1
|
Liu Z, Murphy SF, Huang J, Zhao L, Hall CC, Schaeffer AJ, Schaeffer EM, Thumbikat P. A novel immunocompetent model of metastatic prostate cancer-induced bone pain. Prostate 2020; 80:782-794. [PMID: 32407603 PMCID: PMC7375026 DOI: 10.1002/pros.23993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 03/18/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Over 70% to 85% of men with advanced prostate cancer (PCa) develop bone metastases characterized by severe bone pain and increased likelihood of bone fracture. These clinical features result in decreased quality of life and act as a predictor of higher mortality. Mechanistically, the skeletal pathologies such as osteolytic lesions and abnormal osteoblastic activity drive these symptoms. The role of immune cells in bone cancer pain remains understudied, here we sought to recapitulate this symptomology in a murine model. METHODS The prostate cancer bone metastasis-induced pain model (CIBP) was established by transplanting a mouse prostate cancer cell line into the femur of immunocompetent mice. Pain development, gait dynamics, and the changes in emotional activities like depression and anxiety were evaluated. Animal tissues including femurs, dorsal root ganglion (DRG), and spinal cord were collected at killing and microcomputed tomography (μCT), histology/immunohistochemistry, and quantitative immunofluorescent analysis were performed. RESULTS Mice receiving prostate cancer cells showed a significantly lower threshold for paw withdrawal responses induced by mechanical stimulation compared with their control counterparts. Zero maze and DigiGait analyses indicated reduced and aberrant movement associated emotional activity compared with sham control at 8-weeks postinjection. The μCT analysis showed osteolytic and osteoblastic changes and a 50% reduction of the trabecular volumes within the prostate cancer group. Neurologically we demonstrated, increased calcitonin gene-related peptide (CGRP) and neuronal p75NTR immune-reactivities in both the projected terminals of the superficial dorsal horn and partial afferent neurons in DRG at L2 to L4 level in tumor-bearing mice. Furthermore, our data show elevated nerve growth factor (NGF) and TrkA immunoreactivities in the same segment of the superficial dorsal horn that were, however, not colocalized with CGRP and p75NTR . CONCLUSIONS This study describes a novel immunocompetent model of CIBP and demonstrates the contribution of NGF and p75NTR to chronic pain in bone metastasis.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Stephen F. Murphy
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Jian Huang
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, USA
| | - Lan Zhao
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, USA
| | - Christel C. Hall
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Anthony J. Schaeffer
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Edward M. Schaeffer
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Praveen Thumbikat
- Dept. of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
2
|
Izmailov AA, Povysheva TV, Bashirov FV, Sokolov ME, Fadeev FO, Garifulin RR, Naroditsky BS, Logunov DY, Salafutdinov II, Chelyshev YA, Islamov RR, Lavrov IA. Spinal Cord Molecular and Cellular Changes Induced by Adenoviral Vector- and Cell-Mediated Triple Gene Therapy after Severe Contusion. Front Pharmacol 2017; 8:813. [PMID: 29180963 PMCID: PMC5693893 DOI: 10.3389/fphar.2017.00813] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/26/2017] [Indexed: 11/22/2022] Open
Abstract
The gene therapy has been successful in treatment of spinal cord injury (SCI) in several animal models, although it still remains unavailable for clinical practice. Surprisingly, regardless the fact that multiple reports showed motor recovery with gene therapy, little is known about molecular and cellular changes in the post-traumatic spinal cord following viral vector- or cell-mediated gene therapy. In this study we evaluated the therapeutic efficacy and changes in spinal cord after treatment with the genes encoding vascular endothelial growth factor (VEGF), glial cell-derived neurotrophic factor (GDNF), angiogenin (ANG), and neuronal cell adhesion molecule (NCAM) applied using both approaches. Therapeutic genes were used for viral vector- and cell-mediated gene therapy in two combinations: (1) VEGF+GDNF+NCAM and (2) VEGF+ANG+NCAM. For direct gene therapy adenoviral vectors based on serotype 5 (Ad5) were injected intrathecally and for cell-mediated gene delivery human umbilical cord blood mononuclear cells (UCB-MC) were simultaneously transduced with three Ad5 vectors and injected intrathecally 4 h after the SCI. The efficacy of both treatments was confirmed by improvement in behavioral (BBB) test. Molecular and cellular changes following post-traumatic recovery were evaluated with immunofluorescent staining using antibodies against the functional markers of motorneurons (Hsp27, synaptophysin, PSD95), astrocytes (GFAP, vimentin), oligodendrocytes (Olig2, NG2, Cx47) and microglial cells (Iba1). Our results suggest that both approaches with intrathecal delivery of therapeutic genes may support functional recovery of post-traumatic spinal cord via lowering the stress (down regulation of Hsp25) and enhancing the synaptic plasticity (up regulation of PSD95 and synaptophysin), supporting oligodendrocyte proliferation (up regulation of NG2) and myelination (up regulation of Olig2 and Cx47), modulating astrogliosis by reducing number of astrocytes (down regulation of GFAP and vimetin) and microglial cells (down regulation of Iba1).
Collapse
Affiliation(s)
- Andrei A Izmailov
- Department of Biology, Kazan State Medical University, Kazan, Russia
| | | | - Farid V Bashirov
- Department of Biology, Kazan State Medical University, Kazan, Russia
| | - Mikhail E Sokolov
- Department of Biology, Kazan State Medical University, Kazan, Russia
| | - Filip O Fadeev
- Department of Biology, Kazan State Medical University, Kazan, Russia
| | - Ravil R Garifulin
- Department of Biology, Kazan State Medical University, Kazan, Russia
| | - Boris S Naroditsky
- Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - Denis Y Logunov
- Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - Ilnur I Salafutdinov
- Institute of Fundamental Medicine and Biology, Kazan Federal (Volga Region) University, Kazan, Russia
| | - Yuri A Chelyshev
- Department of Biology, Kazan State Medical University, Kazan, Russia
| | - Rustem R Islamov
- Department of Biology, Kazan State Medical University, Kazan, Russia.,Kazan Scientific Center, Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia
| | - Igor A Lavrov
- Institute of Fundamental Medicine and Biology, Kazan Federal (Volga Region) University, Kazan, Russia.,Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
3
|
Abstract
Understanding restricted functional recovery and designing efficient treatments to alleviate dysfunction after injury of the nervous system remain major challenges in neuroscience and medicine. Numerous molecules of potential significance in neural repair have been identified in vitro, but only few of these have proved to be of major importance in vivo up to now. Among the molecules involved in regeneration are several members of the immunoglobulin superfamily, most notably the neural cell adhesion molecules L1, its close homologue CHL1, and NCAM and, in particular, its polysialic acid glycan moiety. Sufficient evidence is now available to justify the statement that these molecules are major players not only in nervous system development but also in the adult during neural repair and synaptic plasticity. Importantly, insights into the functions of these molecules in promoting or inhibiting functional recovery have allowed the design and assessment of therapeutic approaches in animal models of central nervous system injury that could prove to be applicable in clinical settings.
Collapse
Affiliation(s)
- Andrey Irintchev
- Neuroscience Laboratory, Department of Otorhinolaryngology, University of Jena, Germany
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Hamburg, Germany
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
4
|
Gumera C, Rauck B, Wang Y. Materials for central nervous system regeneration: bioactive cues. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm04335d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Talbot S, Théberge-Turmel P, Liazoghli D, Sénécal J, Gaudreau P, Couture R. Cellular localization of kinin B1 receptor in the spinal cord of streptozotocin-diabetic rats with a fluorescent [Nalpha-Bodipy]-des-Arg9-bradykinin. J Neuroinflammation 2009; 6:11. [PMID: 19323833 PMCID: PMC2667487 DOI: 10.1186/1742-2094-6-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 03/26/2009] [Indexed: 12/12/2022] Open
Abstract
Background The kinin B1 receptor (B1R) is upregulated by pro-inflammatory cytokines, bacterial endotoxins and hyperglycaemia-induced oxidative stress. In animal models of diabetes, it contributes to pain polyneuropathy. This study aims at defining the cellular localization of B1R in thoracic spinal cord of type 1 diabetic rats by confocal microscopy with the use of a fluorescent agonist, [Nα-Bodipy]-des-Arg9-BK (BdABK) and selective antibodies. Methods Diabetes was induced by streptozotocin (STZ; 65 mg/kg, i.p.). Four days post-STZ treatment, B1R expression was confirmed by quantitative real-time PCR and autoradiography. The B1R selectivity of BdABK was determined by assessing its ability to displace B1R [125I]-HPP-desArg10-Hoe140 and B2R [125I]-HPP-Hoe 140 radioligands. The in vivo activity of BdABK was also evaluated on thermal hyperalgesia. Results B1R was increased by 18-fold (mRNA) and 2.7-fold (binding sites) in the thoracic spinal cord of STZ-treated rats when compared to control. BdABK failed to displace the B2R radioligand but displaced the B1R radioligand (IC50 = 5.3 nM). In comparison, IC50 values of B1R selective antagonist R-715 and B1R agonist des-Arg9-BK were 4.3 nM and 19 nM, respectively. Intraperitoneal BdABK and des-Arg9-BK elicited dose-dependent thermal hyperalgesia in STZ-treated rats but not in control rats. The B1R fluorescent agonist was co-localized with immunomarkers of microglia, astrocytes and sensory C fibers in the spinal cord of STZ-treated rats. Conclusion The induction and up-regulation of B1R in glial and sensory cells of the spinal cord in STZ-diabetic rats reinforce the idea that kinin B1R is an important target for drug development in pain processes.
Collapse
Affiliation(s)
- Sébastien Talbot
- Department of Physiology, Faculty of Medicine, Université de Montréal, Succursale Downtown, Montréal, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
6
|
Hoschouer EL, Yin FQ, Jakeman LB. L1 cell adhesion molecule is essential for the maintenance of hyperalgesia after spinal cord injury. Exp Neurol 2008; 216:22-34. [PMID: 19059398 DOI: 10.1016/j.expneurol.2008.10.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/21/2008] [Accepted: 10/31/2008] [Indexed: 10/21/2022]
Abstract
Spinal cord injury (SCI) results in a loss of normal motor and sensory function, leading to severe disability and reduced quality of life. A large proportion of individuals with SCI also suffer from neuropathic pain symptoms. The causes of abnormal pain sensations are not well understood, but can include aberrant sprouting and reorganization of injured or spared sensory afferent fibers. L1 is a cell adhesion molecule that contributes to axonal outgrowth, guidance and fasciculation in development as well as synapse formation and plasticity throughout life. In the present study, we used L1 knockout (KO) mice to determine whether this adhesion molecule contributes to sensory dysfunction after SCI. Both wild-type (WT) and KO mice developed heat hyperalgesia following contusion injury, but the KO mice recovered normal response latencies beginning at 4 weeks post-injury. Histological analyses confirmed increased sprouting of sensory fibers containing calcitonin-gene related peptide (CGRP) in the deep dorsal horn of the lumbar spinal cord and increased numbers of interneurons expressing protein kinase C gamma (PKCgamma) in WT mice 6 weeks after injury. In contrast, L1 KO mice had less CGRP(+) fiber sprouting, but even greater numbers of PKCgamma(+) interneurons at the 6 week time point. These data demonstrate that L1 plays a role in maintenance of thermal hyperalgesia after SCI in mice, and implicate CGRP(+) fiber sprouting and the upregulation of PKCgamma expression as potential contributors to this response.
Collapse
Affiliation(s)
- Emily L Hoschouer
- Department of Physiology and Cell Biology, The Ohio State University Medical Center, Columbus, OH, USA
| | | | | |
Collapse
|
7
|
Targeting axon growth from neuronal transplants along preformed guidance pathways in the adult CNS. J Neurosci 2008; 28:340-8. [PMID: 18184776 DOI: 10.1523/jneurosci.3819-07.2008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To re-establish neuronal circuits lost after CNS injury, transplanted neurons must be able to extend axons toward their appropriate targets. Such growth is highly restricted within the adult CNS attributable to the expression of inhibitory molecules and general lack of guidance cues to direct axon growth. This environment typically induces random patterns of growth and aberrant innervation, if growth occurs at all. To target the growth of axons from neuronal transplants, we are using viral vectors to create guidance pathways before neuronal transplantation. In this study, we transplanted postnatal rat dorsal root ganglia neurons into the corpus callosum of adult rats. Replication-incompetent adenoviruses encoding growth or guidance factors were injected along the desired pathway 1 week before cell transplantation, allowing time for sufficient protein expression by host glial cells. With expression of nerve growth factor (NGF) and basic fibroblast growth factor, sensory axons were able to grow along the corpus callosum, across the midline, and toward an NGF-expressing target in either the contralateral striatum or cortex: a distance of 7-8 mm including a 90 degree turn from white matter into gray matter. Furthermore, expression of semaphorin 3A slightly dorsal and lateral to the turning point increased the number of axons turning into the striatal target. These results show that judicious expression of neuron-specific chemoattractant and chemorepellant molecules using viral vectors can support and target axon growth from neuronal transplants in the adult CNS.
Collapse
|
8
|
Schlatter MC, Buhusi M, Wright AG, Maness PF. CHL1 promotes Sema3A-induced growth cone collapse and neurite elaboration through a motif required for recruitment of ERM proteins to the plasma membrane. J Neurochem 2007; 104:731-44. [PMID: 17995939 DOI: 10.1111/j.1471-4159.2007.05013.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Close homolog of L1 (CHL1) is a transmembrane cell adhesion molecule with unique developmental functions in cortical neuronal positioning and dendritic projection within the L1 family, as well as shared functions in promotion of integrin-dependent neurite outgrowth and semaphorin3A (Sema3A)-mediated axon repulsion. The molecular mechanisms by which CHL1 mediates these diverse functions are obscure. Here it is demonstrated using a cytofluorescence assay that CHL1 is able to recruit ezrin, a member of the ezrin-radixin-moesin (ERM) family of filamentous actin binding proteins to the plasma membrane, and that this requires a membrane-proximal motif (RGGKYSV) in the CHL1 cytoplasmic domain. This sequence in CHL1 is shown to have novel functions necessary for Sema3A-induced growth cone collapse and CHL1-dependent neurite outgrowth and branching in cortical embryonic neurons. In addition, stimulation of haptotactic cell migration and cellular adhesion to fibronectin by CHL1 depends on the CHL1/ERM recruitment motif. These findings suggest that a direct or indirect interaction between CHL1 and ERM proteins mediates Sema3A-induced growth cone collapse as well as neurite outgrowth and branching, which are essential determinants of axon guidance and connectivity in cortical development.
Collapse
Affiliation(s)
- Monika C Schlatter
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7260, USA
| | | | | | | |
Collapse
|
9
|
Runyan SA, Roy RR, Zhong H, Phelps PE. L1 cell adhesion molecule is not required for small-diameter primary afferent sprouting after deafferentation. Neuroscience 2007; 150:959-69. [PMID: 18022323 DOI: 10.1016/j.neuroscience.2007.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 08/21/2007] [Accepted: 10/16/2007] [Indexed: 10/22/2022]
Abstract
L1 is a cell adhesion molecule associated with axonal outgrowth and fasciculation during spinal cord development and may reiterate its developmental role in adults following injury; L1 is upregulated on certain sprouting and regenerating axons in adults, but it is unclear if L1 expression is necessary for, or contributes to, regrowth of axons. This study asks if L1 is required for small-diameter primary afferents to sprout by conducting unilateral dorsal rhizotomies (six segments; T10-L2) on both wild-type and L1 mutant mice. First we determined that L1 co-localizes substantially with the peptidergic (calcitonin gene-related peptide; CGRP) but minimally with the nonpeptidergic (isolectin B4; IB4) primary afferents in intact wild-type and L1 mutant mice. However, we encountered a complication using IB4 to identify primary afferents post-rhizotomy; we detected extensive abnormal IB4 expression in the dorsal horn and dorsal columns. Much of this aberrant IB4 labeling is associated with fibrous astrocytes and microglia. Five days after dorsal rhizotomy a large decrease in peptidergic and nonpeptidergic afferents is evident on the deafferented side in both wild-type and L1 mutants. Three months after surgery the peptidergic primary afferents sprouted into the center of the denervated dorsal horn in both wild-type and mutant mice, and quantitative analyses confirmed a sprouting density of similar magnitude in both genotypes. In contrast, we did not detect sprouting in the nonpeptidergic primary afferents in either genotype. These results suggest that the absence of L1 neither diminishes nor enhances sprouting of peptidergic small-diameter primary afferent axons following a dorsal rhizotomy.
Collapse
Affiliation(s)
- S A Runyan
- Department of Physiological Science, UCLA, Box 951606, Los Angeles, CA 90095-1606, USA
| | | | | | | |
Collapse
|
10
|
Mire E, Thomasset N, Jakeman LB, Rougon G. Modulating Sema3A signal with a L1 mimetic peptide is not sufficient to promote motor recovery and axon regeneration after spinal cord injury. Mol Cell Neurosci 2007; 37:222-35. [PMID: 17997325 DOI: 10.1016/j.mcn.2007.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 09/19/2007] [Accepted: 09/25/2007] [Indexed: 11/30/2022] Open
Abstract
We examined whether Sema3A, which is upregulated at the site of spinal cord injury, exerts a direct effect on axons. We used ASNKL peptide that prevents specifically the inhibitory effect of Sema3A on L1/Neuropilin1 (Nrp1)-expressing axons. In the naïve mouse spinal cord, L1 is located on a subset of corticospinal axons, whereas Nrp1 is barely detectable. After contusion injury, Nrp1 is found on L1-negative immune cells, whereas its expression does not increase on severed axons. L1-expressing axons sprout extensively into the lesion site but no difference in axon density could be detected in the lesion area of mice treated with ASNKL. In agreement, these mice did not recover a better motor function than controls. Similarly, culture of neurons sensitive to ASNKL on cryosections of lesioned spinal cords revealed no effect of Sema3A. Our data indicate a limited direct effect of Sema3A on axonal growth at the site of a contusion injury, and suggest that alternative mechanisms underlie positive effects of Sema3A inhibition on motor recovery.
Collapse
Affiliation(s)
- Erik Mire
- Institut de Biologie du Développement de Marseille-Luminy, Université de la Mediterranée CNRS UMR 6216, Parc Scientifique de Luminy, 13288 Marseilles Cedex 9, France
| | | | | | | |
Collapse
|