1
|
Liu Y, Zhu R, Zhou Y, Lü J, Chai Y. Improved control effect of pathological oscillations by using delayed feedback stimulation in neural mass model with pedunculopontine nucleus. Brain Behav 2023; 13:e3183. [PMID: 37533306 PMCID: PMC10570496 DOI: 10.1002/brb3.3183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND The role of delayed feedback stimulation in the discussion of Parkinson's disease (PD) has recently received increasing attention. Stimulation of pedunculopontine nucleus (PPN) is an emerging treatment for PD. However, the effect of PPN in regulating PD is ignored, and the delayed feedback stimulation algorithm is facing some problems in parameter selection. METHODS On the basis of a neural mass model, we established a new network for PPN. Four types of delayed feedback stimulation schemes were designed, such as stimulating subthalamic nucleus (STN) with the local field potentials (LFPs) of STN nucleus, globus pallidus (GPe) with the LFPs of Gpe nucleus, PPN with the LFPs of Gpe nucleus, and STN with the LFPs of PPN nucleus. RESULTS In this study, we found that all four kinds of delayed feedback schemes are effective, suggesting that the algorithm is simple and more effective in experiments. More specifically, the other three control schemes improved the control performance and reduced the stimulation energy expenditure compared with traditional stimulating STN itself only. CONCLUSION PPN stimulation can affect the new network and help to suppress pathological oscillations for each neuron. We hope that our results can gain an insight into the future clinical treatment.
Collapse
Affiliation(s)
- Yingpeng Liu
- School of Mathematics and PhysicsShanghai University of Electric PowerShanghaiChina
| | - Rui Zhu
- School of Mathematics and PhysicsShanghai University of Electric PowerShanghaiChina
| | - Ye Zhou
- School of Mathematics and PhysicsShanghai University of Electric PowerShanghaiChina
| | - Jiali Lü
- School of Mathematics and PhysicsShanghai University of Electric PowerShanghaiChina
| | - Yuan Chai
- School of Mathematics and PhysicsShanghai University of Electric PowerShanghaiChina
| |
Collapse
|
2
|
Di Bisceglie Caballero S, Ces A, Liberge M, Ambroggi F, Amalric M, Ouagazzal AM. Optogenetic Globus Pallidus Stimulation Improves Motor Deficits in 6-Hydroxydopamine-Lesioned Mouse Model of Parkinson's Disease. Int J Mol Sci 2023; 24:7935. [PMID: 37175643 PMCID: PMC10178372 DOI: 10.3390/ijms24097935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Excessive inhibition of the external globus pallidus (GPe) by striatal GABAergic neurons is considered a central mechanism contributing to motor symptoms of Parkinson's disease (PD). While electrophysiological findings support this view, behavioral studies assessing the beneficial effects of global GPe activations are scarce and the reported results are controversial. We used an optogenetic approach and the standard unilateral 6-hydroxydopamine nigrostriatal dopamine (DA) lesion model of PD to explore the effects of GPe photostimulation on motor deficits in mice. Global optogenetic GPe inhibition was used in normal mice to verify whether it reproduced the typical motor impairment induced by DA lesions. GPe activation improved ipsilateral circling, contralateral forelimb akinesia, locomotor hypoactivity, and bradykinesia in 6-OHDA-lesioned mice at ineffective photostimulation parameters (532 nm, 5 Hz, 3 mW) in normal mice. GPe photoinhibition (450 nm, 12 mW) had no effect on locomotor activity and forelimb use in normal mice. Bilateral photoinhibition (450 nm, 6 mW/side) reduced directed exploration and improved working memory performances indicating that recruitment of GPe in physiological conditions may depend on the behavioral task involved. Collectively, these findings shed new light on the functional role of GPe and suggest that it is a promising target for neuromodulatory restoration of motor deficits in PD.
Collapse
|
3
|
Understanding Parkinson's disease and deep brain stimulation: Role of monkey models. Proc Natl Acad Sci U S A 2019; 116:26259-26265. [PMID: 31871164 DOI: 10.1073/pnas.1902300116] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative movement disorder affecting over 10 million people worldwide. In the 1930s and 1940s there was little understanding regarding what caused PD or how to treat it. In a desperate attempt to improve patients' lives different regions of the neuraxis were ablated. Morbidity and mortality were common, but some patients' motor signs improved with lesions involving the basal ganglia or thalamus. With the discovery of l-dopa the advent of medical therapy began and surgical approaches became less frequent. It soon became apparent, however, that medical therapy was associated with side effects in the form of drug-induced dyskinesia and motor fluctuations and surgical therapies reemerged. Fortunately, during this time studies in monkeys had begun to lay the groundwork to understand the functional organization of the basal ganglia, and with the discovery of the neurotoxin MPTP a monkey model of PD had been developed. Using this model scientists were characterizing the physiological changes that occurred in the basal ganglia in PD and models of basal ganglia function and dysfunction were proposed. This work provided the rationale for the return of pallidotomy, and subsequently deep brain stimulation procedures. In this paper we describe the evolution of these monkey studies, how they provided a greater understanding of the pathophysiology underlying the development of PD and provided the rationale for surgical procedures, the search to understand mechanisms of DBS, and how these studies have been instrumental in understanding PD and advancing the development of surgical therapies for its treatment.
Collapse
|
4
|
Horisawa S, Fukui A, Tanaka Y, Wendong L, Yamahata H, Kawamata T, Taira T. Pallidothalamic Tractotomy (Forel's Field H1-tomy) for Dystonia: Preliminary Results. World Neurosurg 2019; 129:e851-e856. [DOI: 10.1016/j.wneu.2019.06.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 11/30/2022]
|
5
|
Wichmann T. Changing views of the pathophysiology of Parkinsonism. Mov Disord 2019; 34:1130-1143. [PMID: 31216379 DOI: 10.1002/mds.27741] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 12/11/2022] Open
Abstract
Studies of the pathophysiology of parkinsonism (specifically akinesia and bradykinesia) have a long history and primarily model the consequences of dopamine loss in the basal ganglia on the function of the basal ganglia/thalamocortical circuit(s). Changes of firing rates of individual nodes within these circuits were originally considered central to parkinsonism. However, this view has now given way to the belief that changes in firing patterns within the basal ganglia and related nuclei are more important, including the emergence of burst discharges, greater synchrony of firing between neighboring neurons, oscillatory activity patterns, and the excessive coupling of oscillatory activities at different frequencies. Primarily focusing on studies obtained in nonhuman primates and human patients with Parkinson's disease, this review summarizes the current state of this field and highlights several emerging areas of research, including studies of the impact of the heterogeneity of external pallidal neurons on parkinsonism, the importance of extrastriatal dopamine loss, parkinsonism-associated synaptic and morphologic plasticity, and the potential role(s) of the cerebellum and brainstem in the motor dysfunction of Parkinson's disease. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Thomas Wichmann
- Department of Neurology/School of Medicine and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Suryanarayana SM, Hellgren Kotaleski J, Grillner S, Gurney KN. Roles for globus pallidus externa revealed in a computational model of action selection in the basal ganglia. Neural Netw 2018; 109:113-136. [PMID: 30414556 DOI: 10.1016/j.neunet.2018.10.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/28/2018] [Accepted: 10/09/2018] [Indexed: 01/12/2023]
Abstract
The basal ganglia are considered vital to action selection - a hypothesis supported by several biologically plausible computational models. Of the several subnuclei of the basal ganglia, the globus pallidus externa (GPe) has been thought of largely as a relay nucleus, and its intrinsic connectivity has not been incorporated in significant detail, in any model thus far. Here, we incorporate newly revealed subgroups of neurons within the GPe into an existing computational model of the basal ganglia, and investigate their role in action selection. Three main results ensued. First, using previously used metrics for selection, the new extended connectivity improved the action selection performance of the model. Second, low frequency theta oscillations were observed in the subpopulation of the GPe (the TA or 'arkypallidal' neurons) which project exclusively to the striatum. These oscillations were suppressed by increased dopamine activity - revealing a possible link with symptoms of Parkinson's disease. Third, a new phenomenon was observed in which the usual monotonic relationship between input to the basal ganglia and its output within an action 'channel' was, under some circumstances, reversed. Thus, at high levels of input, further increase of this input to the channel could cause an increase of the corresponding output rather than the more usually observed decrease. Moreover, this phenomenon was associated with the prevention of multiple channel selection, thereby assisting in optimal action selection. Examination of the mechanistic origin of our results showed the so-called 'prototypical' GPe neurons to be the principal subpopulation influencing action selection. They control the striatum via the arkypallidal neurons and are also able to regulate the output nuclei directly. Taken together, our results highlight the role of the GPe as a major control hub of the basal ganglia, and provide a mechanistic account for its control function.
Collapse
Affiliation(s)
| | - Jeanette Hellgren Kotaleski
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Sten Grillner
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Kevin N Gurney
- Department of Psychology, University of Sheffield, Sheffield, UK.
| |
Collapse
|
7
|
Qiu MH, Chen MC, Wu J, Nelson D, Lu J. Deep brain stimulation in the globus pallidus externa promotes sleep. Neuroscience 2016; 322:115-20. [PMID: 26917269 PMCID: PMC5007949 DOI: 10.1016/j.neuroscience.2016.02.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/09/2016] [Accepted: 02/16/2016] [Indexed: 01/08/2023]
Abstract
The basal ganglia, a network of subcortical structures, play a critical role in movements, sleep and mental behavior. Basal ganglia disorders such as Parkinson's disease and Huntington's disease affect sleep. Deep brain stimulation (DBS) to treat motor symptoms in Parkinson's disease can ameliorate sleep disturbances. Our series of previous studies lead the hypothesis that dopamine, acting on D2 receptors on the striatopallidal terminals, enhances activity in the globus pallidus externa (GPe) and promotes sleep. Here, we tested if DBS in the GPe promotes sleep in rats. We found that unilateral DBS (180 Hz at 100 μA) in the GPe in rats significantly increased both non-rapid eye movement and rapid eye movement sleep compared to sham DBS stimulation. The EEG power spectrum of sleep induced by DBS was similar to that of the baseline sleep, and sleep latency was not affected by DBS. The GPe is potentially a better site for DBS to treat both insomnia and motor disorders caused by basal ganglia dysfunction.
Collapse
Affiliation(s)
- M H Qiu
- Department of Pharmacology, State Key Laboratory of Medical Neurobiology and Department of Neurobiology, School of Basic Medical Science, Fudan University, Shanghai 200032, China; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA.
| | - M C Chen
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | - J Wu
- Neuromodulation Research, Medtronic Inc, Minneapolis, MN 55432, USA
| | - D Nelson
- Neuromodulation Research, Medtronic Inc, Minneapolis, MN 55432, USA
| | - J Lu
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Angeli A, Akram H, Zacharia A, Limousin P, Hariz M, Zrinzo L, Foltynie T. Varying time-course of effects of high frequency stimulation of sub-regions of the globus pallidus in patients with parkinson's disease. Parkinsonism Relat Disord 2015; 21:597-602. [DOI: 10.1016/j.parkreldis.2015.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/09/2015] [Accepted: 03/16/2015] [Indexed: 11/28/2022]
|
9
|
Schroll H, Vitay J, Hamker FH. Dysfunctional and compensatory synaptic plasticity in Parkinson's disease. Eur J Neurosci 2013; 39:688-702. [DOI: 10.1111/ejn.12434] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 10/24/2013] [Accepted: 10/25/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Henning Schroll
- Bernstein Center for Computational Neuroscience; Charité - Universitätsmedizin Berlin; Berlin Germany
- Psychology; Humboldt Universität zu Berlin; Berlin Germany
- Neurology; Charité - Universitätsmedizin Berlin; Berlin Germany
- Computer Science; Chemnitz University of Technology; Straße der Nationen 62 Chemnitz Germany
| | - Julien Vitay
- Computer Science; Chemnitz University of Technology; Straße der Nationen 62 Chemnitz Germany
| | - Fred H. Hamker
- Bernstein Center for Computational Neuroscience; Charité - Universitätsmedizin Berlin; Berlin Germany
- Computer Science; Chemnitz University of Technology; Straße der Nationen 62 Chemnitz Germany
| |
Collapse
|
10
|
Kubota S, Rubin JE. NMDA-induced burst firing in a model subthalamic nucleus neuron. J Neurophysiol 2011; 106:527-37. [PMID: 21562199 DOI: 10.1152/jn.01127.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experiments in rat brain slice show that hyperpolarized subthalamic nucleus (STN) neurons engage in slow, regular burst firing when treated with an N-methyl-d-aspartate (NMDA) bath. A depolarization-activated inward current (DIC) has been hypothesized to contribute to this bursting activity. To explore the mechanism for STN burst firing in this setting, we augmented a previously published conductance-based computational model for single rat STN neurons to include both DIC and NMDA currents, fit to data from published electrophysiological recordings. Simulations show that with these additions, the model engages in bursting activity at <1 Hz in response to hyperpolarizing current injection and that this bursting exhibits several features observed experimentally in STN. Furthermore, a reduced model is used to show that the combination of NMDA and DIC currents, but not either alone, suffices to generate oscillations under hyperpolarizing current injection. STN neurons show enhanced burstiness in Parkinson's disease patients and experimental models of parkinsonism, and the burst mechanism studied presently could contribute to this effect.
Collapse
Affiliation(s)
- Shigeru Kubota
- Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata, Japan
| | | |
Collapse
|
11
|
High but not low frequency stimulation of both the globus pallidus and the entopeduncular nucleus reduces 'compulsive' lever-pressing in rats. Behav Brain Res 2010; 216:84-93. [PMID: 20654653 DOI: 10.1016/j.bbr.2010.07.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 07/07/2010] [Accepted: 07/13/2010] [Indexed: 11/21/2022]
Abstract
The anti-compulsive effects of high and low frequency stimulation (LFS, HFS) of the entopeduncular nucleus and globus pallidus (the rat's equivalent, respectively, of the primate's internal and external segments of the globus pallidus) were assessed in the signal attenuation rat model of obsessive-compulsive disorder (OCD). HFS, but not LFS, of the two nuclei exerted an anti-compulsive effect, suggesting that HFS of either segment of the globus pallidus may provide an additional therapeutic strategy for OCD.
Collapse
|
12
|
Baunez C, Gubellini P. Effects of GPi and STN inactivation on physiological, motor, cognitive and motivational processes in animal models of Parkinson’s disease. PROGRESS IN BRAIN RESEARCH 2010; 183:235-58. [DOI: 10.1016/s0079-6123(10)83012-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Berman BD, Starr PA, Marks WJ, Ostrem JL. Induction of bradykinesia with pallidal deep brain stimulation in patients with cranial-cervical dystonia. Stereotact Funct Neurosurg 2009; 87:37-44. [PMID: 19174619 DOI: 10.1159/000195718] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the globus pallidus internus (GPi) is an effective and well-tolerated treatment for idiopathic generalized dystonia. More recently, it has been applied as a treatment for focal and segmental dystonias. This patient population offers an opportunity to study the effects of alteration of pallidal outflow on previously normal limb function. METHODS We sought to retrospectively characterize the extent of novel GPi DBS-induced adverse motor effects in patients with adult-onset cervical and cranial-cervical dystonia using a questionnaire, and compared the findings to dystonia improvement as measured by standard scales. RESULTS Despite significant improvement in dystonia (65% in mean Burke-Fahn-MarsdenDystonia Rating Scale motor score, p < 0.005, and 59% in mean Toronto Western Spasmodic Torticollis Rating Scale score, p < 0.008), slowing and difficulty with normal motor function was reported in previously nondystonic extremities in 10 of 11 patients. Symptoms were common in both upper and lower extremities and included new difficulties with handwriting (82%), getting up from a chair or in/out of a car (73%), and walking (45%), and were not associated with aberrant lead placement near the internal capsule. CONCLUSION Although GPi DBS was shown to be effective in these patients, the influence of GPi DBS on nondystonic body regions deserves further investigation.
Collapse
Affiliation(s)
- Brian D Berman
- Department of Neurology, University of California, San Francisco, Calif., USA
| | | | | | | |
Collapse
|
14
|
Mean-field modeling of the basal ganglia-thalamocortical system. II Dynamics of parkinsonian oscillations. J Theor Biol 2008; 257:664-88. [PMID: 19154745 DOI: 10.1016/j.jtbi.2008.12.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 12/08/2008] [Accepted: 12/08/2008] [Indexed: 11/21/2022]
Abstract
Neuronal correlates of Parkinson's disease (PD) include a shift to lower frequencies in the electroencephalogram (EEG) and enhanced synchronized oscillations at 3-7 and 7-30 Hz in the basal ganglia, thalamus, and cortex. This study describes the dynamics of a recent physiologically based mean-field model of the basal ganglia-thalamocortical system, and shows how it accounts for many key electrophysiological correlates of PD. Its detailed functional connectivity comprises partially segregated direct and indirect pathways through two populations of striatal neurons, a hyperdirect pathway involving a corticosubthalamic projection, thalamostriatal feedback, and local inhibition in striatum and external pallidum (GPe). In a companion paper, realistic steady-state firing rates were obtained for the healthy state, and after dopamine loss modeled by weaker direct and stronger indirect pathways, reduced intrapallidal inhibition, lower firing thresholds of the GPe and subthalamic nucleus (STN), a stronger projection from striatum to GPe, and weaker cortical interactions. Here it is shown that oscillations around 5 and 20 Hz can arise with a strong indirect pathway, which also causes increased synchronization throughout the basal ganglia. Furthermore, increased theta power with progressive nigrostriatal degeneration is correlated with reduced alpha power and peak frequency, in agreement with empirical results. Unlike the hyperdirect pathway, the indirect pathway sustains oscillations with phase relationships that coincide with those found experimentally. Alterations in the responses of basal ganglia to transient stimuli accord with experimental observations. Reduced cortical gains due to both nigrostriatal and mesocortical dopamine loss lead to slower changes in cortical activity and may be related to bradykinesia. Finally, increased EEG power found in some studies may be partly explained by a lower effective GPe firing threshold, reduced GPe-GPe inhibition, and/or weaker intracortical connections in parkinsonian patients. Strict separation of the direct and indirect pathways is not necessary to obtain these results.
Collapse
|
15
|
Birdno MJ, Grill WM. Mechanisms of deep brain stimulation in movement disorders as revealed by changes in stimulus frequency. Neurotherapeutics 2008; 5:14-25. [PMID: 18164480 PMCID: PMC2200868 DOI: 10.1016/j.nurt.2007.10.067] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Deep brain stimulation (DBS) is an established treatment for symptoms in movement disorders and is under investigation for symptom management in persons with psychiatric disorders and epilepsy. Nevertheless, there remains disagreement regarding the physiological mechanisms responsible for the actions of DBS, and this lack of understanding impedes both the design of DBS systems for treating novel diseases and the effective tuning of current DBS systems. Currently available data indicate that effective DBS overrides pathological bursts, low frequency oscillations, synchronization, and disrupted firing patterns present in movement disorders, and replaces them with more regularized firing. Although it is likely that the specific mechanism(s) by which DBS exerts its effects varies between diseases and target nuclei, the overriding of pathological activity appears to be ubiquitous. This review provides an overview of changes in motor symptoms with changes in DBS frequency and highlights parallels between the changes in motor symptoms and the changes in cellular activity that appear to underlie the motor symptoms.
Collapse
Affiliation(s)
- Merrill J. Birdno
- grid.26009.3d0000000419367961Department of Biomedical Engineering, Duke University, Hudson Hall, Room 136, Box 90281, 27708-0281 Durham, NC
| | - Warren M. Grill
- grid.26009.3d0000000419367961Department of Biomedical Engineering, Duke University, Hudson Hall, Room 136, Box 90281, 27708-0281 Durham, NC
| |
Collapse
|