1
|
Motor skills training-induced activation of descending pathways mediating cortical command to hindlimb motoneurons in experimental diabetic rats. Exp Neurol 2023; 363:114357. [PMID: 36849002 DOI: 10.1016/j.expneurol.2023.114357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/29/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Diabetes disrupts the corticospinal tract (CST) system components that control hindlimb and trunk movement, resulting in weakness of the lower extremities. However, there is no information about a method to improve these disorders. This study aimed to investigate the rehabilitative effects of 2 weeks of aerobic training (AT) and complex motor skills training (ST) on motor disorders in streptozotocin-induced type 1 diabetic rats. In this study, electrophysiological mapping of the motor cortex showed that the diabetes mellitus (DM)-ST group had a larger motor cortical area compared to the DM-AT group and sedentary diabetic animals. Moreover, hand grip strength and rotarod latency increased in the DM-ST group; however, these two parameters did not change in the DM-AT group, as well as in control and sedentary diabetic rats. Furthermore, in the DM-ST group, cortical stimulation-induced and motor-evoked potentials were preserved after the interception of the CST; however, this potential disappeared after additional lesions were made on lateral funiculus, suggesting that their function extends to activating motor descending pathways other than the CST locating lateral funiculus. According to immunohistochemical analysis, the larger fibers present on the dorsal part of the lateral funiculus, which corresponds to the rubrospinal tract of the DM-ST group, expressed the phosphorylated growth-associated protein, 43 kD, which is a specific marker of axons with plastic changes. Additionally, electrical stimulation of the red nucleus revealed expansion of the hindlimb-responsible area and increased motor-evoked potentials of the hindlimb in the DM-ST group, suggesting a strengthening of synaptic connections between the red nucleus and spinal interneurons driving motoneurons. These results reveal that ST induces plastic changes in the rubrospinal tract in a diabetic model, which can compensate for diabetes by disrupting the CST system components that control the hindlimb. This finding suggests that ST can be a novel rehabilitation strategy to improve motor dysfunctions in diabetic patients.
Collapse
|
2
|
Borrell JA, Krizsan-Agbas D, Nudo RJ, Frost SB. Effects of a contusive spinal cord injury on cortically-evoked spinal spiking activity in rats. J Neural Eng 2020; 17:10.1088/1741-2552/abc1b5. [PMID: 33059344 PMCID: PMC8046849 DOI: 10.1088/1741-2552/abc1b5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/15/2020] [Indexed: 01/23/2023]
Abstract
Objective.The purpose of this study was to determine the effects of spinal cord injury (SCI) on spike activity evoked in the hindlimb spinal cord of the rat from cortical electrical stimulation.Approach.Adult, male, Sprague Dawley rats were randomly assigned to a Healthy or SCI group. SCI rats were given a 175 kDyn dorsal midline contusion injury at the level of the T8 vertebrae. At 4 weeks post-SCI, intracortical microstimulation (ICMS) was delivered at several sites in the hindlimb motor cortex of anesthetized rats, and evoked neural activity was recorded from corresponding sites throughout the dorsoventral depths of the spinal cord and EMG activity from hindlimb muscles.Main results.In healthy rats, post-ICMS spike histograms showed reliable, evoked spike activity during a short-latency epoch 10-12 ms after the initiation of the ICMS pulse train (short). Longer latency spikes occurred between ∼20 and 60 ms, generally following a Gaussian distribution, rising above baseline at timeLON, followed by a peak response (Lp), and then falling below baseline at timeLOFF. EMG responses occurred betweenLONandLp( 25-27 ms). In SCI rats, short-latency responses were still present, long-latency responses were disrupted or eliminated, and EMG responses were never evoked. The retention of the short-latency responses indicates that spared descending spinal fibers, most likely via the cortico-reticulospinal pathway, can still depolarize spinal cord neurons after a dorsal midline contusion injury.Significance.This study provides novel insights into the role of alternate pathways for voluntary control of hindlimb movements after SCI that disrupts the corticospinal tract in the rat.
Collapse
Affiliation(s)
- Jordan A. Borrell
- Bioengineering Program, University of Kansas, Lawrence, KS, USA
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, USA
| | - Dora Krizsan-Agbas
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Randolph J. Nudo
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shawn B. Frost
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
3
|
Bolzoni F, Bączyk M, Jankowska E. Subcortical effects of transcranial direct current stimulation in the rat. J Physiol 2013; 591:4027-42. [PMID: 23774279 DOI: 10.1113/jphysiol.2013.257063] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) affects neurons at both cortical and subcortical levels. The subcortical effects involve several descending motor systems but appeared to be relatively weak, as only small increases in the amplitude of subcortically initiated descending volleys and a minute shortening of latencies of these volleys were found. The aim of the present study was therefore to evaluate the consequences of facilitation of these volleys on the ensuing muscle activation. The experiments were carried out on deeply anaesthetized rats without neuromuscular blockade. Effects of tDCS were tested on EMG potentials recorded from neck muscles evoked by weak (20-60 μA) single, double or triple stimuli applied in the medial longitudinal fascicle (MLF) or in the red nucleus (RN). Short latencies of these potentials were compatible with monosynaptic or disynaptic actions of reticulospinal and disynaptic or trisynaptic actions of rubrospinal neurons on neck motoneurons. Despite only weak effects on indirect descending volleys, the EMG responses from both the MLF and the RN were potently facilitated by cathodal tDCS and depressed by anodal tDCS. Both the facilitation and the depression developed relatively rapidly (within the first minute) but both outlasted tDCS and were present for up to 1 h after tDCS. The study thus demonstrates long-lasting effects of tDCS on subcortical neurons in the rat, albeit evoked by an opposite polarity of tDCS to that found to be effective on subcortical neurons in the cat investigated in the preceding study, or for cortical neurons in the humans.
Collapse
Affiliation(s)
- F Bolzoni
- Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | | | | |
Collapse
|
4
|
Yamamoto T, Oishi T, Higo N, Murayama S, Sato A, Takashima I, Sugiyama Y, Nishimura Y, Murata Y, Yoshino-Saito K, Isa T, Kojima T. Differential expression of secreted phosphoprotein 1 in the motor cortex among primate species and during postnatal development and functional recovery. PLoS One 2013; 8:e65701. [PMID: 23741508 PMCID: PMC3669139 DOI: 10.1371/journal.pone.0065701] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/26/2013] [Indexed: 01/01/2023] Open
Abstract
We previously reported that secreted phosphoprotein 1 (SPP1) mRNA is expressed in neurons whose axons form the corticospinal tract (CST) of the rhesus macaque, but not in the corresponding neurons of the marmoset and rat. This suggests that SPP1 expression is involved in the functional or structural specialization of highly developed corticospinal systems in certain primate species. To further examine this hypothesis, we evaluated the expression of SPP1 mRNA in the motor cortex from three viewpoints: species differences, postnatal development, and functional/structural changes of the CST after a lesion of the lateral CST (l-CST) at the mid-cervical level. The density of SPP1-positive neurons in layer V of the primary motor cortex (M1) was much greater in species with highly developed corticospinal systems (i.e., rhesus macaque, capuchin monkey, and humans) than in those with less developed corticospinal systems (i.e., squirrel monkey, marmoset, and rat). SPP1-positive neurons in the macaque monkey M1 increased logarithmically in layer V during postnatal development, following a time course consistent with the increase in conduction velocity of the CST. After an l-CST lesion, SPP1-positive neurons increased in layer V of the ventral premotor cortex, in which compensatory changes in CST function/structure may occur, which positively correlated with the extent of finger dexterity recovery. These results further support the concept that the expression of SPP1 may reflect functional or structural specialization of highly developed corticospinal systems in certain primate species.
Collapse
Affiliation(s)
- Tatsuya Yamamoto
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Takao Oishi
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Noriyuki Higo
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- * E-mail:
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| | - Akira Sato
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Computational Systems Biology Research Group, Advanced Science Institute, RIKEN, Yokohama, Kanagawa, Japan
| | - Ichiro Takashima
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoko Sugiyama
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yukio Nishimura
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Yumi Murata
- Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Kimika Yoshino-Saito
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Tadashi Isa
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Developmental Physiology, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - Toshio Kojima
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Computational Systems Biology Research Group, Advanced Science Institute, RIKEN, Yokohama, Kanagawa, Japan
- Research Equipment Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
5
|
Paes-Branco D, Abreu-Villaça Y, Manhães AC, Filgueiras CC. Unilateral hemispherectomy at adulthood asymmetrically affects motor performance of male Swiss mice. Exp Brain Res 2012; 218:465-76. [PMID: 22367398 DOI: 10.1007/s00221-012-3034-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 02/06/2012] [Indexed: 01/23/2023]
Abstract
Evidence exists indicating that cerebral lateralization is a fundamental feature of all vertebrates. In humans, a series of studies demonstrated that the left hemisphere plays a major role in controlling movement. No such asymmetries have been identified in rodents, in spite of the fact that these animals have been frequently used in studies assessing motor behavior. In this regard, here, we used unilateral hemispherectomy to study the relative importance of each hemisphere in controlling movement. Adult Swiss mice were submitted to right unilateral hemispherectomy (RH), left unilateral hemispherectomy (LH) or sham surgery. Fifteen days after surgery, motor performance was assessed in the accelerating rotarod test and in the foot-fault test (in which performance depends on skilled limb use) and in the elevated body swing test (in which performance depends on trunk movements). The surgical removal of the right hemisphere caused a more pronounced impairment in performance than the removal of the left hemisphere both in the rotarod and in the foot-fault tests. In the rotarod, the RH group presented smaller latencies to fall than both LH and sham groups. In the foot-fault test, while both the sham and the LH groups showed no differences between left and right hind limbs, the RH group showed significantly worse performance with the left hind limb than with the right one. The elevated body swing test revealed a similar impairment in the two hemispherectomized groups. Our data suggest a major role of the right hemisphere in controlling skilled limb movements in mice.
Collapse
Affiliation(s)
- Danielle Paes-Branco
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Avenida Professor Manoel de Abreu 444, 5 andar, Vila Isabel, Rio de Janeiro, RJ, 20550-170, Brazil
| | | | | | | |
Collapse
|
6
|
Abstract
AbstractA CST-YFP transgenic mouse has been developed for the study of the corticospinal tract in which yellow fluorescent protein is expressed under the control of thy1 and emx1 promoters in order to restrict expression to forebrain neurones. We explored plasticity of the developing corticospinal tract of these mice following a unilateral lesion to the sensorimotor cortex at postnatal day 7. The extent of innervation of the cervical spinal cord at time points post-lesion was assessed by measuring density of immunoperoxidase reactivity for yellow fluorescent protein in the dorsal funiculi and a defined region of each dorsal horn, and by counting immunoreactive axonal varicosities in the ventral horns. Two/three days post-lesion, the density of immunoreactivity in the dorsal horn contralateral to the lesion was reduced proportional to the decrease in positive fibres in the dorsal funiculus, however density of immunoreactive varicosities in the ventral horn was more resistant to loss. Over a three week period, immunoreactive axonal processes in the grey matter increased on the contralateral side, particularly in the ventral horn, but without an increase in immunopositive fibres in the contralateral dorsal funiculus, demonstrating sprouting of surviving immunoreactive fibres to replace lesioned corticospinal axons. However, the origin of sprouting fibres could not be identified with confidence as parallel observations revealed strongly immunoreactive neuronal cell bodies in the spinal cord, medulla and red nucleus. We have demonstrated plasticity in response to a developmental lesion but discovered a drawback to using these mice if visualisation of individual axons is enhanced by immunohistochemistry.
Collapse
|
8
|
Stecina K, Slawinska U, Jankowska E. Ipsilateral actions from the feline red nucleus on hindlimb motoneurones. J Physiol 2008; 586:5865-84. [PMID: 18936076 DOI: 10.1113/jphysiol.2008.163998] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The main aim of the study was to investigate whether neurones in the ipsilateral red nucleus (NR) affect hindlimb motoneurones. Intracellular records from motoneurones revealed that both EPSPs and IPSPs were evoked in them via ipsilaterally located premotor interneurones by stimulation of the ipsilateral NR in deeply anaesthetized cats in which only ipsilaterally descending tract fibres were left intact. When only contralaterally descending tract fibres were left intact, EPSPs mediated by excitatory commissural interneurones were evoked by NR stimuli alone while IPSPs mediated by inhibitory commissural interneurones required joint stimulation of the ipsilateral NR and of the medial longitudinal fascicle (MLF, i.e. reticulospinal tract fibres). Control experiments led to the conclusion that if any inadvertently coactivated axons of neurones from the contralateral NR contributed to these PSPs, their effect was minor. Another aim of the study was to investigate whether ipsilateral actions of NR neurones, pyramidal tract (PT) neurones and reticulospinal tract neurones descending in the MLF on hindlimb motoneurones are evoked via common spinal relay neurones. Mutual facilitation of these synaptic actions as well as of synaptic actions from the contralateral NR and contralateral PT neurones showed that they are to a great extent mediated via the same spinal neurones. A more effective activation of these neurones by not only ipsilateral corticospinal and reticulospinal but also rubrospinal tract neurones may thus contribute to the recovery of motor functions after injuries of the contralateral corticospinal tract neurones. No evidence was found for mediation of early PT actions via NR neurones.
Collapse
Affiliation(s)
- K Stecina
- Department of Physiology, Medicinaregatan 11, Box 432, 405 30 Göteborg, Sweden
| | | | | |
Collapse
|