ynpai.2019.100038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022]
Abstract
The evolution of peripheral and central changes following a peripheral nerve injury imply the onset of afferent signals that affect the brain. Changes to inflammatory processes may contribute to peripheral and central alterations such as altered psychological state and are not well characterized in humans. We focused on four elements that change peripheral and central nervous systems following ankle injury in 24 adolescent patients and 12 age-sex matched controls. Findings include (a) Changes in tibial, fibular, and sciatic nerve divisions consistent with neurodegeneration; (b) Changes within the primary motor and somatosensory areas as well as higher order brain regions implicated in pain processing; (c) Increased expression of fear of pain and pain reporting; and (d) Significant changes in cytokine profiles relating to neuroinflammatory signaling pathways. Findings address how changes resulting from peripheral nerve injury may develop into chronic neuropathic pain through changes in the peripheral and central nervous system.
Collapse
Affiliation(s)
- S.A. Holmes
- Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02215, United States
- Department of Anesthesia, Harvard Medical School, Boston, MA 02115, United States
| | - N. Barakat
- Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02215, United States
- Department of Anesthesia, Harvard Medical School, Boston, MA 02115, United States
| | - M. Bhasin
- Bioinformatic and Systems Biology Center, Beth Israel Deaconess Medical Center, United States
- Department of Medicine, Harvard Medical School, United States
| | - N.I. Lopez
- Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02215, United States
| | - A. Lebel
- Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02215, United States
- Department of Anesthesia, Harvard Medical School, Boston, MA 02115, United States
| | - D. Zurakowski
- Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02215, United States
| | - B. Thomas
- Bioinformatic and Systems Biology Center, Beth Israel Deaconess Medical Center, United States
- Department of Medicine, Harvard Medical School, United States
| | - S. Bhasin
- Bioinformatic and Systems Biology Center, Beth Israel Deaconess Medical Center, United States
- Department of Medicine, Harvard Medical School, United States
| | - K.E. Silva
- Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02215, United States
| | - R. Borra
- Department of Radiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| | - R. Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, United States
| | - L.E. Simons
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - D. Borsook
- Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02215, United States
- Department of Anesthesia, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
9
|
Schreiber KL, Belfer I, Miaskowski C, Schumacher M, Stacey BR, Van De Ven T. AAAPT Diagnostic Criteria for Acute Pain Following Breast Surgery. THE JOURNAL OF PAIN 2019; 21:294-305. [PMID: 31493489 DOI: 10.1016/j.jpain.2019.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/30/2022]
Abstract
Acute pain after breast surgery decreases the quality of life of cancer survivors. Previous studies using a variety of definitions and methods report prevalence rates between 10% and 80%, which suggests the need for a comprehensive framework that can be used to guide assessment of acute pain and pain-related outcomes after breast surgery. A multidisciplinary task force with clinical and research expertise performed a focused review and synthesis and applied the 5 dimensional framework of the AAAPT (Analgesic, Anesthetic, and Addiction Clinical Trial Translations, Innovations, Opportunities, and Networks [ACTTION], American Academy of Pain Medicine [AAPM], American Pain Society [APS] Pain Taxonomy) to acute pain after breast surgery. Application of the AAAPT taxonomy yielded the following: 1) Core Criteria: Location, timing, severity, and impact of breast surgery pain were defined; 2) Common Features: Character and expected trajectories were established in relevant surgical subgroups, and common pain assessment tools for acute breast surgery pain identified; 3) Modulating Factors: Biological, psychological, and social factors that modulate interindividual variability were delineated; 4) Impact/Functional Consequences: Domains of impact were outlined and defined; 5) Neurobiologic Mechanisms: Putative mechanisms were specified ranging from nerve injury, inflammation, peripheral and central sensitization, to affective and social processing of pain. PERSPECTIVE: The AAAPT provides a framework to define and guide improved assessment of acute pain after breast surgery, which will enhance generalizability of results across studies and facilitate meta-analyses and studies of interindividual variation, and underlying mechanism. It will allow researchers and clinicians to better compare between treatments, across institutions, and with other types of acute pain.
Collapse
Affiliation(s)
- Kristin L Schreiber
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Inna Belfer
- National Center for Complementary and Integrative Health, NIH, Bethesda, Maryland
| | - Christine Miaskowski
- Department of Physiological Nursing, University of California San Francisco, San Francisco, California
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care, Division of Pain Medicine, University of California, San Francisco, San Francisco, California
| | - Brett R Stacey
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | - Thomas Van De Ven
- Duke University Department of Anesthesiology, Division of Pain Medicine, Durham, North Carolina
| |
Collapse
|
10
|
Liu Q, Chen W, Fan X, Wang J, Fu S, Cui S, Liao F, Cai J, Wang X, Huang Y, Su L, Zhong L, Yi M, Liu F, Wan Y. Upregulation of interleukin-6 on Cav3.2 T-type calcium channels in dorsal root ganglion neurons contributes to neuropathic pain in rats with spinal nerve ligation. Exp Neurol 2019; 317:226-243. [DOI: 10.1016/j.expneurol.2019.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/22/2019] [Accepted: 03/09/2019] [Indexed: 10/27/2022]
|
11
|
Joubert F, Acosta MDC, Gallar J, Fakih D, Sahel JA, Baudouin C, Bodineau L, Mélik Parsadaniantz S, Réaux-Le Goazigo A. Effects of corneal injury on ciliary nerve fibre activity and corneal nociception in mice: A behavioural and electrophysiological study. Eur J Pain 2018; 23:589-602. [DOI: 10.1002/ejp.1332] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 09/18/2018] [Accepted: 10/20/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Fanny Joubert
- INSERM; CNRS; Institut de la Vision; Sorbonne Université; Paris France
| | - Maria del Carmen Acosta
- Instituto de Neurosciencas; Universidad Miguel Hernández-CSIC; San Juan de Alicante; Alicante Spain
| | - Juana Gallar
- Instituto de Neurosciencas; Universidad Miguel Hernández-CSIC; San Juan de Alicante; Alicante Spain
| | - Darine Fakih
- INSERM; CNRS; Institut de la Vision; Sorbonne Université; Paris France
- Laboratoires Théa; Clermont-Ferrand France
| | - José-Alain Sahel
- INSERM; CNRS; Institut de la Vision; Sorbonne Université; Paris France
- INSERM-DGOS CIC 1423; CHNO des Quinze-Vingts; DHU Sight Restore; Paris France
| | - Christophe Baudouin
- INSERM; CNRS; Institut de la Vision; Sorbonne Université; Paris France
- INSERM-DGOS CIC 1423; CHNO des Quinze-Vingts; DHU Sight Restore; Paris France
- University Versailles Saint Quentin en Yvelines; Versailles France
| | - Laurence Bodineau
- INSERM; Sorbonne Université; UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique; Paris France
| | | | | |
Collapse
|
12
|
Kitamura N, Nagami E, Matsushita Y, Kayano T, Shibuya I. Constitutive activity of transient receptor potential vanilloid type 1 triggers spontaneous firing in nerve growth factor-treated dorsal root ganglion neurons of rats. IBRO Rep 2018; 5:33-42. [PMID: 30211336 PMCID: PMC6132080 DOI: 10.1016/j.ibror.2018.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/16/2018] [Indexed: 12/30/2022] Open
Abstract
We examined the role of TRPV1 in the generation of spontaneous APs in NGF-treated cultured DRG neurons of rats. Spontaneous firing in the on-cell configuration was abolished by TRPV1 antagonists capsazepine and BCTC. Chronic treatment with NGF induced capsazepine- and BCTC-sensitive cation conductance. NGF-induced cation conductance through TRPV1 causes spontaneous firing.
Dorsal root ganglion (DRG) neurons cultured in the presence of nerve growth factor (NGF, 100 ng/ml) often show a spontaneous action potential. Underlying mechanisms of this spontaneous firing were examined using the patch clamp technique. The spontaneous firing in the on-cell configuration was abolished by a decrease in the Na+ concentration and by the TRPV1 antagonists capsazepine (10 μM) and BCTC (1 μM). These responses were accompanied by hyperpolarization of the resting potential. The holding current observed in neurons voltage clamped at –60 mV in the whole-cell configuration was significantly larger in the neurons that fired spontaneously, indicating that these neurons had an additional cation conductance that caused depolarization and triggered action potentials. The holding current in the firing neurons was decreased by extracellular Na+ reduction, capsazepine and BCTC. The amplitudes of the capsazepine- or BCTC-sensitive component of the holding current in the spontaneously firing neurons were ten times as large as those recorded in the other neurons showing no spontaneous firing. However, the amplitudes of the current responses to capsaicin (1 μM) were not different regardless of the presence of spontaneous firing or treatment with NGF. These results indicate that chronic NGF treatment of cultured DRG neurons in rats induces a constitutively active cation conductance through TRPV1, which depolarizes the neurons and triggers spontaneous action potentials in the absence of any stimuli. Since NGF in the DRG is reported to increase after nerve injury, this NGF-mediated regulation of TRPV1 may be a cause of the pathogenesis of neuropathic pain.
Collapse
Affiliation(s)
- Naoki Kitamura
- Laboratory of Veterinary Physiology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8553, Japan
| | - Erika Nagami
- Laboratory of Veterinary Physiology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8553, Japan
| | - Yumi Matsushita
- Laboratory of Veterinary Physiology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8553, Japan
| | - Tomohiko Kayano
- Laboratory of Veterinary Physiology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8553, Japan
| | - Izumi Shibuya
- Laboratory of Veterinary Physiology, Joint Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8553, Japan
| |
Collapse
|
13
|
Djouhri L, Smith T, Ahmeda A, Alotaibi M, Weng X. Hyperpolarization-activated cyclic nucleotide-gated channels contribute to spontaneous activity in L4 C-fiber nociceptors, but not Aβ-non-nociceptors, after axotomy of L5-spinal nerve in the rat in vivo. Pain 2018; 159:1392-1402. [PMID: 29578948 DOI: 10.1097/j.pain.0000000000001224] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Peripheral neuropathic pain associated with partial nerve injury is believed to be driven partly by aberrant spontaneous activity (SA) in both injured and uninjured dorsal root ganglion (DRG) neurons. The underlying ionic mechanisms are not fully understood, but hyperpolarization-activated cyclic nucleotide-gated (HCN) channels which underlie the excitatory Ih current have been implicated in SA generation in axotomized A-fiber neurons after L5-spinal nerve ligation/axotomy (SNL/SNA). Here, using a modified model of SNA (mSNA) which involves, in addition to L5-SNA, loose ligation of the L4-spinal nerve with neuroinflammation-inducing chromic gut, we examined whether HCN channels also contribute to SA in the adjacent L4-neurons. Intracellular recordings from L4-DRG neurons in control rats, and L4-DRG neurons in mSNA rats were made using in vivo voltage- and current-clamp techniques. Compared with control, L4 C-nociceptors and Aβ-low-threshold mechanoreceptors (LTMs) exhibited SA 7 days after mSNA. This was accompanied, in C-nociceptors, by a significant increase in Ih amplitude, the percentage of Ih-expressing neurons, and Ih activation rate. Hyperpolarization-activated cyclic nucleotide-gated channel blockade with ZD7288 (10 mg/kg, intravenously) suppressed SA in C-nociceptors, but not Aβ-LTMs, and caused in C-nociceptors, membrane hyperpolarization and a decrease in Ih activation rate. Furthermore, intraplantar injection of ZD7288 (100 μM) was found to be as effective as gabapentin (positive control) in attenuating cold hypersensitivity in mSNA rats. These findings suggest that HCN channels contribute to nerve injury-induced SA in L4 C-nociceptors, but not Aβ-LTMs, and that ZD7288 exerts its analgesic effects by altering Ih activation properties and/or causing membrane hyperpolarization in L4 C-nociceptors.
Collapse
Affiliation(s)
- Laiche Djouhri
- Department of Physiology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Clinical and Molecular Pharmacology, Institute of Translational Medicine, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Trevor Smith
- Wolfson CARD, Neurorestoration Group, King's College London, London, United Kingdom
| | - Ahmad Ahmeda
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Alotaibi
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Xiechuan Weng
- State Key Laboratory of Proteomics, Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Djouhri L, Smith T, Alotaibi M, Weng X. Membrane potential oscillations are not essential for spontaneous firing generation in L4 Aβ-afferent neurons after L5 spinal nerve axotomy and are not mediated by HCN channels. Exp Physiol 2018; 103:1145-1156. [PMID: 29860719 DOI: 10.1113/ep087013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/23/2018] [Indexed: 01/01/2023]
Abstract
NEW FINDINGS What is the central question of this study? Is spontaneous activity (SA) in L4 dorsal root ganglion (DRG) neurons induced by L5 spinal nerve axotomy associated with membrane potential oscillations in these neurons, and if so, are these membrane oscillations mediated by HCN channels? What is the main finding and its importance? Unlike injured L5 DRG neurons, which have been shown to be incapable of firing spontaneously without membrane potential oscillations, membrane potential oscillations are not essential for SA generation in conducting 'uninjured' L4 neurons, and they are not mediated by HCN channels. These findings suggest that the underlying cellular mechanisms of SA in injured and 'uninjured' DRG neurons induced by spinal nerve injury are distinct. ABSTRACT The underlying cellular and molecular mechanisms of peripheral neuropathic pain are not fully understood. However, preclinical studies using animal models suggest that this debilitating condition is driven partly by aberrant spontaneous activity (SA) in injured and uninjured dorsal root ganglion (DRG) neurons, and that SA in injured DRG neurons is triggered by subthreshold membrane potential oscillations (SMPOs). Here, using in vivo intracellular recording from control L4-DRG neurons, and ipsilateral L4-DRG neurons in female Wistar rats that had previously undergone L5 spinal nerve axotomy (SNA), we examined whether conducting 'uninjured' L4-DRG neurons in SNA rats exhibit SMPOs, and if so, whether such SMPOs are associated with SA in those L4 neurons, and whether they are mediated by hyperpolarization-activated cyclic nucleotide gated (HCN) channels. We found that 7 days after SNA: (a) none of the control A- or C-fibre DRG neurons showed SMPOs or SA, but 50%, 43% and 0% of spontaneously active cutaneous L4 Aβ-low threshold mechanoreceptors, Aβ-nociceptors and C-nociceptors exhibited SMPOs, respectively, in SNA rats with established neuropathic pain behaviors; (b) neither SMPOs nor SA in L4 Aβ-neurons was suppressed by blocking HCN channels with ZD7288 (10 mg kg-1 , i.v.); and (c) there is a tendency for female rats to show greater pain hypersensitivity than male rats. These results suggest that SMPOs are linked to SA only in some of the conducting L4 Aβ-neurons, that such oscillations are not a prerequisite for SA generation in those L4 A- or C-fibre neurons, and that HCN channels are not involved in their electrogenesis.
Collapse
Affiliation(s)
- L Djouhri
- Department of Physiology, College of Medicine, Alfaisal University, PO Box 50927, Riyadh, 11533, Saudi Arabia
| | - T Smith
- Wolfson CARD, Neurorestoration Group, Hodgkin Building, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - M Alotaibi
- Department of Physiology, College of Medicine, King Saud University, PO Box 7805, Riyadh, 11472, Saudi Arabia
| | - X Weng
- Department of Neurobiology and State Key Laboratory of Proteomics, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| |
Collapse
|
15
|
Upregulation of Ca v3.2 T-type calcium channels in adjacent intact L4 dorsal root ganglion neurons in neuropathic pain rats with L5 spinal nerve ligation. Neurosci Res 2018; 142:30-37. [PMID: 29684385 DOI: 10.1016/j.neures.2018.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023]
Abstract
Besides the injured peripheral dorsal root ganglion (DRG) neurons, the adjacent intact DRG neurons also have important roles in neuropathic pain. Ion channels including Cav3.2 T-type calcium channel in the DRG neurons are important in the development of neuropathic pain. In the present study, we aimed to examine the expression of Cav3.2 T-type calcium channels in the intact DRG neurons in neuropathic pain. A neuropathic pain model of rat with lumbar 5 (L5) spinal nerve ligation (SNL) was established, in which the L4 DRG was separated from the axotomized L5 DRG, and the molecular, morphological and electrophysiological changes of Cav3.2 T-type calcium channels in L4 DRG neurons were investigated. Western blotting showed that total and membrane protein levels of Cav3.2 in L4 DRG neurons increased, and voltage-dependent patch clamp recordings revealed an increased T-type current density with a curve shift to the left in steady-state activation in the acutely isolated L4 DRG neurons in neuropathic pain rats. Immunofluorescent staining further showed that the membrane expression of Cav3.2 increased in CGRP-, IB4-positive small neurons and NF200-positive large ones. In conclusion, the membrane expression and the function of Cav3.2 T-type calcium channels are increased in the intact L4 DRG neurons in neuropathic pain rats with peripheral nerve injury like SNL.
Collapse
|
16
|
Cruccu G, Nurmikko TJ, Ernault E, Riaz FK, McBride WT, Haanpää M. Superiority of capsaicin 8% patch versus oral pregabalin on dynamic mechanical allodynia in patients with peripheral neuropathic pain. Eur J Pain 2017; 22:700-706. [PMID: 29194851 PMCID: PMC5887877 DOI: 10.1002/ejp.1155] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2017] [Indexed: 01/17/2023]
Abstract
Background Dynamic Mechanical Allodynia (DMA) is a typical symptom of neuropathic pain (NP). In a recent study, the capsaicin 8% patch was noninferior to pregabalin in overall peripheral NP relief. In this study, we report the comparison of the two treatments in relieving DMA. Methods In a randomized, open‐label, head‐to‐head, 8‐week study, 488 patients with peripheral NP were treated with the capsaicin 8% patch (one application) or an optimized dose of pregabalin. Assessments included the area and intensity of DMA, and the number of patients achieving complete resolution of DMA. Results At baseline, 253 patients in the capsaicin 8% patch group and 235 patients in the pregabalin group had DMA. From baseline to end of study, the change in DMA intensity was significantly in favour of the capsaicin 8% patch versus pregabalin [−0.63 (95% CI: −1.04, −0.23; p = 0.002)]. Similarly, the capsaicin 8% patch was superior to pregabalin in reducing the area of DMA [−39.5 cm2 (95% CI: −69.1, −10.0; p = 0.009)] from baseline to end of study. Overall, a greater proportion of patients had a complete resolution of allodynia with capsaicin 8% patch treatment compared with pregabalin treatment (24.1% vs. 12.3%; p = 0.001) at end of study. Conclusion Capsaicin 8% treatment was superior to pregabalin in reducing the intensity and area of DMA, and in the number of patients with complete resolution of DMA. Significance The superiority of a topical treatment over pregabalin in relieving DMA supports the view that both peripheral and central sensitization can mediate allodynia.
Collapse
Affiliation(s)
- G Cruccu
- Department of Neurology and Psychiatry, Sapienza University, Rome, Italy
| | - T J Nurmikko
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - E Ernault
- Astellas Pharma Inc., Leiden, The Netherlands
| | - F K Riaz
- Astellas Pharma Inc., Chertsey, UK
| | - W T McBride
- Belfast Health and Social Care Trust, Belfast, Northern Ireland
| | - M Haanpää
- Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
17
|
Romer SH, Deardorff AS, Fyffe REW. Activity-dependent redistribution of Kv2.1 ion channels on rat spinal motoneurons. Physiol Rep 2016; 4:e13039. [PMID: 27884958 PMCID: PMC5358001 DOI: 10.14814/phy2.13039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 11/24/2022] Open
Abstract
Homeostatic plasticity occurs through diverse cellular and synaptic mechanisms, and extensive investigations over the preceding decade have established Kv2.1 ion channels as key homeostatic regulatory elements in several central neuronal systems. As in these cellular systems, Kv2.1 channels in spinal motoneurons (MNs) localize within large somatic membrane clusters. However, their role in regulating motoneuron activity is not fully established in vivo. We have previously demonstrated marked Kv2.1 channel redistribution in MNs following in vitro glutamate application and in vivo peripheral nerve injury (Romer et al., 2014, Brain Research, 1547:1-15). Here, we extend these findings through the novel use of a fully intact, in vivo rat preparation to show that Kv2.1 ion channels in lumbar MNs rapidly and reversibly redistribute throughout the somatic membrane following 10 min of electrophysiological sensory and/or motor nerve stimulation. These data establish that Kv2.1 channels are remarkably responsive in vivo to electrically evoked and synaptically driven action potentials in MNs, and strongly implicate motoneuron Kv2.1 channels in the rapid homeostatic response to altered neuronal activity.
Collapse
Affiliation(s)
- Shannon H Romer
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | - Adam S Deardorff
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | - Robert E W Fyffe
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| |
Collapse
|
18
|
HCN2 ion channels: basic science opens up possibilities for therapeutic intervention in neuropathic pain. Biochem J 2016; 473:2717-36. [DOI: 10.1042/bcj20160287] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/18/2016] [Indexed: 01/22/2023]
Abstract
Nociception — the ability to detect painful stimuli — is an invaluable sense that warns against present or imminent damage. In patients with chronic pain, however, this warning signal persists in the absence of any genuine threat and affects all aspects of everyday life. Neuropathic pain, a form of chronic pain caused by damage to sensory nerves themselves, is dishearteningly refractory to drugs that may work in other types of pain and is a major unmet medical need begging for novel analgesics. Hyperpolarisation-activated cyclic nucleotide (HCN)-modulated ion channels are best known for their fundamental pacemaker role in the heart; here, we review data demonstrating that the HCN2 isoform acts in an analogous way as a ‘pacemaker for pain’, in that its activity in nociceptive neurons is critical for the maintenance of electrical activity and for the sensation of chronic pain in pathological pain states. Pharmacological block or genetic deletion of HCN2 in sensory neurons provides robust pain relief in a variety of animal models of inflammatory and neuropathic pain, without any effect on normal sensation of acute pain. We discuss the implications of these findings for our understanding of neuropathic pain pathogenesis, and we outline possible future opportunities for the development of efficacious and safe pharmacotherapies in a range of chronic pain syndromes.
Collapse
|
19
|
Zhang M, Liu J, Zhou MM, Wu H, Hou Y, Li YF, Yin Y, Zheng L, Liu FY, Yi M, Wan Y. Elevated Neurosteroids in the Lateral Thalamus Relieve Neuropathic Pain in Rats with Spared Nerve Injury. Neurosci Bull 2016; 32:311-22. [PMID: 27325509 DOI: 10.1007/s12264-016-0044-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/11/2016] [Indexed: 01/01/2023] Open
Abstract
Neurosteroids are synthesized in the nervous system from cholesterol or steroidal precursors imported from peripheral sources. These compounds are important allosteric modulators of γ-aminobutyric acid A receptors (GABAARs), which play a vital role in pain modulation in the lateral thalamus, a main gate where somatosensory information enters the cerebral cortex. Using high-performance liquid chromatography/tandem mass spectrometry, we found increased levels of neurosteroids (pregnenolone, progesterone, deoxycorticosterone, allopregnanolone, and tetrahydrodeoxycorticosterone) in the chronic stage of neuropathic pain (28 days after spared nerve injury) in rats. The expression of the translocator protein TSPO, the upstream steroidogenesis rate-limiting enzyme, increased at the same time. In vivo stereotaxic microinjection of neurosteroids or the TSPO activator AC-5216 into the lateral thalamus (AP -3.0 mm, ML ±3.0 mm, DV 6.0 mm) alleviated the mechanical allodynia in neuropathic pain, while the TSPO inhibitor PK 11195 exacerbated it. The analgesic effects of AC-5216 and neurosteroids were significantly attenuated by the GABAAR antagonist bicuculline. These results suggested that elevated neurosteroids in the lateral thalamus play a protective role in the chronic stage of neuropathic pain.
Collapse
Affiliation(s)
- Meng Zhang
- Neuroscience Research Institute, Peking University, Beijing, 100191, China
| | - Jia Liu
- Institute of Systems Biomedicine, Peking University, Beijing, 100191, China
| | - Meng-Meng Zhou
- Neuroscience Research Institute, Peking University, Beijing, 100191, China
| | - Honghai Wu
- Department of Pharmacy, Bethune International Peace Hospital Shijiazhuang, Shijiazhuang, 050082, China
| | - Yanning Hou
- Department of Pharmacy, Bethune International Peace Hospital Shijiazhuang, Shijiazhuang, 050082, China
| | - Yun-Feng Li
- Department of New Drug Evaluation, Beijing Institute of Pharmacology and Toxicology, Beijing, 100007, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Peking University, Beijing, 100191, China
| | - Lemin Zheng
- Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, and Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Peking University, Beijing, 100191, China
| | - Feng-Yu Liu
- Neuroscience Research Institute, Peking University, Beijing, 100191, China
| | - Ming Yi
- Neuroscience Research Institute, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute, Peking University, Beijing, 100191, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
- Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
20
|
Dias QM, Prado WA. The lesion of dorsolateral funiculus changes the antiallodynic effect of the intrathecal muscimol and baclofen in distinct phases of neuropathic pain induced by spinal nerve ligation in rats. Brain Res Bull 2016; 124:103-15. [DOI: 10.1016/j.brainresbull.2016.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/20/2022]
|
21
|
Competition with Primary Sensory Afferents Drives Remodeling of Corticospinal Axons in Mature Spinal Motor Circuits. J Neurosci 2016; 36:193-203. [PMID: 26740661 DOI: 10.1523/jneurosci.3441-15.2016] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Injury to the mature motor system drives significant spontaneous axonal sprouting instead of axon regeneration. Knowing the circuit-level determinants of axonal sprouting is important for repairing motor circuits after injury to achieve functional rehabilitation. Competitive interactions are known to shape corticospinal tract axon outgrowth and withdrawal during development. Whether and how competition contributes to reorganization of mature spinal motor circuits is unclear. To study this question, we examined plastic changes in corticospinal axons in response to two complementary proprioceptive afferent manipulations: (1) enhancing proprioceptive afferents activity by electrical stimulation; or (2) diminishing their input by dorsal rootlet rhizotomy. Experiments were conducted in adult rats. Electrical stimulation produced proprioceptive afferent sprouting that was accompanied by significant corticospinal axon withdrawal and a decrease in corticospinal connections on cholinergic interneurons in the medial intermediate zone and C boutons on motoneurons. In contrast, dorsal rootlet rhizotomy led to a significant increase in corticospinal connections, including those on cholinergic interneurons; C bouton density increased correspondingly. Motor cortex-evoked muscle potentials showed parallel changes to those of corticospinal axons, suggesting that reciprocal corticospinal axon changes are functional. Using the two complementary models, we showed that competitive interactions between proprioceptive and corticospinal axons are an important determinant in the organization of mature corticospinal axons and spinal motor circuits. The activity- and synaptic space-dependent properties of the competition enables prediction of the remodeling of spared corticospinal connection and spinal motor circuits after injury and informs the target-specific control of corticospinal connections to promote functional recovery. SIGNIFICANCE STATEMENT Neuroplasticity is limited in maturity, but it is promoted after injury. Axons of the major descending motor pathway for motor skills, the corticospinal tract (CST), sprout after brain or spinal cord injury. This contributes to spontaneous spinal motor circuit repair and partial motor recovery. Knowing the determinants that enhance this plasticity is critical for functional rehabilitation. Here we examine the remodeling of CST axons directed by sensory fibers. We found that the CST projection is regulated dynamically in maturity by the competitive, activity-dependent actions of sensory fibers. Knowledge of the properties of this competition enables prediction of the remodeling of CST connections and spinal circuits after injury and informs ways to engineer target-specific control of CST connections to promote recovery.
Collapse
|
22
|
Rahman W, Dickenson AH. Antinociceptive effects of lacosamide on spinal neuronal and behavioural measures of pain in a rat model of osteoarthritis. Arthritis Res Ther 2014; 16:509. [PMID: 25533381 PMCID: PMC4308925 DOI: 10.1186/s13075-014-0509-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/09/2014] [Indexed: 01/27/2023] Open
Abstract
Introduction Alterations in voltage-gated sodium channel (VGSC) function have been linked to chronic pain and are good targets for analgesics. Lacosamide (LCM) is a novel anticonvulsant that enhances the slow inactivation state of VGSCs. This conformational state can be induced by repeated neuronal firing and/or under conditions of sustained membrane depolarisation, as is expected for hyperexcitable neurones in pathological conditions such as epilepsy and neuropathy, and probably osteoarthritis (OA). In this study, therefore, we examined the antinociceptive effect of LCM on spinal neuronal and behavioural measures of pain, in vivo, in a rat OA model. Methods OA was induced in Sprague Dawley rats by intraarticular injection of 2 mg of monosodium iodoacetate (MIA). Sham rats received saline injections. Behavioural responses to mechanical and cooling stimulation of the ipsilateral hind paw and hindlimb weight-bearing were recorded. In vivo electrophysiology experiments were performed in anaesthetised MIA or sham rats, and we recorded the effects of spinal or systemic administration of LCM on the evoked responses of dorsal horn neurones to electrical, mechanical (brush, von Frey, 2 to 60 g) and heat (40°C to 50°C) stimulation of the peripheral receptive field. The effect of systemic LCM on nociceptive behaviours was assessed. Results Behavioural hypersensitivity ipsilateral to knee injury was seen as a reduced paw withdrawal threshold to mechanical stimulation, an increase in paw withdrawal frequency to cooling stimulation and hind limb weight-bearing asymmetry in MIA-treated rats only. Spinal and systemic administration of LCM produced significant reductions of the electrical Aβ- and C-fibre evoked neuronal responses and the mechanical and thermal evoked neuronal responses in the MIA group only. Systemic administration of LCM significantly reversed the behavioural hypersensitive responses to mechanical and cooling stimulation of the ipsilateral hind paw, but hind limb weight-bearing asymmetry was not corrected. Conclusions Our in vivo electrophysiological results show that the inhibitory effects of LCM were MIA-dependent. This suggests that, if used in OA patients, LCM may allow physiological transmission but suppress secondary hyperalgesia and allodynia. The inhibitory effect on spinal neuronal firing aligned with analgesic efficacy on nociceptive behaviours and suggests that LCM may still prove worthwhile for OA pain treatment and merits further clinical investigation.
Collapse
|
23
|
Yang F, Guo J, Sun WL, Liu FY, Cai J, Xing GG, Wan Y. The induction of long-term potentiation in spinal dorsal horn after peripheral nociceptive stimulation and contribution of spinal TRPV1 in rats. Neuroscience 2014; 269:59-66. [DOI: 10.1016/j.neuroscience.2014.03.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/18/2014] [Accepted: 03/18/2014] [Indexed: 11/29/2022]
|
24
|
Ding Y, Dai X, Jiang Y, Zhang Z, Li Y. Functional and morphological effects of grape seed proanthocyanidins on peripheral neuropathy in rats with type 2 diabetes mellitus. Phytother Res 2013; 28:1082-7. [PMID: 24343984 DOI: 10.1002/ptr.5104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 12/29/2022]
Abstract
Grape seed proanthocyanidins (GSPs) possess a broad spectrum of pharmacological and therapeutic properties. The aim of this study was to examine the effect of GSPs on functional and morphological abnormalities in the peripheral nerves of rats with type 2 diabetes mellitus. Diabetic rats were induced by two injections of 25 mg streptozotocin/kg body weight and 8 weeks of a high-carbohydrate/high-fat diet. GSPs were then administrated to the rats for 16 weeks. Thermal and mechanical sensitivity thresholds and nerve conductive velocity were measured to evaluate peripheral nerve function. Light microscopy was used with special stains to observe the morphological changes in the central and peripheral nervous systems. Calcium (Ca(2+)) homeostasis and ATPase activities in the sciatic nerves were also determined. In diabetic rats receiving GSP treatment (especially at the 500 mg/kg dose), the abnormal peripheral nerve function and impaired nervous tissues (L4 to L5 spinal cord segments, L5 dorsal root ganglion, and sciatic nerves) were improved to a significant extent. Moreover, 500 mg/kg GSP treatment significantly reduced the concentration of free Ca(2+) and elevated Ca(2+)-ATPase activity in sciatic nerves. These results suggest that GSPs may prevent early functional and morphological abnormalities in the peripheral nerves of rats with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Ye Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, PR China
| | | | | | | | | |
Collapse
|
25
|
Smith AK, O'Hara CL, Stucky CL. Mechanical sensitization of cutaneous sensory fibers in the spared nerve injury mouse model. Mol Pain 2013; 9:61. [PMID: 24286165 PMCID: PMC3906996 DOI: 10.1186/1744-8069-9-61] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 11/22/2013] [Indexed: 01/21/2023] Open
Abstract
Background The spared nerve injury (SNI) model of neuropathic pain produces robust and reproducible behavioral mechanical hypersensitivity. Although this rodent model of neuropathic pain has been well established and widely used, peripheral mechanisms underlying this phenotype remain incompletely understood. Here we investigated the role of cutaneous sensory fibers in the maintenance of mechanical hyperalgesia in mice post-SNI. Findings SNI produced robust, long-lasting behavioral mechanical hypersensitivity compared to sham and naïve controls beginning by post-operative day (POD) 1 and continuing through at least POD 180. We performed teased fiber recordings on single cutaneous fibers from the spared sural nerve using ex vivo skin-nerve preparations. Recordings were made between POD 16–42 after SNI or sham surgery. Aδ-mechanoreceptors (AM) and C fibers, many of which are nociceptors, from SNI mice fired significantly more action potentials in response to suprathreshold mechanical stimulation than did fibers from either sham or naïve control mice. However, there was no increase in spontaneous activity. Conclusions To our knowledge, this is the first study evaluating the contribution of primary afferent fibers in the SNI model. These data suggest that enhanced suprathreshold firing in AM and C fibers may play a role in the marked, persistent mechanical hypersensitivity observed in this model. These results may provide insight into mechanisms underlying neuropathic pain in humans.
Collapse
Affiliation(s)
| | | | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA.
| |
Collapse
|
26
|
Li Z, Wang J, Chen L, Zhang M, Wan Y. Basolateral amygdala lesion inhibits the development of pain chronicity in neuropathic pain rats. PLoS One 2013; 8:e70921. [PMID: 23940666 PMCID: PMC3733720 DOI: 10.1371/journal.pone.0070921] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/25/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Chronicity of pain is one of the most interesting questions in chronic pain study. Clinical and experimental data suggest that supraspinal areas responsible for negative emotions such as depression and anxiety contribute to the chronicity of pain. The amygdala is suspected to be a potential structure for the pain chronicity due to its critical role in processing negative emotions and pain information. OBJECTIVE This study aimed to investigate whether amygdala or its subregions, the basolateral amygdala (BLA) and the central medial amygdala (CeA), contributes to the pain chronicity in the spared nerve injury (SNI)-induced neuropathic pain model of rats. METHODOLOGY/PRINCIPAL FINDINGS (1) Before the establishment of the SNI-induced neuropathic pain model of rats, lesion of the amygdaloid complex with stereotaxic injection of ibotenic acid (IBO) alleviated mechanical allodynia significantly at days 7 and 14, even no mechanical allodynia at day 28 after SNI; Lesion of the BLA, but not the CeA had similar effects; (2) however, 7 days after SNI when the neuropathic pain model was established, lesion of the amygdala complex or the BLA or the CeA, mechanical allodynia was not affected. CONCLUSION These results suggest that BLA activities in the early stage after nerve injury might be crucial to the development of pain chronicity, and amygdala-related negative emotions and pain-related memories could promote pain chronicity.
Collapse
Affiliation(s)
- Zheng Li
- Neuroscience Research Institute, Peking University, Beijing, P. R. China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, P. R. China
| | - Jing Wang
- National Key Laboratory of Cognitive Neuroscience and Learning, School of Brain and Cognitive Sciences, Beijing Normal University, Beijing, P. R. China
| | - Lin Chen
- Neuroscience Research Institute, Peking University, Beijing, P. R. China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, P. R. China
| | - Meng Zhang
- Neuroscience Research Institute, Peking University, Beijing, P. R. China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, P. R. China
| | - You Wan
- Neuroscience Research Institute, Peking University, Beijing, P. R. China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, P. R. China
| |
Collapse
|
27
|
Pitcher GM, Ritchie J, Henry JL. Peripheral neuropathy induces cutaneous hypersensitivity in chronically spinalized rats. PAIN MEDICINE 2013; 14:1057-71. [PMID: 23855791 DOI: 10.1111/pme.12123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVES The present study was aimed at the issue of whether peripheral nerve injury-induced chronic pain is maintained by supraspinal structures governing descending facilitation to the spinal dorsal horn, or whether altered peripheral nociceptive mechanisms sustain central hyperexcitability and, in turn, neuropathic pain. We examined this question by determining the contribution of peripheral/spinal mechanisms, isolated from supraspinal influence(s), in cutaneous hypersensitivity in an animal model of peripheral neuropathy. METHODS Adult rats were spinalized at T8-T9; 8 days later, peripheral neuropathy was induced by implanting a 2-mm polyethylene cuff around the left sciatic nerve. Hind paw withdrawal responses to mechanical or thermal plantar stimulation were evaluated using von Frey filaments or a heat lamp, respectively. RESULTS Spinalized rats without cuff implantation exhibited a moderate decrease in mechanical withdrawal threshold on ~day 10 (P < 0.05) and in thermal withdrawal threshold on ~day 18 (P < 0.05). However, cuff-implanted spinalized rats developed a more rapid and significant decrease in mechanical (~day 4; P < 0.001) and thermal (~day 10; P < 0.05) withdrawal thresholds that remained significantly decreased through the duration of the study. CONCLUSIONS Our findings demonstrate an aberrant peripheral/spinal mechanism that induces and maintains thermal and to a greater degree tactile cutaneous hypersensitivity in the cuff model of neuropathic pain, and raise the prospect that altered peripheral/spinal nociceptive mechanisms in humans with peripheral neuropathy may have a pathologically relevant role in both inducing and sustaining neuropathic pain.
Collapse
Affiliation(s)
- Graham M Pitcher
- Departments of Physiology and Psychiatry, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
28
|
Wang R, King T, De Felice M, Guo W, Ossipov MH, Porreca F. Descending facilitation maintains long-term spontaneous neuropathic pain. THE JOURNAL OF PAIN 2013; 14:845-53. [PMID: 23602267 DOI: 10.1016/j.jpain.2013.02.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 11/25/2022]
Abstract
UNLABELLED Neuropathic pain is frequently characterized by spontaneous pain (ie, pain at rest) and, in some cases, by cold- and touch-induced allodynia. Mechanisms underlying the chronicity of neuropathic pain are not well understood. Rats received spinal nerve ligation (SNL) and were monitored for tactile and thermal thresholds. While heat hypersensitivity returned to baseline levels within approximately 35 to 40 days, tactile hypersensitivity was still present at 580 days after SNL. Tactile hypersensitivity at post-SNL day 60 (D60) was reversed by microinjection of 1) lidocaine; 2) a cholecystokinin 2 receptor antagonist into the rostral ventromedial medulla; or 3) dorsolateral funiculus lesion. Rostral ventromedial medulla lidocaine at D60 or spinal ondansetron, a 5-hydroxytryptamine 3 antagonist, at post-SNL D42 produced conditioned place preference selectively in SNL-treated rats, suggesting long-lasting spontaneous pain. Touch-induced FOS was increased in the spinal dorsal horn of SNL rats at D60 and prevented by prior dorsolateral funiculus lesion, suggesting that long-lasting tactile hypersensitivity depends upon spinal sensitization, which is mediated in part by descending facilitation, in spite of resolution of heat hypersensitivity. PERSPECTIVE These data suggest that spontaneous pain is present for an extended period of time and, consistent with likely actions of clinically effective drugs, is maintained by descending facilitation.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Pharmacology, University of Arizona Health Science Center, Tucson, Arizona 85724, USA
| | | | | | | | | | | |
Collapse
|
29
|
Okubo M, Castro A, Guo W, Zou S, Ren K, Wei F, Keller A, Dubner R. Transition to persistent orofacial pain after nerve injury involves supraspinal serotonin mechanisms. J Neurosci 2013; 33:5152-61. [PMID: 23516281 PMCID: PMC3640487 DOI: 10.1523/jneurosci.3390-12.2013] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The orofacial region is a major focus of chronic neuropathic pain conditions characterized by primary hyperalgesia at the site of injury and secondary hyperalgesia outside the injured zone. We have used a rat model of injury to the maxillary branch (V2) of the trigeminal nerve to produce constant and long-lasting primary hyperalgesia in the V2 territory and secondary hyperalgesia in territories innervated by the mandibular branch (V3). Our findings indicate that the induction of primary and secondary hyperalgesia depended on peripheral input from the injured nerve. In contrast, the maintenance of secondary hyperalgesia depended on central mechanisms. The centralization of the secondary hyperalgesia involved descending 5-HT drive from the rostral ventromedial medulla and the contribution of 5-HT3 receptors in the trigeminal nucleus caudalis (Vc), the homolog of the spinal dorsal horn. Electrophysiological studies further indicate that after nerve injury spontaneous responses and enhanced poststimulus discharges in Vc nociresponsive neurons were time-dependent on descending 5-HT drive and peripheral input. The induction phase of secondary hyperalgesia involved central sensitization mechanisms in Vc neurons that were dependent on peripheral input, whereas the maintenance phase of secondary hyperalgesia involved central sensitization in Vc neurons conducted by a delayed descending 5-HT drive and a persistence of peripheral inputs. Our results are the first to show that the maintenance of secondary hyperalgesia and underlying central sensitization associated with persistent pain depend on a transition to supraspinal mechanisms involving the serotonin system in rostral ventromedial medulla-dorsal horn circuits.
Collapse
Affiliation(s)
| | - Alberto Castro
- 2Department of Anatomy and Neurobiology, Medical School; Program in Neuroscience, University of Maryland, Baltimore, Maryland 21201
| | - Wei Guo
- 1Department of Neural and Pain Sciences, Dental School and
| | - Shiping Zou
- 1Department of Neural and Pain Sciences, Dental School and
| | - Ke Ren
- 1Department of Neural and Pain Sciences, Dental School and
| | - Feng Wei
- 1Department of Neural and Pain Sciences, Dental School and
| | - Asaf Keller
- 2Department of Anatomy and Neurobiology, Medical School; Program in Neuroscience, University of Maryland, Baltimore, Maryland 21201
| | - Ronald Dubner
- 1Department of Neural and Pain Sciences, Dental School and
| |
Collapse
|
30
|
Liu J, Liu FY, Tong ZQ, Li ZH, Chen W, Luo WH, Li H, Luo HJ, Tang Y, Tang JM, Cai J, Liao FF, Wan Y. Lysine-specific demethylase 1 in breast cancer cells contributes to the production of endogenous formaldehyde in the metastatic bone cancer pain model of rats. PLoS One 2013; 8:e58957. [PMID: 23516587 PMCID: PMC3597561 DOI: 10.1371/journal.pone.0058957] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/08/2013] [Indexed: 11/26/2022] Open
Abstract
Background Bone cancer pain seriously affects the quality of life of cancer patients. Our previous study found that endogenous formaldehyde was produced by cancer cells metastasized into bone marrows and played an important role in bone cancer pain. However, the mechanism of production of this endogenous formaldehyde by metastatic cancer cells was unknown in bone cancer pain rats. Lysine-specific demethylase 1 (LSD1) is one of the major enzymes catalyzing the production of formaldehyde. The expression of LSD1 and the concentration of formaldehyde were up-regulated in many high-risk tumors. Objective This study aimed to investigate whether LSD1 in metastasized MRMT-1 breast cancer cells in bone marrows participated in the production of endogenous formaldehyde in bone cancer pain rats. Methodology/Principal Findings Concentration of the endogenous formaldehyde was measured by high performance liquid chromatography (HPLC). Endogenous formaldehyde dramatically increased in cultured MRMT-1 breast cancer cells in vitro, in bone marrows and sera of bone cancer pain rats, in tumor tissues and sera of MRMT-1 subcutaneous vaccination model rats in vivo. Formaldehyde at a concentration as low as the above measured (3 mM) induced pain behaviors in normal rats. The expression of LSD1 which mainly located in nuclei of cancer cells significantly increased in bone marrows of bone cancer pain rats from 14 d to 21 d after inoculation. Furthermore, inhibition of LSD1 decreased the production of formaldehyde in MRMT-1 cells in vitro. Intraperitoneal injection of LSD1 inhibitor pargyline from 3 d to 14 d after inoculation of MRMT-1 cancer cells reduced bone cancer pain behaviors. Conclusion Our data in the present study, combing our previous report, suggested that in the endogenous formaldehyde-induced pain in bone cancer pain rats, LSD1 in metastasized cancer cells contributed to the production of the endogenous formaldehyde.
Collapse
Affiliation(s)
- Jia Liu
- Neuroscience Research Institute and Department of Neurobiology, Peking University, Beijing, People's Republic of China
| | - Feng-Yu Liu
- Neuroscience Research Institute and Department of Neurobiology, Peking University, Beijing, People's Republic of China
| | - Zhi-Qian Tong
- Neuroscience Research Institute and Department of Neurobiology, Peking University, Beijing, People's Republic of China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhi-Hua Li
- Neuroscience Research Institute and Department of Neurobiology, Peking University, Beijing, People's Republic of China
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Wen Chen
- Neuroscience Research Institute and Department of Neurobiology, Peking University, Beijing, People's Republic of China
| | - Wen-Hong Luo
- Central Laboratory, Shantou University Medical College, Shantou, People's Republic of China
| | - Hui Li
- Central Laboratory, Shantou University Medical College, Shantou, People's Republic of China
| | - Hong-Jun Luo
- Central Laboratory, Shantou University Medical College, Shantou, People's Republic of China
| | - Yan Tang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, People's Republic of China
| | - Jun-Min Tang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Peking University, Beijing, People's Republic of China
| | - Jie Cai
- Neuroscience Research Institute and Department of Neurobiology, Peking University, Beijing, People's Republic of China
| | - Fei-Fei Liao
- Neuroscience Research Institute and Department of Neurobiology, Peking University, Beijing, People's Republic of China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, Peking University, Beijing, People's Republic of China
- Key Laboratory for Neuroscience, Ministry of Education/Ministry of Health, Beijing, People's Republic of China
- * E-mail: .
| |
Collapse
|
31
|
Long-term changes in trigeminal ganglionic and thalamic neuronal activities following inferior alveolar nerve transection in behaving rats. J Neurosci 2013; 32:16051-63. [PMID: 23136441 DOI: 10.1523/jneurosci.1828-12.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The transection of the inferior alveolar nerve (IANx) produces allodynia in the whisker pad (V2 division) of rats. Ectopic discharges from injured trigeminal ganglion (TG) neurons and thalamocortical reorganization are possible contributors to the sensitization of uninjured V2 primary and CNS neurons. To test which factor is more important, TG and ventroposterior medial nucleus (VPM) neurons were longitudinally followed before, during, and after IANx for up to 80 d. Spontaneous discharges and mechanical stimulation-evoked responses were recorded in conscious and in anesthetized states. Results show (1) a sequential increase in spontaneous activities, first in the injured TG neurons of the IAN (2-30 d), followed by uninjured V2 ganglion neurons (6-30 d), and then VPM V2 neurons (7-30 d) after IANx; (2) ectopic discharges included burst and regular firing patterns in the IAN and V2 branches of the TG neurons; and (3) the receptive field expanded, the modality shifted, and long-lasting after-discharges occurred only in VPM V2 neurons. All of these changes appeared in the late or maintenance phase (7-30 d) and disappeared during the recovery phase (40-60 d). These observations suggest that ectopic barrages in the injured IAN contribute more to the development of sensitization, whereas the modality shift and evoked after-discharges in the VPM thalamic neurons contribute more to the maintenance phase of allodynia by redirecting tactile information to the cortex as nociceptive.
Collapse
|
32
|
Time-dependent cross talk between spinal serotonin 5-HT2A receptor and mGluR1 subserves spinal hyperexcitability and neuropathic pain after nerve injury. J Neurosci 2012; 32:13568-81. [PMID: 23015446 DOI: 10.1523/jneurosci.1364-12.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence implicates serotonergic descending facilitatory pathways from the brainstem to the spinal cord in the maintenance of pathologic pain. Upregulation of the serotonin receptor 2A (5-HT(2A)R) in dorsal horn neurons promotes spinal hyperexcitation and impairs spinal μ-opioid mechanisms during neuropathic pain. We investigated the involvement of spinal glutamate receptors, including metabotropic receptors (mGluRs) and NMDA, in 5-HT(2A)R-induced hyperexcitability after spinal nerve ligation (SNL) in rat. High-affinity 5-HT(2A)R agonist (4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine hydrobromide (TCB-2) enhanced C-fiber-evoked dorsal horn potentials after SNL, which was prevented by mGluR1 antagonist AIDA [(RS)-1-aminoindan-1,5-dicarboxylic acid] but not by group II mGluR antagonist LY 341495 [(2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl)propanoic acid] or NMDA antagonist d-AP5 [D-(-)-2-amino-5-phosphonopentanoic acid]. 5-HT(2A)R and mGluR1 were found to be coexpressed in postsynaptic densities in dorsal horn neurons. In the absence of SNL, pharmacological stimulation of 5-HT(2A)R with TCB-2 both induced rapid bilateral upregulation of mGluR1 expression in cytoplasmic and synaptic fractions of spinal cord homogenates, which was attenuated by PKC inhibitor chelerythrine, and enhanced evoked potentials during costimulation of mGluR1 with 3,5-DHPG [(RS)-3,5-dihydroxyphenylglycine]. SNL was followed by bilateral upregulation of mGluR1 in 5-HT(2A)R-containing postsynaptic densities. Upregulation of mGluR1 in synaptic compartments was partially prevented by chronic administration of selective 5-HT(2A)R antagonist M100907 [(R)-(+)-α-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-pipidinemethanol], confirming 5-HT(2A)R-mediated control of mGluR1 upregulation triggered by SNL. Changes in thermal and mechanical pain thresholds following SNL were increasingly reversed over the days after injury by chronic 5-HT(2A)R blockade. These results emphasize a role for 5-HT(2A)R in hyperexcitation and pain after nerve injury and support mGluR1 upregulation as a novel feedforward activation mechanism contributing to 5-HT(2A)R-mediated facilitation.
Collapse
|
33
|
Activation of satellite glial cells in lumbar dorsal root ganglia contributes to neuropathic pain after spinal nerve ligation. Brain Res 2012; 1427:65-77. [DOI: 10.1016/j.brainres.2011.10.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 09/24/2011] [Accepted: 10/10/2011] [Indexed: 12/18/2022]
|
34
|
Dableh LJ, Yashpal K, Henry JL. Neuropathic pain as a process: reversal of chronification in an animal model. J Pain Res 2011; 4:315-23. [PMID: 22003305 PMCID: PMC3191931 DOI: 10.2147/jpr.s17882] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Peripheral neuropathic pain arises from trauma to sensory nerves. Other types of acute neurotrauma such as stroke and spinal cord injury are treated immediately, largely to prevent secondary damage. To pursue the possibility that neuropathic pain may also be amenable to early treatment, a rat model of neuropathic pain was induced using a 2-mm polyethylene cuff implanted around one sciatic nerve. Within 24 hours, hypersensitivity to von Frey hair stimulation appeared, as indicated by decreased paw withdrawal thresholds. When the cuff was removed 24 hours after implantation, readings returned to pre-implantation levels starting as early as day 18. When the cuff was removed after 4 days, there was a period of initial hypersensitivity, and then an increase toward baseline at two time points near the end of the study; therefore, only a partial recovery toward pre-implantation values occurred. Having established that a temporal reversal can occur, the next step examined possible pharmacological reversal. The tachykinin NK1 receptor antagonist, CP-96,345, produced a minor increase in withdrawal thresholds in animals with the cuff left permanently implanted. To determine the effect of early and repeated administration of CP-96,345, it was given daily on days 1–4. The cuff was removed on day 4. Six days later, readings showed reversal of tactile hypersensitivity. We suggest that persistent neuropathic pain occurs from processes that develop over several hours and days, and that some of these processes may be prevented by early medical intervention. Thus, nerve injury in the context of chronic neuropathic pain should be treated in a similar manner to nerve injury resulting from stroke, spinal cord injury, and other types of neurotrauma. We suggest that effective medical intervention within the first few hours after nerve injury may spare a patient from a chronic debilitating pain that may be refractory to later therapies.
Collapse
Affiliation(s)
- Liliane J Dableh
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | | | | |
Collapse
|
35
|
Perioperative nerve blockade: clues from the bench. Anesthesiol Res Pract 2011; 2011:124898. [PMID: 21776253 PMCID: PMC3138083 DOI: 10.1155/2011/124898] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/23/2011] [Accepted: 05/06/2011] [Indexed: 11/18/2022] Open
Abstract
Peripheral and
neuraxial nerve blockades are widely used in the
perioperative period. Their values to diminish
acute postoperative pain are established but
other important outcomes such as chronic
postoperative pain, or newly, cancer recurrence,
or infections could also be influenced. The
long-term effects of perioperative nerve
blockade are still controversial. We will review
current knowledge of the effects of blocking
peripheral electrical activity in different
animal models of pain. We will first go over the
mechanisms of pain development and evaluate
which types of fibers are activated after an
injury. In the light of experimental results, we
will propose some hypotheses explaining the
mitigated results obtained in clinical studies
on chronic postoperative pain. Finally, we will
discuss three major disadvantages of the current
blockade: the absence of blockade of myelinated
fibers, the inappropriate duration of blockade,
and the existence of activity-independent
mechanisms.
Collapse
|
36
|
Electrophysiological properties of spinal wide dynamic range neurons in neuropathic pain rats following spinal nerve ligation. Neurosci Bull 2011; 27:1-8. [PMID: 21270898 DOI: 10.1007/s12264-011-1039-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE The present study aimed to investigate the electrophysiological properties of wide dynamic range (WDR) neurons in spinal dorsal horn of rats with neuropathic pain induced by lumber 5 (L5) spinal nerve ligation (SNL) in a large size of samples. METHODS Adult Sprague-Dawley rats were divided into normal and SNL groups. Electrophysiological technique was used to record the characteristics of WDR neurons in the spinal dorsal horn. RESULTS Compared with the WDR neurons in normal rats, the WDR neurons in SNL rats showed an increase in excitability, manifested by an enlargement of the receptive field size, an increase in the proportion of neurons that exhibited spontaneous activities, decreases in the C-response threshold and latency, and an increase in the C-response duration. In addition, the numbers of Aβ- and C-fiber-evoked discharges were smaller in SNL rats than in normal rats. CONCLUSION The excitability of spinal WDR neurons increased in rats with neuropathic pain induced by L5 SNL. The increase in excitability of WDR neurons may contribute to the development of neuropathic pain.
Collapse
|
37
|
Parekh A, Campbell AJM, Djouhri L, Fang X, McMullan S, Berry C, Acosta C, Lawson SN. Immunostaining for the α3 isoform of the Na+/K+-ATPase is selective for functionally identified muscle spindle afferents in vivo. J Physiol 2010; 588:4131-43. [PMID: 20807787 PMCID: PMC3002446 DOI: 10.1113/jphysiol.2010.196386] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Muscle spindle afferent (MSA) neurons can show rapid and sustained firing. Immunostaining for the α3 isoform of the Na+/K+-ATPase (α3) in some large dorsal root ganglion (DRG) neurons and large intrafusal fibres suggested α3 expression in MSAs (Dobretsov et al. 2003), but not whether α3-immunoreactive DRG neuronal somata were exclusively MSAs. We found that neuronal somata with high α3 immunointensity were neurofilament-rich, suggesting they have A-fibres; we therefore focussed on A-fibre neurons to determine the sensory properties of α3-immunoreactive neurons. We examined α3 immunointensity in 78 dye-injected DRG neurons whose conduction velocities and hindlimb sensory receptive fields were determined in vivo. A dense perimeter or ring of staining in a subpopulation of neurons was clearly overlying the soma membrane and not within satellite cells. Neurons with clear α3 rings (n = 23) were all MSAs (types I and II); all MSAs had darkly stained α3 rings, that tended to be darker in MSA1 than MSA2 units. Of 52 non-MSA A-fibre neurons including nociceptive and cutaneous low-threshold mechanoreceptive (LTM) neurons, 50 had no discernable ring, while 2 (Aα/β cutaneous LTMs) had weakly stained rings. Three of three C-nociceptors had no rings. MSAs with strong ring immunostaining also showed the strongest cytoplasmic staining. These findings suggest that α3 ring staining is a selective marker for MSAs. The α3 isoform of the Na+/K+-ATPase has previously been shown to be activated by higher Na+ levels and to have greater affinity for ATP than the α1 isoform (in all DRG neurons). The high α3 levels in MSAs may enable the greater dynamic firing range in MSAs.
Collapse
Affiliation(s)
- A Parekh
- Department of Physiology and Pharmacology, Medical School, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Pain research in China. SCIENCE CHINA-LIFE SCIENCES 2010; 53:356-362. [DOI: 10.1007/s11427-010-0065-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 02/24/2010] [Indexed: 12/29/2022]
|
39
|
Jang J, Lee B, Nam T, Kim J, Kim D, Leem J. Peripheral contributions to the mechanical hyperalgesia following a lumbar 5 spinal nerve lesion in rats. Neuroscience 2010; 165:221-32. [DOI: 10.1016/j.neuroscience.2009.09.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 09/22/2009] [Accepted: 09/30/2009] [Indexed: 02/04/2023]
|
40
|
Suter MR, Berta T, Gao YJ, Decosterd I, Ji RR. Large A-fiber activity is required for microglial proliferation and p38 MAPK activation in the spinal cord: different effects of resiniferatoxin and bupivacaine on spinal microglial changes after spared nerve injury. Mol Pain 2009; 5:53. [PMID: 19772627 PMCID: PMC2759920 DOI: 10.1186/1744-8069-5-53] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 09/22/2009] [Indexed: 12/19/2022] Open
Abstract
Background After peripheral nerve injury, spontaneous ectopic activity arising from the peripheral axons plays an important role in inducing central sensitization and neuropathic pain. Recent evidence indicates that activation of spinal cord microglia also contributes to the development of neuropathic pain. In particular, activation of p38 mitogen-activated protein kinase (MAPK) in spinal microglia is required for the development of mechanical allodynia. However, activity-dependent activation of microglia after nerve injury has not been fully addressed. To determine whether spontaneous activity from C- or A-fibers is required for microglial activation, we used resiniferatoxin (RTX) to block the conduction of transient receptor potential vanilloid subtype 1 (TRPV1) positive fibers (mostly C- and Aδ-fibers) and bupivacaine microspheres to block all fibers of the sciatic nerve in rats before spared nerve injury (SNI), and observed spinal microglial changes 2 days later. Results SNI induced robust mechanical allodynia and p38 activation in spinal microglia. SNI also induced marked cell proliferation in the spinal cord, and all the proliferating cells (BrdU+) were microglia (Iba1+). Bupivacaine induced a complete sensory and motor blockade and also significantly inhibited p38 activation and microglial proliferation in the spinal cord. In contrast, and although it produced an efficient nociceptive block, RTX failed to inhibit p38 activation and microglial proliferation in the spinal cord. Conclusion (1) Blocking peripheral input in TRPV1-positive fibers (presumably C-fibers) is not enough to prevent nerve injury-induced spinal microglial activation. (2) Peripheral input from large myelinated fibers is important for microglial activation. (3) Microglial activation is associated with mechanical allodynia.
Collapse
Affiliation(s)
- Marc R Suter
- Pain Research Center, Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
41
|
Su X, Liang AH, Urban MO. The Effect of Amitriptyline on Ectopic Discharge of Primary Afferent Fibers in the L5 Dorsal Root in a Rat Model of Neuropathic Pain. Anesth Analg 2009; 108:1671-9. [DOI: 10.1213/ane.0b013e31819b0271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
42
|
Xie W, Strong JA, Zhang JM. Early blockade of injured primary sensory afferents reduces glial cell activation in two rat neuropathic pain models. Neuroscience 2009; 160:847-57. [PMID: 19303429 DOI: 10.1016/j.neuroscience.2009.03.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 03/05/2009] [Accepted: 03/09/2009] [Indexed: 12/16/2022]
Abstract
Satellite glial cells in the dorsal root ganglion (DRG), like the better-studied glia cells in the spinal cord, react to peripheral nerve injury or inflammation by activation, proliferation, and release of messengers that contribute importantly to pathological pain. It is not known how information about nerve injury or peripheral inflammation is conveyed to the satellite glial cells. Abnormal spontaneous activity of sensory neurons, observed in the very early phase of many pain models, is one plausible mechanism by which injured sensory neurons could activate neighboring satellite glial cells. We tested effects of locally inhibiting sensory neuron activity with sodium channel blockers on satellite glial cell activation in a rat spinal nerve ligation (SNL) model. SNL caused extensive satellite glial cell activation (as defined by glial fibrillary acidic protein [GFAP] immunoreactivity) which peaked on day 1 and was still observed on day 10. Perfusion of the axotomized DRG with the Na channel blocker tetrodotoxin (TTX) significantly reduced this activation at all time points. Similar findings were made with a more distal injury (spared nerve injury model), using a different sodium channel blocker (bupivacaine depot) at the injury site. Local DRG perfusion with TTX also reduced levels of nerve growth factor (NGF) in the SNL model on day 3 (when activated glia are an important source of NGF), without affecting the initial drop of NGF on day 1 (which has been attributed to loss of transport from target tissues). Local perfusion in the SNL model also significantly reduced microglia activation (OX-42 immunoreactivity) on day 3 and astrocyte activation (GFAP immunoreactivity) on day 10 in the corresponding dorsal spinal cord. The results indicate that early spontaneous activity in injured sensory neurons may play important roles in glia activation and pathological pain.
Collapse
Affiliation(s)
- W Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0531, USA
| | | | | |
Collapse
|
43
|
Devor M. Ectopic discharge in Abeta afferents as a source of neuropathic pain. Exp Brain Res 2009; 196:115-28. [PMID: 19242687 DOI: 10.1007/s00221-009-1724-6] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Accepted: 01/22/2009] [Indexed: 12/25/2022]
Abstract
Ectopic discharge in axotomized dorsal root ganglion neurons is a key driver of neuropathic pain. However, the bulk of this activity is generated and carried centrally in large diameter myelinated Abeta afferents, a cell type that normally signals touch and vibration sense. Evidence is considered suggesting that following axotomy, Abeta afferents undergo a change in their electrical characteristics and also in the neurotransmitter complement that they express. This dual phenotypic switching renders them capable of (1) directly driving postsynaptic pain signaling pathways in the spinal cord, and (2) triggering and maintaining central sensitization.
Collapse
Affiliation(s)
- Marshall Devor
- Department of Cell and Developmental Biology, Institute of Life Sciences and Center for Research on Pain, Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
| |
Collapse
|
44
|
Qu XX, Cai J, Li MJ, Chi YN, Liao FF, Liu FY, Wan Y, Han JS, Xing GG. Role of the spinal cord NR2B-containing NMDA receptors in the development of neuropathic pain. Exp Neurol 2008; 215:298-307. [PMID: 19046970 DOI: 10.1016/j.expneurol.2008.10.018] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 10/22/2008] [Accepted: 10/24/2008] [Indexed: 12/27/2022]
Abstract
Activation of N-methyl-d-aspartate (NMDA) receptors in the spinal dorsal horn has been shown to be essential for the initiation of central sensitization and the hyperexcitability of dorsal horn neurons in chronic pain. However, whether the spinal NR2B-containing NMDA (NMDA-2B) receptors are involved still remains largely unclear. Using behavioral test and in vivo extracellular electrophysiological recording in L5 spinal nerve-ligated (SNL) neuropathic rats, we investigate the roles of spinal cord NMDA-2B receptors in the development of neuropathic pain. Our study showed that intrathecal (i.t.) injection of Ro 25-6981, a selective NMDA-2B receptor antagonist, had a dose-dependent anti-allodynic effect without causing motor dysfunction. Furthermore, i.t. application of another NMDA-2B receptor antagonist ifenprodil prior to SNL also significantly inhibited the mechanical allodynia but not the thermal hyperalgesia. These data suggest that NMDA-2B receptors at the spinal cord level play an important role in the development of neuropathic pain, especially at the early stage following nerve injury. In addition, spinal administration of Ro 25-6981 not only had a dose-dependent inhibitory effect on the C-fiber responses of dorsal horn wide dynamic range (WDR) neurons in both normal and SNL rats, but also significantly inhibited the long-term potentiation (LTP) in the C-fiber responses of WDR neurons induced by high-frequency stimulation (HFS) applied to the sciatic nerve. These results indicate that activation of the dorsal horn NMDA-2B receptors may be crucial for the spinal nociceptive synaptic transmission and for the development of long-lasting spinal hyperexcitability following nerve injury. In conclusion, the spinal cord NMDA-2B receptors play a role in the development of central sensitization and neuropathic pain via the induction of LTP in dorsal horn nociceptive synaptic transmission. Therefore, the spinal cord NMDA-2B receptor is likely to be a target for clinical pain therapy.
Collapse
Affiliation(s)
- Xiao-Xiu Qu
- Neuroscience Research Institute and Department of Neurobiology, Peking University, 38 Xue-Yuan Road, Beijing 100191, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Governing role of primary afferent drive in increased excitation of spinal nociceptive neurons in a model of sciatic neuropathy. Exp Neurol 2008; 214:219-28. [PMID: 18773893 DOI: 10.1016/j.expneurol.2008.08.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 07/31/2008] [Accepted: 08/10/2008] [Indexed: 01/07/2023]
Abstract
Previously we reported that the cuff model of peripheral neuropathy, in which a 2 mm polyethylene tube is implanted around the sciatic nerve, exhibits aspects of neuropathic pain behavior in rats similar to those in humans and causes robust hyperexcitation of spinal nociceptive dorsal horn neurons. The mechanisms mediating this increased excitation are not known and remain a key unresolved question in models of peripheral neuropathy. In anesthetized adult male Sprague-Dawley rats 2-6 weeks after cuff implantation we found that elevated discharge rate of single lumbar (L(3-4)) wide dynamic range (WDR) neurons persists despite acute spinal transection (T9) but is reversed by local conduction block of the cuff-implanted sciatic nerve; lidocaine applied distal to the cuff (i.e. between the cuff and the cutaneous receptive field) decreased spontaneous baseline discharge of WDR dorsal horn neurons approximately 40% (n=18) and when applied subsequently proximal to the cuff, i.e. between the cuff and the spinal cord, it further reduced spontaneous discharge by approximately 60% (n=19; P<0.05 proximal vs. distal) to a level that was not significantly different from that of naive rats. Furthermore, in cuff-implanted rats WDR neurons (n=5) responded to mechanical cutaneous stimulation with an exaggerated afterdischarge which was reversed entirely by proximal nerve conduction block. These results demonstrate that the hyperexcited state of spinal dorsal horn neurons observed in this model of peripheral neuropathy is not maintained by tonic descending facilitatory mechanisms. Rather, on-going afferent discharges originating from the sciatic nerve distal to, at, and proximal to the cuff maintain the synaptically-mediated gain in discharge of spinal dorsal horn WDR neurons and hyperresponsiveness of these neurons to cutaneous stimulation. Our findings reveal that ectopic afferent activity from multiple regions along peripheral nerves may drive CNS changes and the symptoms of pain associated with peripheral neuropathy.
Collapse
|
46
|
Jiang YQ, Sun Q, Tu HY, Wan Y. Characteristics of HCN channels and their participation in neuropathic pain. Neurochem Res 2008; 33:1979-89. [PMID: 18461446 DOI: 10.1007/s11064-008-9717-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 04/11/2008] [Indexed: 02/08/2023]
Abstract
Neuropathic pain is induced by the injury to nervous systems and characterized by hyperalgesia, allodynia and spontaneous pain. The underlying mechanisms include peripheral and central sensitization resulted from neuronal hyperexcitability. A number of ion channels are considered to contribute to the neuronal hyperexcitability. Here, we particularly concentrate on an interesting ion channel, hyperpolarization-activated cyclic nucleotide gated (HCN) channels. We overview its biophysical properties, physiological functions, followed by focusing on the current progress in the study of its role in the development of neuropathic pain. We attempt to provide a comprehensive review of the potential valuable target, HCN channels, in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Yu-Qiu Jiang
- Neuroscience Research Institute, Peking University, 38 Xueyuan Road, Beijing 100083, People's Republic of China
| | | | | | | |
Collapse
|
47
|
Lu Y, Sun YN, Wu X, Sun Q, Liu FY, Xing GG, Wan Y. Role of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor subunit GluR1 in spinal dorsal horn in inflammatory nociception and neuropathic nociception in rat. Brain Res 2008; 1200:19-26. [PMID: 18289517 DOI: 10.1016/j.brainres.2008.01.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 12/05/2007] [Accepted: 01/06/2008] [Indexed: 11/29/2022]
Abstract
The present study aims to investigate changes of spinal cord AMPA receptor GluR1 and its phosphorylation in inflammatory and neuropathic pain. Complete Freund's adjuvant (CFA) injection into the hind paw produced inflammatory thermal hyperalgesia that was assessed by decreased response latency to radiant heat; spinal nerve ligation (SNL) was used to induce mechanical allodynia that was evaluated with von Frey hairs. By method of Western blot, expression of GluR1 (the main subunit of the AMPA receptor) and its phosphorylated forms at serine 845 (pGluR1-Ser845) and at serine 831 (pGluR1-Ser831) in the spinal dorsal horn was observed. It was found that the expression of pGluR1-Ser845 and pGluR1-Ser831 increased significantly at 1 h after CFA injection, reached peak at 4 h and returned to the normal control level at 24 h, while no significant change was detected in GluR1 itself. In contrast, neither GluR1 nor pGluR1 showed any significant change in rats following SNL. These results suggest that phosphorylated GluR1 (pGluR1-Ser845 and pGluR1-Ser831) might play a role in the induction of inflammatory but not neuropathic pain.
Collapse
Affiliation(s)
- Yue Lu
- Neuroscience Research Institute, Peking University, 38 Xueyuan Road, Beijing 100083, China
| | | | | | | | | | | | | |
Collapse
|
48
|
Jiang YQ, Xing GG, Wang SL, Tu HY, Chi YN, Li J, Liu FY, Han JS, Wan Y. Axonal accumulation of hyperpolarization-activated cyclic nucleotide-gated cation channels contributes to mechanical allodynia after peripheral nerve injury in rat. Pain 2008; 137:495-506. [PMID: 18179873 DOI: 10.1016/j.pain.2007.10.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 09/02/2007] [Accepted: 10/08/2007] [Indexed: 12/27/2022]
Abstract
Peripheral nerve injury causes neuropathic pain including mechanical allodynia and thermal hyperalgesia due to central and peripheral sensitization. Spontaneous ectopic discharges derived from dorsal root ganglion (DRG) neurons and from the sites of injury are a key factor in the initiation of this sensitization. Numerous studies have focused primarily on DRG neurons; however, the injured axons themselves likely play an equally important role. Previous studies of neuropathic pain rats with spinal nerve ligation (SNL) showed that the hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel in DRG neuronal bodies is important for the development of neuropathic pain. Here, we investigate the role of the axonal HCN channel in neuropathic pain rats. Using the chronic constriction injury (CCI) model, we found abundant axonal accumulation of HCN channel protein at the injured sites accompanied by a slight decrease in DRG neuronal bodies. The function of these accumulated channels was verified by local application of ZD7288, a specific HCN blocker, which significantly suppressed the ectopic discharges from injured nerve fibers with no effect on impulse conduction. Moreover, mechanical allodynia, but not thermal hyperalgesia, was relieved significantly by ZD7288. These results suggest that axonal HCN channel accumulation plays an important role in ectopic discharges from injured spinal nerves and contributes to the development of mechanical allodynia in neuropathic pain rats.
Collapse
Affiliation(s)
- Yu-Qiu Jiang
- Neuroscience Research Institute, Peking University, Beijing 100083, China Department of Neurobiology, Peking University, Beijing 100083, China Key Laboratory for Neuroscience, Peking University, Beijing 100083, China Department of Pathology, Peking University, Beijing 100083, China
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yu ACH, Wan Y, Chui DH, Cui CL, Luo F, Wang KW, Wang XM, Wang Y, Wu LZ, Xing GG, Han JS. The Neuroscience Research Institute at Peking University: a place for the solution of pain and drug abuse. Cell Mol Neurobiol 2008; 28:13-9. [PMID: 18058018 DOI: 10.1007/s10571-007-9244-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 11/17/2007] [Indexed: 11/26/2022]
Abstract
Neuroscience research in China has undergone rapid expansion since 1980. The Neuroscience Research Institute of Peking University, one of the most active neuroscience research groups in China, was founded in 1987. Currently, the institute is overseeing four research areas, i.e., (1) pain and analgesia, (2) drug abuse and acupuncture treatment for drug addiction, (3) the mechanism of neurological degenerative disorders, and (4) the role of neuroglia in central nervous system injury. The institute is simultaneously investigating both theoretical and clinical studies. Acupuncture remains the core of research, while pain and drug abuse form the two disciplines.
Collapse
Affiliation(s)
- Albert C H Yu
- Neuroscience Research Institute, Peking University, 38 Xue Yuan Road, Beijing, 100083, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Xing GG, Liu FY, Qu XX, Han JS, Wan Y. Long-term synaptic plasticity in the spinal dorsal horn and its modulation by electroacupuncture in rats with neuropathic pain. Exp Neurol 2007; 208:323-32. [PMID: 17936754 DOI: 10.1016/j.expneurol.2007.09.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2007] [Revised: 08/31/2007] [Accepted: 09/04/2007] [Indexed: 02/01/2023]
Abstract
Our previous study has reported that electroacupuncture (EA) at low frequency of 2 Hz had greater and more prolonged analgesic effects on mechanical allodynia and thermal hyperalgesia than that EA at high frequency of 100 Hz in rats with neuropathic pain. However, how EA at different frequencies produces distinct analgesic effects on neuropathic pain is unclear. Neuronal plastic changes in spinal cord might contribute to the development and maintenance of neuropathic pain. In the present study, we investigated changes of spinal synaptic plasticity in the development of neuropathic pain and its modulation by EA in rats with neuropathic pain. Field potentials of spinal dorsal horn neurons were recorded extracellularly in sham-operated rats and in rats with spinal nerve ligation (SNL). We found for the first time that the threshold for inducing long-term potentiation (LTP) of C-fiber-evoked potentials in dorsal horn was significantly lower in SNL rats than that in sham-operated rats. The threshold for evoking the C-fiber-evoked field potentials was also significantly lower, and the amplitude of the field potentials was higher in SNL rats as compared with those in the control rats. EA at low frequency of 2 Hz applied on acupoints ST 36 and SP 6, which was effective in treatment of neuropathic pain, induced long-term depression (LTD) of the C-fiber-evoked potentials in SNL rats. This effect could be blocked by N-methyl-d-aspartic acid (NMDA) receptor antagonist MK-801 and by opioid receptor antagonist naloxone. In contrast, EA at high frequency of 100 Hz, which was not effective in treatment of neuropathic pain, induced LTP in SNL rats but LTD in sham-operated rats. Unlike the 2 Hz EA-induced LTD in SNL rats, the 100 Hz EA-induced LTD in sham-operated rats was dependent on the endogenous GABAergic and serotonergic inhibitory system. Results from our present study suggest that (1) hyperexcitability in the spinal nociceptive synaptic transmission may occur after nerve injury, which may contribute to the development of neuropathic pain; (2) EA at low or high frequency has a different effect on modulating spinal synaptic plasticities in rats with neuropathic pain. The different modulation on spinal LTD or LTP by low- or high-frequency EA may be a potential mechanism of different analgesic effects of EA on neuropathic pain. LTD of synaptic strength in the spinal dorsal horn in SNL rats may contribute to the long-lasting analgesic effects of EA at 2 Hz.
Collapse
Affiliation(s)
- Guo-Gang Xing
- Department of Neurobiology, Key Laboratory for Neuroscience of the Ministry of Education and Public Health, Peking University, 38 Xue-Yuan Road, Beijing 100083, People's Republic of China.
| | | | | | | | | |
Collapse
|