1
|
Young CN, Gosselin MR, Rumney R, Oksiejuk A, Chira N, Bozycki L, Matryba P, Łukasiewicz K, Kao AP, Dunlop J, Robson SC, Zabłocki K, Górecki DC. Total Absence of Dystrophin Expression Exacerbates Ectopic Myofiber Calcification and Fibrosis and Alters Macrophage Infiltration Patterns. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:190-205. [DOI: 10.1016/j.ajpath.2019.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 09/13/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022]
|
2
|
Jantrapirom S, Cao DS, Wang JW, Hing H, Tabone CJ, Lantz K, de Belle JS, Qiu YT, Smid HM, Yamaguchi M, Fradkin LG, Noordermeer JN, Potikanond S. Dystrophin is required for normal synaptic gain in the Drosophila olfactory circuit. Brain Res 2019; 1712:158-166. [PMID: 30711401 DOI: 10.1016/j.brainres.2019.01.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 02/03/2023]
Abstract
The Drosophila olfactory system provides an excellent model to elucidate the neural circuits that control behaviors elicited by environmental stimuli. Despite significant progress in defining olfactory circuit components and their connectivity, little is known about the mechanisms that transfer the information from the primary antennal olfactory receptor neurons to the higher order brain centers. Here, we show that the Dystrophin Dp186 isoform is required in the olfactory system circuit for olfactory functions. Using two-photon calcium imaging, we found the reduction of calcium influx in olfactory receptor neurons (ORNs) and also the defect of GABAA mediated inhibitory input in the projection neurons (PNs) in Dp186 mutation. Moreover, the Dp186 mutant flies which display a decreased odor avoidance behavior were rescued by Dp186 restoration in the Drosophila olfactory neurons in either the presynaptic ORNs or the postsynaptic PNs. Therefore, these results revealed a role for Dystrophin, Dp 186 isoform in gain control of the olfactory synapse via the modulation of excitatory and inhibitory synaptic inputs to olfactory projection neurons.
Collapse
Affiliation(s)
- Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Thailand
| | - De-Shou Cao
- Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA
| | - Jing W Wang
- Division of Biological Sciences, University of California-San Diego, La Jolla, CA 92093, USA
| | - Huey Hing
- Department of Biology, State University of New York, Brockport, NY, USA
| | | | - Kathryn Lantz
- School of Life Sciences, University of Nevada, Las Vegas, NV, USA
| | | | - Yu Tong Qiu
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan
| | - Lee G Fradkin
- Laboratory of Developmental Neurobiology, Department of Molecular and Cell Biology, Leiden University Medical Center, Leiden, The Netherlands; University of Massachusetts Medical School, MA, USA
| | - Jasprina N Noordermeer
- Laboratory of Developmental Neurobiology, Department of Molecular and Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Thailand; Laboratory of Developmental Neurobiology, Department of Molecular and Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
3
|
Transcription factors YY1, Sp1 and Sp3 modulate dystrophin Dp71 gene expression in hepatic cells. Biochem J 2016; 473:1967-76. [PMID: 27143785 DOI: 10.1042/bcj20160163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/03/2016] [Indexed: 11/17/2022]
Abstract
Dystrophin Dp71, the smallest product encoded by the Duchenne muscular dystrophy gene, is ubiquitously expressed in all non-muscle cells. Although Dp71 is involved in various cellular processes, the mechanisms underlying its expression have been little studied. In hepatic cells, Dp71 expression is down-regulated by the xenobiotic β-naphthoflavone. However, the effectors of this regulation remain unknown. In the present study we aimed at identifying DNA elements and transcription factors involved in Dp71 expression in hepatic cells. Relevant DNA elements on the Dp71 promoter were identified by comparing Dp71 5'-end flanking regions between species. The functionality of these elements was demonstrated by site-directed mutagenesis. Using EMSAs and ChIP, we showed that the Sp1 (specificity protein 1), Sp3 (specificity protein 3) and YY1 (Yin and Yang 1) transcription factors bind to the Dp71 promoter region. Knockdown of Sp1, Sp3 and YY1 in hepatic cells increased endogenous Dp71 expression, but reduced Dp71 promoter activity. In summary, Dp71 expression in hepatic cells is carried out, in part, by YY1-, Sp1- and Sp3-mediated transcription from the Dp71 promoter.
Collapse
|
4
|
Olfactory Ensheathing Cells Express α7 Integrin to Mediate Their Migration on Laminin. PLoS One 2016; 11:e0153394. [PMID: 27078717 PMCID: PMC4831794 DOI: 10.1371/journal.pone.0153394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 03/29/2016] [Indexed: 11/24/2022] Open
Abstract
The unique glia located in the olfactory system, called olfactory ensheathing cells (OECs), are implicated as an attractive choice for transplantation therapy following spinal cord injury because of their pro-regenerative characteristics. Adult OECs are thought to improve functional recovery and regeneration after injury by secreting neurotrophic factors and making cell-to-cell contacts with regenerating processes, but the mechanisms are not well understood. We show first that α7 integrin, a laminin receptor, is highly expressed at the protein level by OECs throughout the olfactory system, i.e., in the olfactory mucosa, olfactory nerve, and olfactory nerve layer of the olfactory bulb. Then we asked if OECs use the α7 integrin receptor directly to promote neurite outgrowth on permissive and neutral substrates, in vitro. We co-cultured α7+/+ and α7lacZ/lacZ postnatal cerebral cortical neurons with α7+/+ or α7lacZ/lacZ OECs and found that genotype did not effect the ability of OECs to enhance neurite outgrowth by direct contact. Loss of α7 integrin did however significantly decrease the motility of adult OECs in transwell experiments. Twice as many α7+/+ OECs migrated through laminin-coated transwells compared to α7+/+ OECs on poly-L-lysine (PLL). This is in contrast to α7lacZ/lacZ OECs, which showed no migratory preference for laminin substrate over PLL. These results demonstrate that OECs express α7 integrin, and that laminin and its α7 integrin receptor contribute to adult OEC migration in vitro and perhaps also in vivo.
Collapse
|
5
|
Brignall AC, Cloutier JF. Neural map formation and sensory coding in the vomeronasal system. Cell Mol Life Sci 2015; 72:4697-709. [PMID: 26329476 PMCID: PMC11113928 DOI: 10.1007/s00018-015-2029-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/31/2015] [Accepted: 08/20/2015] [Indexed: 10/23/2022]
Abstract
Sensory systems enable us to encode a clear representation of our environment in the nervous system by spatially organizing sensory stimuli being received. The organization of neural circuitry to form a map of sensory activation is critical for the interpretation of these sensory stimuli. In rodents, social communication relies strongly on the detection of chemosignals by the vomeronasal system, which regulates a wide array of behaviours, including mate recognition, reproduction, and aggression. The binding of these chemosignals to receptors on vomeronasal sensory neurons leads to activation of second-order neurons within glomeruli of the accessory olfactory bulb. Here, vomeronasal receptor activation by a stimulus is organized into maps of glomerular activation that represent phenotypic qualities of the stimuli detected. Genetic, electrophysiological and imaging studies have shed light on the principles underlying cell connectivity and sensory map formation in the vomeronasal system, and have revealed important differences in sensory coding between the vomeronasal and main olfactory system. In this review, we summarize the key factors and mechanisms that dictate circuit formation and sensory coding logic in the vomeronasal system, emphasizing differences with the main olfactory system. Furthermore, we discuss how detection of chemosignals by the vomeronasal system regulates social behaviour in mice, specifically aggression.
Collapse
Affiliation(s)
- Alexandra C Brignall
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Room MP105, Montréal, QC, H3A 2B4, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, Canada
| | - Jean-François Cloutier
- Montreal Neurological Institute, Centre for Neuronal Survival, 3801 University, Room MP105, Montréal, QC, H3A 2B4, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montréal, Canada.
| |
Collapse
|
6
|
Masubuchi N, Shidoh Y, Kondo S, Takatoh J, Hanaoka K. Subcellular localization of dystrophin isoforms in cardiomyocytes and phenotypic analysis of dystrophin-deficient mice reveal cardiac myopathy is predominantly caused by a deficiency in full-length dystrophin. Exp Anim 2014; 62:211-7. [PMID: 23903056 PMCID: PMC4160940 DOI: 10.1538/expanim.62.211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive progressive muscle
degenerative disorder that causes dilated cardiomyopathy in the second decade of life in
affected males. Dystrophin, the gene responsible for DMD, encodes
full-length dystrophin and various short dystrophin isoforms. In the mouse heart,
full-length dystrophin Dp427 and a short dystrophin isoform, Dp71, are expressed. In this
study, we intended to clarify the functions of these dystrophin isoforms in DMD-related
cardiomyopathy. We used two strains of mice: mdx mice, in which Dp427 was
absent but Dp71 was present, and DMD-null mice, in which both were
absent. By immunohistochemical staining and density-gradient centrifugation, we found that
Dp427 was located in the cardiac sarcolemma and also at the T-tubules, whereas Dp71 was
specifically located at the T-tubules. In order to determine whether T tubule-associated
Dp71 was involved in DMD-related cardiac disruption, we compared the cardiac phenotypes
between DMD-null mice and mdx mice. Both
DMD-null mice and mdx mice exhibited severe necrosis,
which was followed by fibrosis in cardiac muscle. However, we could not detect a
significant difference in myocardial fibrosis between mdx mice and
DMD-null mice. Based on the present results, we have shown that cardiac
myopathy is caused predominantly by a deficiency of full-length dystrophin Dp427.
Collapse
Affiliation(s)
- Nami Masubuchi
- Laboratory of Molecular Embryology, Department of Bioscience, Kitasato University School of Science, 1-15-1 Kitasato, Minami-Ku, Sagamihara, Kanagawa 252-0373, Japan
| | | | | | | | | |
Collapse
|
7
|
Benabdesselam R, Dorbani-Mamine L, Benmessaoud-Mesbah O, Rendon A, Mhaouty-Kodja S, Hardin-Pouzet H. Dp71 gene disruption alters the composition of the dystrophin-associated protein complex and neuronal nitric oxide synthase expression in the hypothalamic supraoptic and paraventricular nuclei. J Endocrinol 2012; 213:239-49. [PMID: 22493004 DOI: 10.1530/joe-12-0066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
DP71 is the major cerebral dystrophin isoform and exerts its multiple functions via the dystrophin-associated protein complex (DAPC), also comprised of β-dystroglycan (β-DG) and α1-syntrophin (α1-Syn). Since DP71 disruption leads to impairment in the central control of the osmoregulatory axis, we investigated: 1) the DAPC composition in the hypothalamic supraoptic nucleus (SON) and paraventricular nucleus (PVN) of Dp71-null mice; and 2) the expression and activity of neuronal nitric oxide synthase (nNOS), because it is a potential partner of the DAPC and a functional index of osmoregulatory axis activity. In wild-type mice, dystrophins and their autosomal homologs the utrophins, β-DG, and α1-Syn were localized in astrocyte end feet. In Dp71-null mice, the levels of β-DG and α1-Syn were lower and utrophin expression did not change. The location of the DAPC in astrocytic end feet suggests that it could be involved in hypothalamic osmosensitivity, which adapts the osmotic response. The altered composition of the DAPC in Dp71-null mice could thus explain why these mice manifest an hypo-osmolar status. In the SON and PVN neurons of Dp71-null mice, nNOS expression and activity were increased. Although we previously established that DP140 is expressed de novo in these neurons, the DAPC remained incomplete due to the low levels of β-DG and α1-Syn produced in these cells. Our data reveal the importance of DP71 for the constitution of a functional DAPC in the hypothalamus. Such DAPC disorganization may lead to modification of the microenvironment of the SON and PVN neurons and thus may result in a perturbed osmoregulation.
Collapse
Affiliation(s)
- Roza Benabdesselam
- Unité de Recherches, Faculté des Sciences Biologiques/UMMTO, BP 17, Tizi-Ouzou, Algeria
| | | | | | | | | | | |
Collapse
|
8
|
Dystrophin Dp71: The Smallest but Multifunctional Product of the Duchenne Muscular Dystrophy Gene. Mol Neurobiol 2011; 45:43-60. [DOI: 10.1007/s12035-011-8218-9] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 11/02/2011] [Indexed: 01/06/2023]
|
9
|
Diffusible, membrane-bound, and extracellular matrix factors from olfactory ensheathing cells have different effects on the self-renewing and differentiating properties of neural stem cells. Brain Res 2010; 1359:56-66. [PMID: 20801108 DOI: 10.1016/j.brainres.2010.08.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 01/21/2023]
Abstract
Transplantation of olfactory ensheathing cells (OECs) has been a promising strategy in enhancing central nervous system (CNS) regeneration. However, little is known about the effects of transplanted OECs on the self-renewal, neurogenesis, and oligodendrogenesis of neural stem cells (NSCs), which are known to play a very important role in the repair of damaged CNS tissue. In this study, we investigated the influence of diffusible, membrane-bound, and extracellular matrix factors from OECs on the self-renewal and differentiation properties of NSCs. We found that diffusible factors from cultured OECs promoted self-renewal, whereas the extracellular matrix molecules from OECs increased neurogenesis and oligodendrogenesis of NSCs. Furthermore, we demonstrated that directly coculturing OECs and NSCs inhibited not only self-renewal but also neurogenesis and oligodendrogenesis of NSCs. We propose three models for the interaction between transplanted OECs and endogenous NSCs. Our findings provide new insight into the ability of OECs to promote CNS repair and also indicate potential targets for manipulation of these cells to enhance their restorative ability.
Collapse
|
10
|
Reduction of abnormal behavioral response to brief restraint by information from other mice in dystrophin-deficient mdx mice. Neuromuscul Disord 2010; 20:505-11. [PMID: 20558066 DOI: 10.1016/j.nmd.2010.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 05/07/2010] [Accepted: 05/14/2010] [Indexed: 11/20/2022]
Abstract
We recently reported that dystrophin-deficient mdx mice exhibited a hypersensitive freezing response to fearful events such as brief restraint. In the present study, we ethologically characterized the restraint-induced freezing response in mdx mice. This response was evident when restrained mdx mice were released into a new cage or their home cage, but it was remarkably reduced in cages in which other individuals (wild-type mice that had never been reared with the tested mice) had been reared (the resident mice were removed prior to testing). Reciprocally, exploratory behaviors of restrained mdx mice were outstandingly enhanced in the cages in which other individuals had been reared, suggesting the possibility that scent deposited by residents induced exploration in mdx mice. These results suggest that restraint-induced freezing response in mdx mice is influenced by the attention state of the mouse.
Collapse
|
11
|
Takatoh J, Hanaoka K. Spatially and temporally regulated expression of specific heparan sulfate epitopes in the developing mouse olfactory system. Dev Growth Differ 2009; 52:169-80. [PMID: 20039927 DOI: 10.1111/j.1440-169x.2009.01151.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Heparan sulfate (HS) comprises a structurally diverse group of glycosaminoglycans present ubiquitously on cell surfaces and in the extracellular matrix. The spatially and temporally regulated expression of specific HS structures is essential for various developmental processes in the nervous system but their distributions in the mouse olfactory system have not been explored. Here, we examined the spatiotemporal distribution of particular HS species in the developing mouse olfactory system using three structure-specific monoclonal antibodies (HepSS-1, JM403 and NAH46). The major findings were as follows. (i) During olfactory bulb morphogenesis, the HepSS-1 epitope was strongly expressed in anterior telencephalic cells and coexpressed with fibroblast growth factor receptor 1. (ii) In early postnatal glomeruli, the JM403 epitope was expressed at different levels among individual glomeruli. The expression pattern and levels of the JM403 epitope were both associated with those of ephrin-A3. (iii) In the vomeronasal system, the JM403 epitope was expressed in all vomeronasal axons but became increasingly restricted to vomeronasal axons terminating in the anterior region of the accessory olfactory bulb by 3 weeks of age. Our results demonstrate that each HS epitope exhibits a unique expression pattern during the development of the mouse olfactory system. Thus, each HS epitope is closely associated with particular developmental processes of the olfactory system and might have a particular role in developmental events.
Collapse
Affiliation(s)
- Jun Takatoh
- Laboratory of Molecular Embryology, Department of Bioscience, Kitasato University School of Science, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan
| | | |
Collapse
|