1
|
Paving the Road Toward Exploiting the Therapeutic Effects of Ginsenosides: An Emphasis on Autophagy and Endoplasmic Reticulum Stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1308:137-160. [PMID: 33861443 DOI: 10.1007/978-3-030-64872-5_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Programmed cell death processes such as apoptosis and autophagy strongly contribute to the onset and progression of cancer. Along with these lines, modulation of cell death mechanisms to combat cancer cells and elimination of resistance to apoptosis is of great interest. It appears that modulation of autophagy and endoplasmic reticulum (ER) stress with specific agents would be beneficial in the treatment of several disorders. Interestingly, it has been suggested that herbal natural products may be suitable candidates for the modulation of these processes due to few side effects and significant therapeutic potential. Ginsenosides are derivatives of ginseng and exert modulatory effects on the molecular mechanisms associated with autophagy and ER stress. Ginsenosides act as smart phytochemicals that confer their effects by up-regulating ATG proteins and converting LC3-I to -II, which results in maturation of autophagosomes. Not only do ginsenosides promote autophagy but they also possess protective and therapeutic properties due to their capacity to modulate ER stress and up- and down-regulate and/or dephosphorylate UPR transducers such as IRE1, PERK, and ATF6. Thus, it would appear that ginsenosides are promising agents to potentially restore tissue malfunction and possibly eliminate cancer.
Collapse
|
2
|
Zhang Y, Long H, Zhou F, Zhu W, Ruan J, Zhao Y, Lu Y. Echinacoside's nigrostriatal dopaminergic protection against 6-OHDA-Induced endoplasmic reticulum stress through reducing the accumulation of Seipin. J Cell Mol Med 2017; 21:3761-3775. [PMID: 28767194 PMCID: PMC5706584 DOI: 10.1111/jcmm.13285] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/19/2017] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. Recent epidemiological studies suggest that echinacoside (ECH), a phenylethanoid glycoside found in Cistanche deserticola, has a protective effect against the development of PD. However, the detailed mechanisms of how ECH suppresses neuronal death have not been fully elucidated. In this study, we confirmed that ECH protects nigrostriatal neurons against 6‐hydroxydopamine (6‐OHDA)‐induced endoplasmic reticulum stress (ERS) in vivo and in vitro. ECH rescued cell viability in damaged cells and decreased 6‐OHDA‐induced reactive oxygen species accumulation in vitro. It also rescued tyrosine hydroxylase and dopamine transporter expression in the striatum, and decreased α‐synuclein aggregation following 6‐OHDA treatment in vivo. The validated mechanism of ECH activity was the reduction in the 6‐OHDA‐induced accumulation of seipin (Berardinelli–Seip congenital lipodystrophy 2). Seipin has been shown to be a key molecule related to motor neuron disease and was tightly associated with ERS in a series of in vivo studies. ECH attenuated seipinopathy by promoting seipin degradation via ubiquitination. ERS was relieved by ECH through the Grp94/Bip‐ATF4‐CHOP signal pathway.
Collapse
Affiliation(s)
- Yajie Zhang
- Central Laboratory, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Clinical Biobank of Nanjing Hospital of Chinese Medicine, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hongyan Long
- Central Laboratory, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Clinical Biobank of Nanjing Hospital of Chinese Medicine, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Department of Pediatrics, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Fuqiong Zhou
- Institute of T.C.M., The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weina Zhu
- Central Laboratory, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Clinical Biobank of Nanjing Hospital of Chinese Medicine, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jie Ruan
- Central Laboratory, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.,Clinical Biobank of Nanjing Hospital of Chinese Medicine, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yang Zhao
- Department of Neurology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Lu
- Department of Neurology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Kollipara L, Buchkremer S, Weis J, Brauers E, Hoss M, Rütten S, Caviedes P, Zahedi RP, Roos A. Proteome Profiling and Ultrastructural Characterization of the Human RCMH Cell Line: Myoblastic Properties and Suitability for Myopathological Studies. J Proteome Res 2016; 15:945-55. [PMID: 26781476 DOI: 10.1021/acs.jproteome.5b00972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studying (neuro)muscular disorders is a major topic in biomedicine with a demand for suitable model systems. Continuous cell culture (in vitro) systems have several technical advantages over in vivo systems and became widely used tools for discovering physiological/pathophysiological mechanisms in muscle. In particular, myoblast cell lines are suitable model systems to study complex biochemical adaptations occurring in skeletal muscle and cellular responses to altered genetic/environmental conditions. Whereas most in vitro studies use extensively characterized murine C2C12 cells, a comprehensive description of an equivalent human cell line, not genetically manipulated for immortalization, is lacking. Therefore, we characterized human immortal myoblastic RCMH cells using scanning (SEM) and transmission electron microscopy (TEM) and proteomics. Among more than 6200 identified proteins we confirm the known expression of proteins important for muscle function. Comparing the RCMH proteome with two well-defined nonskeletal muscle cells lines (HeLa, U2OS) revealed a considerable enrichment of proteins important for muscle function. SEM/TEM confirmed the presence of agglomerates of cytoskeletal components/intermediate filaments and a prominent rough ER. In conclusion, our results indicate RMCH as a suitable in vitro model for investigating muscle function-related processes such as mechanical stress burden and mechanotransduction, EC coupling, cytoskeleton, muscle cell metabolism and development, and (ER-associated) myopathic disorders.
Collapse
Affiliation(s)
- Laxmikanth Kollipara
- Leibniz-Institut für Analytische Wissenschaften, ISAS e.V. , Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Stephan Buchkremer
- Institute of Neuropathology, RWTH Aachen University Hospital , Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital , Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Eva Brauers
- Institute of Neuropathology, RWTH Aachen University Hospital , Pauwelsstrasse 30, D-52074 Aachen, Germany
| | - Mareike Hoss
- Electron Microscopic Facility, Institute of Pathology, RWTH Aachen University Hospital , D-52074 Aachen, Germany
| | - Stephan Rütten
- Electron Microscopic Facility, Institute of Pathology, RWTH Aachen University Hospital , D-52074 Aachen, Germany
| | - Pablo Caviedes
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile , Santiago 1058, Chile
| | - René P Zahedi
- Leibniz-Institut für Analytische Wissenschaften, ISAS e.V. , Otto-Hahn-Str. 6b, 44227 Dortmund, Germany
| | - Andreas Roos
- Leibniz-Institut für Analytische Wissenschaften, ISAS e.V. , Otto-Hahn-Str. 6b, 44227 Dortmund, Germany.,Institute of Neuropathology, RWTH Aachen University Hospital , Pauwelsstrasse 30, D-52074 Aachen, Germany
| |
Collapse
|
4
|
Zhu X, Zelmer A, Kapfhammer JP, Wellmann S. Cold-inducible RBM3 inhibits PERK phosphorylation through cooperation with NF90 to protect cells from endoplasmic reticulum stress. FASEB J 2015; 30:624-34. [PMID: 26472337 DOI: 10.1096/fj.15-274639] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/28/2015] [Indexed: 01/01/2023]
Abstract
The cold-inducible RNA-binding motif protein 3 (RBM3) is involved in the protection of neurons in hypoxic-ischemic and neurodegenerative disorders. RBM3 belongs to a small group of proteins whose synthesis increases during hypothermia while global protein production is slowed down. To investigate the molecular mechanisms underlying RBM3 action, we subjected hippocampal organotypic slice cultures from RBM3 knockout mice to various stressors and found exuberant signaling of the endoplasmic reticulum (ER) stress pathway PRKR-like ER kinase (PERK)-eukaryotic translation initiation factor 2α (eIF2α)-CCAAT/enhancer-binding protein homologous protein (CHOP) as compared with wild-type mice. Further, blocking RBM3 expression in human embryonic kidney HEK293 cells by specific small interfering RNAs increased phosphorylation of PERK and eIF2α, whereas overexpression of RBM3 prevented PERK-eIF2α-CHOP signaling during ER stress induced by thapsigargin or tunicamycin. RBM3 did not affect expression of the ER stress sensor immunoglobulin binding protein/GRP78. However, based on affinity purification coupled with mass spectrometry, coimmunoprecipitation, and proximity ligation assay, we revealed that nuclear factor 90 (NF90) is a novel protein interactor of PERK and that this interaction is essential for RBM3-mediated regulation of PERK activity, which requires an RNA-dependent interaction. In conclusion, our data provide evidence for a central role of RBM3 in preventing cell death by inhibiting the PERK-eIF2α-CHOP ER stress pathway through cooperation with NF90.
Collapse
Affiliation(s)
- Xinzhou Zhu
- *University of Basel Children's Hospital (UKBB), Basel, Switzerland; and Anatomical Institute, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Andrea Zelmer
- *University of Basel Children's Hospital (UKBB), Basel, Switzerland; and Anatomical Institute, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Josef P Kapfhammer
- *University of Basel Children's Hospital (UKBB), Basel, Switzerland; and Anatomical Institute, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Sven Wellmann
- *University of Basel Children's Hospital (UKBB), Basel, Switzerland; and Anatomical Institute, Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
5
|
Liu D, Zhang H, Gu W, Liu Y, Zhang M. Ginsenoside Rb1 protects hippocampal neurons from high glucose-induced neurotoxicity by inhibiting GSK3β-mediated CHOP induction. Mol Med Rep 2014; 9:1434-8. [PMID: 24535619 DOI: 10.3892/mmr.2014.1958] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 02/06/2014] [Indexed: 11/05/2022] Open
Abstract
Ginsenoside Rb1 is generally recognized as one of the principal bioactive ingredients in ginseng and shows neuroprotective effects in various neurons. Endoplasmic reticulum (ER) stress is considered to play an important role in numerous neurodegenerative disorders. Recently, glucogen synthase kinase 3β (GSK3β) was reported to regulate ER stress-induced C/EBP homologous protein (CHOP) in neuronal cells. Therefore, in this study, we investigated the effects of ginsenoside Rb1 on GSK3β-mediated ER stress in high glucose-treated hippocampal neurons. Results from the MTT assay showed that treatment with 1 µM Rb1 for 72 h protected neurons from high glucose-induced cell injury. Using western blot analysis, we found that treatment with Rb1 effectively inhibited the phosphorylation of the high glucose-induced protein kinase RNA-like ER kinase (PERK) and of GSK3β, and reduced the level of the CHOP protein. The levels of these proteins were also decreased by treatment with the GSK3β inhibitor Licl. Rb1 also significantly decreased the mRNA expression of the gene CHOP, as shown by quantitative RT-PCR analysis. Taken together, the present results suggested that Rb1 may protect neurons from high glucose-induced cell damage by inhibiting GSK3β‑mediated CHOP induction, providing a potentially new strategy for preventing and treating cognitive impairment caused by diabetes.
Collapse
Affiliation(s)
- Di Liu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Hong Zhang
- Department of Cell Resource Center, Institute of Basic Medical Science, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
| | - Wenjuan Gu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| | - Yuqin Liu
- Department of Cell Resource Center, Institute of Basic Medical Science, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, P.R. China
| | - Mengren Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| |
Collapse
|
6
|
Liu D, Zhang H, Gu W, Liu Y, Zhang M. Neuroprotective effects of ginsenoside Rb1 on high glucose-induced neurotoxicity in primary cultured rat hippocampal neurons. PLoS One 2013; 8:e79399. [PMID: 24223941 PMCID: PMC3815219 DOI: 10.1371/journal.pone.0079399] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/30/2013] [Indexed: 12/19/2022] Open
Abstract
Ginsenoside Rb1 is one of the main active principles in traditional herb ginseng and has been reported to have a wide variety of neuroprotective effects. Endoplasmic reticulum (ER) stress has been implicated in neurodegenerative diseases, so the present study aimed to observe the effects of ginsenoside Rb1 on ER stress signaling pathways in high glucose-treated hippocampal neurons. The results from MTT, TUNEL labeling and Annexin V-FITC/PI/Hoechst assays showed that incubating neurons with 50 mM high glucose for 72h decreased cell viability and increased the number of apoptotic cells whereas treating neurons with 1 μM Rb1 for 72h protected the neurons against high glucose-induced cell damage. Further molecular mechanism study demonstrated that Rb1 suppressed the activation of ER stress-associated proteins including protein kinase RNA (PKR)-like ER kinase (PERK) and C/EBP homology protein (CHOP) and downregulation of Bcl-2 induced by high glucose. Moreover, Rb1 inhibited both the elevation of intracellular reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential induced by high glucose. In addition, the high glucose-induced cell apoptosis, activation of ER stress, ROS accumulation and mitochondrial dysfunction can also be attenuated by the inhibitor of ER stress 4-phenylbutyric acid (4-PBA) and anti-oxidant N-acetylcysteine(NAC). In conclusion, these results suggest that Rb1 may protect neurons against high glucose-induced cell injury through inhibiting CHOP signaling pathway as well as oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Di Liu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hong Zhang
- Department of cell resource center, Institute of Basic Medical Science, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Wenjuan Gu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuqin Liu
- Department of cell resource center, Institute of Basic Medical Science, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mengren Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
7
|
SENP3-mediated deSUMOylation of dynamin-related protein 1 promotes cell death following ischaemia. EMBO J 2013; 32:1514-28. [PMID: 23524851 PMCID: PMC3671254 DOI: 10.1038/emboj.2013.65] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/27/2013] [Indexed: 01/10/2023] Open
Abstract
Global increases in small ubiquitin-like modifier (SUMO)-2/3 conjugation are a neuroprotective response to severe stress but the mechanisms and specific target proteins that determine cell survival have not been identified. Here, we demonstrate that the SUMO-2/3-specific protease SENP3 is degraded during oxygen/glucose deprivation (OGD), an in vitro model of ischaemia, via a pathway involving the unfolded protein response (UPR) kinase PERK and the lysosomal enzyme cathepsin B. A key target for SENP3-mediated deSUMOylation is the GTPase Drp1, which plays a major role in regulating mitochondrial fission. We show that depletion of SENP3 prolongs Drp1 SUMOylation, which suppresses Drp1-mediated cytochrome c release and caspase-mediated cell death. SENP3 levels recover following reoxygenation after OGD allowing deSUMOylation of Drp1, which facilitates Drp1 localization at mitochondria and promotes fragmentation and cytochrome c release. RNAi knockdown of SENP3 protects cells from reoxygenation-induced cell death via a mechanism that requires Drp1 SUMOylation. Thus, we identify a novel adaptive pathway to extreme cell stress in which dynamic changes in SENP3 stability and regulation of Drp1 SUMOylation are crucial determinants of cell fate.
Collapse
|
8
|
OASIS/CREB3L1 is induced by endoplasmic reticulum stress in human glioma cell lines and contributes to the unfolded protein response, extracellular matrix production and cell migration. PLoS One 2013; 8:e54060. [PMID: 23335989 PMCID: PMC3545929 DOI: 10.1371/journal.pone.0054060] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/06/2012] [Indexed: 11/19/2022] Open
Abstract
OASIS is a transcription factor similar to ATF6 that is activated by endoplasmic reticulum stress. In this study we investigated the expression of OASIS in human glioma cell lines and the effect of OASIS knock-down on the ER stress response and cell migration. OASIS mRNA was detected in three distinct glioma cell lines (U373, A172 and U87) and expression levels were increased upon treatment with ER stress-inducing compounds in the U373 and U87 lines. OASIS protein, which is glycosylated on Asn-513, was detected in the U373 and U87 glioma lines at low levels in control cells and protein expression was induced by ER stress. Knock-down of OASIS in human glioma cell lines resulted in an attenuated unfolded protein response to ER stress (reduced GRP78/BiP and GRP94 induction) and decreased expression of chondroitin sulfate proteoglycan extracellular matrix proteins, but induction of the collagen gene Col1a1 was unaffected. Cells in which OASIS was knocked-down exhibited altered cell morphology and reduced cell migration. These results suggest that OASIS is important for the ER stress response and maintenance of some extracellular matrix proteins in human glioma cells.
Collapse
|
9
|
Ouyang YB, Lu Y, Yue S, Xu LJ, Xiong XX, White RE, Sun X, Giffard RG. miR-181 regulates GRP78 and influences outcome from cerebral ischemia in vitro and in vivo. Neurobiol Dis 2011; 45:555-63. [PMID: 21983159 DOI: 10.1016/j.nbd.2011.09.012] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/05/2011] [Accepted: 09/16/2011] [Indexed: 01/09/2023] Open
Abstract
MicroRNAs (miRNA) are short (~22nt) single stranded RNAs that downregulate gene expression. Although recent studies indicate extensive miRNA changes in response to ischemic brain injury, there is currently little information on the roles of specific miRNAs in this setting. Heat shock proteins (HSP) of the HSP70 family have been extensively studied for their multiple roles in cellular protection, but there is little information on their regulation by miRNAs. We used bioinformatics to identify miR-181 as a possible regulator of several HSP70 family members. We validated GRP78/BIP as a target by dual luciferase assay. In response to stroke in the mouse we find that miR-181 increases in the core, where cells die, but decreases in the penumbra, where cells survive. Increased levels of miR-181a are associated with decreased GRP78 protein levels, but increased levels of mRNA, implicating translational arrest. We manipulated levels of miR-181a using plasmid overexpression of pri-miR-181ab or mimic to increase, and antagomir or inhibitor to reduce levels. Increased miR-181a exacerbated injury both in vitro and in the mouse stroke model. Conversely, reduced levels were associated with reduced injury and increased GRP78 protein levels. Studies in C6 cells show that if GRP78 levels are maintained miR-181a no longer exerts a toxic effect. These data demonstrate that miR-181 levels change in response to stroke and inversely correlate with levels of GRP78. Importantly, reducing or blocking miR-181a protects the brain from stroke.
Collapse
Affiliation(s)
- Yi-Bing Ouyang
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | |
Collapse
|