1
|
Azzag K, Bosnakovski D, Tungtur S, Salama P, Kyba M, Perlingeiro RCR. Transplantation of PSC-derived myogenic progenitors counteracts disease phenotypes in FSHD mice. NPJ Regen Med 2022; 7:43. [PMID: 36056021 PMCID: PMC9440030 DOI: 10.1038/s41536-022-00249-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a genetically dominant progressive myopathy caused by improper silencing of the DUX4 gene, leading to fibrosis, muscle atrophy, and fatty replacement. Approaches focused on muscle regeneration through the delivery of stem cells represent an attractive therapeutic option for muscular dystrophies. To investigate the potential for cell transplantation in FSHD, we have used the doxycycline-regulated iDUX4pA-HSA mouse model in which low-level DUX4 can be induced in skeletal muscle. We find that mouse pluripotent stem cell (PSC)-derived myogenic progenitors engraft in muscle actively undergoing DUX4-mediated degeneration. Donor-derived muscle tissue displayed reduced fibrosis and importantly, engrafted muscles showed improved contractile specific force compared to non-transplanted controls. These data demonstrate the feasibility of replacement of diseased muscle with PSC-derived myogenic progenitors in a mouse model for FSHD, and highlight the potential for the clinical benefit of such a cell therapy approach.
Collapse
Affiliation(s)
- Karim Azzag
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Darko Bosnakovski
- Lillehei Heart Institute, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Sudheer Tungtur
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Peter Salama
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Michael Kyba
- Lillehei Heart Institute, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA. .,Stem Cell Institute, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
2
|
Świerczek-Lasek B, Dudka D, Bauer D, Czajkowski T, Ilach K, Streminska W, Kominek A, Piwocka K, Ciemerych MA, Archacka K. Comparison of Differentiation Pattern and WNT/SHH Signaling in Pluripotent Stem Cells Cultured under Different Conditions. Cells 2021; 10:cells10102743. [PMID: 34685722 PMCID: PMC8534321 DOI: 10.3390/cells10102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
Pluripotent stem cells (PSCs) are characterized by the ability to self-renew as well as undergo multidirectional differentiation. Culture conditions have a pivotal influence on differentiation pattern. In the current study, we compared the fate of mouse PSCs using two culture media: (1) chemically defined, free of animal reagents, and (2) standard one relying on the serum supplementation. Moreover, we assessed the influence of selected regulators (WNTs, SHH) on PSC differentiation. We showed that the differentiation pattern of PSCs cultured in both systems differed significantly: cells cultured in chemically defined medium preferentially underwent ectodermal conversion while their endo- and mesodermal differentiation was limited, contrary to cells cultured in serum-supplemented medium. More efficient ectodermal differentiation of PSCs cultured in chemically defined medium correlated with higher activity of SHH pathway while endodermal and mesodermal conversion of cells cultured in serum-supplemented medium with higher activity of WNT/JNK pathway. However, inhibition of either canonical or noncanonical WNT pathway resulted in the limitation of endo- and mesodermal conversion of PSCs. In addition, blocking WNT secretion led to the inhibition of PSC mesodermal differentiation, confirming the pivotal role of WNT signaling in this process. In contrast, SHH turned out to be an inducer of PSC ectodermal, not mesodermal differentiation.
Collapse
Affiliation(s)
- Barbara Świerczek-Lasek
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Damian Dudka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Damian Bauer
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Tomasz Czajkowski
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Katarzyna Ilach
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Władysława Streminska
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Agata Kominek
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.K.); (K.P.)
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.K.); (K.P.)
| | - Maria A. Ciemerych
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
| | - Karolina Archacka
- Department of Cytology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland; (B.Ś.-L.); (D.D.); (D.B.); (T.C.); (K.I.); (W.S.); (M.A.C.)
- Correspondence: ; Tel.: +48-22-55-42-203
| |
Collapse
|
3
|
Protocol for Determining the Induction of Human Embryonic Stem Cells into Myogenic Lineage Using Electrospun Nanofibers. Methods Mol Biol 2019. [PMID: 31707645 DOI: 10.1007/7651_2019_255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
An efficient method for the development of myogenic differentiation using the stem cells can be beneficial in patients with severely compromised mobility, muscular damage, or degenerative diseases. The stem cells can prove to be excellent clinical source of myogenic progenitor cells due to their ability of self-proliferation, renewal, and differentiation into a specific phenotype. They represent an essential component of tissue engineering along with other factors (e.g., 3D scaffolds, ECM mimicking environment, and growth factors). In this chapter, we describe the experimental protocols for isolation of the embryonic stem cells, their proliferation on nanofiber scaffolds, and finally their differentiation into myogenic cells. Furthermore, this chapter elaborates experimental methods to assess the myogenic fate of embryonic stem cells on the nanofiber scaffolds.
Collapse
|
4
|
Magli A, Perlingeiro RRC. Myogenic progenitor specification from pluripotent stem cells. Semin Cell Dev Biol 2018; 72:87-98. [PMID: 29107681 DOI: 10.1016/j.semcdb.2017.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 12/21/2022]
Abstract
Pluripotent stem cells represent important tools for both basic and translational science as they enable to study mechanisms of development, model diseases in vitro and provide a potential source of tissue-specific progenitors for cell therapy. Concomitantly with the increasing knowledge of the molecular mechanisms behind activation of the skeletal myogenic program during embryonic development, novel findings in the stem cell field provided the opportunity to begin recapitulating in vitro the events occurring during specification of the myogenic lineage. In this review, we will provide a perspective of the molecular mechanisms responsible for skeletal myogenic commitment in the embryo and how this knowledge was instrumental for specifying this lineage from pluripotent stem cells. In addition, we will discuss the current limitations for properly recapitulating skeletal myogenesis in the petri dish, and we will provide insights about future applications of pluripotent stem cell-derived myogenic cells.
Collapse
Affiliation(s)
- Alessandro Magli
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rita R C Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
5
|
Jevons LA, Houghton FD, Tare RS. Augmentation of musculoskeletal regeneration: role for pluripotent stem cells. Regen Med 2018; 13:189-206. [PMID: 29557248 DOI: 10.2217/rme-2017-0113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The rise in the incidence of musculoskeletal diseases is attributed to an increasing ageing population. The debilitating effects of musculoskeletal diseases, coupled with a lack of effective therapies, contribute to huge financial strains on healthcare systems. The focus of regenerative medicine has shifted to pluripotent stem cells (PSCs), namely, human embryonic stem cells and human-induced PSCs, due to the limited success of adult stem cell-based interventions. PSCs constitute a valuable cell source for musculoskeletal regeneration due to their capacity for unlimited self-renewal, ability to differentiate into all cell lineages of the three germ layers and perceived immunoprivileged characteristics. This review summarizes methods for chondrogenic, osteogenic, myogenic and adipogenic differentiation of PSCs and their potential for therapeutic applications.
Collapse
Affiliation(s)
- Lauren A Jevons
- Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Franchesca D Houghton
- Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Rahul S Tare
- Centre for Human Development, Stem Cells & Regeneration, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.,Department of Mechanical Engineering, Faculty of Engineering & the Environment, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
6
|
Sung SE, Hwang M, Kim AY, Lee EM, Lee EJ, Hwang SK, Kim SY, Kim HK, Jeong KS. MyoD Overexpressed Equine Adipose-Derived Stem Cells Enhanced Myogenic Differentiation Potential. Cell Transplant 2018; 25:2017-2026. [PMID: 26892394 DOI: 10.3727/096368916x691015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Mesenchymal stem cells could potentially be used in the clinical treatment of muscle disorders and muscle regeneration. Adipose-derived stem cells (ADSCs) can be easily isolated from adipose tissue, as opposed to stem cells of other tissues. We believe that cell therapy using ADSCs could be applied to muscle disorders in horses and other species. We sought to improve the myogenic differentiation potential of equine ADSCs (eqADSCs) using a MyoD lentiviral vector. MyoD lentiviruses were transduced into eqADSCs and selected using puromycin. Cells were cultured in differentiation media containing 5% horse serum, and after 5 days the MyoD-transduced cells differentiated into myogenic cells (MyoD-eqADSCs). Using green fluorescent protein (GFP), MyoD-eqADSCs were purified and transplanted into the tibialis anterior muscles of mice after they were injured with the myotoxin notexin. The mice were sacrificed to examine any regeneration in the tibialis anterior muscle 4 weeks after the MyoD-eqADSCs were injected. The MyoD-eqADSCs cultured in growth media expressed murine and equine MyoD; however, they did not express late differentiation markers such as myogenin (MYOG). When cells were grown in differentiation media, the expression of MYOG was clearly observed. According to our reverse transcription polymerase chain reaction and immunocytochemistry results, MyoD-eqADSCs expressed terminal myogenic phase genes, such as those encoding dystrophin, myosin heavy chain, and troponin I. The MyoD-eqADSCs fused to each other, and the formation of myotube-like cells from myoblasts in differentiation media occurred between days 5 and 14 postplating. In mice, we observed GFP-positive myofibers, which had differentiated from the injected MyoD-eqADSCs. Our approaches improved the myogenic differentiation of eqADSCs through the forced expression of murine MyoD. Our findings suggest that limitations in the treatment of equine muscle disorders could be overcome using ADSCs.
Collapse
Affiliation(s)
- Soo-Eun Sung
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Meeyul Hwang
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Ah-Young Kim
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Eun-Mi Lee
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Eun-Joo Lee
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Su-Kyeong Hwang
- Department of Pediatrics, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Shin-Yoon Kim
- Skeletal Diseases Genome Research Center, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Hong-Kyun Kim
- Department of Ophthalmology, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Kyu-Shik Jeong
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
7
|
Bem J, Grabowska I, Daniszewski M, Zawada D, Czerwinska AM, Bugajski L, Piwocka K, Fogtman A, Ciemerych MA. Transient MicroRNA Expression Enhances Myogenic Potential of Mouse Embryonic Stem Cells. Stem Cells 2018; 36:655-670. [PMID: 29314416 DOI: 10.1002/stem.2772] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/07/2017] [Accepted: 12/27/2017] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are known regulators of various cellular processes, including pluripotency and differentiation of embryonic stem cells (ESCs). We analyzed differentiation of two ESC lines-D3 and B8, and observed significant differences in the expression of miRNAs and genes involved in pluripotency and differentiation. We also examined if transient miRNA overexpression could serve as a sufficient impulse modulating differentiation of mouse ESCs. ESCs were transfected with miRNA Mimics and differentiated in embryoid bodies and embryoid body outgrowths. miRNAs involved in differentiation of mesodermal lineages, such as miR145 and miR181, as well as miRNAs regulating myogenesis (MyomiRs)-miR1, miR133a, miR133b, and miR206 were tested. Using such approach, we proved that transient overexpression of molecules selected by us modulated differentiation of mouse ESCs. Increase in miR145 levels upregulated Pax3, Pax7, Myod1, Myog, and MyHC2, while miR181 triggered the expression of such crucial myogenic factors as Myf5 and MyHC2. As a result, the ability of ESCs to initiate myogenic differentiation and form myotubes was enhanced. Premature expression of MyomiRs had, however, an adverse effect on myogenic differentiation of ESCs. Stem Cells 2018;36:655-670.
Collapse
Affiliation(s)
- Joanna Bem
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Maciej Daniszewski
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Dorota Zawada
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Areta M Czerwinska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Lukasz Bugajski
- Laboratory of Cytometry, Nencki Institute of Experimental Biology
| | | | - Anna Fogtman
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| |
Collapse
|
8
|
Helinska A, Krupa M, Archacka K, Czerwinska AM, Streminska W, Janczyk-Ilach K, Ciemerych MA, Grabowska I. Myogenic potential of mouse embryonic stem cells lacking functional Pax7 tested in vitro by 5-azacitidine treatment and in vivo in regenerating skeletal muscle. Eur J Cell Biol 2016; 96:47-60. [PMID: 28017376 DOI: 10.1016/j.ejcb.2016.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 12/25/2022] Open
Abstract
Regeneration of skeletal muscle relies on the presence of satellite cells. Satellite cells deficiency accompanying some degenerative diseases is the reason for the search for the "replacement cells" that can be used in the muscle therapies. Due to their unique properties embryonic stem cells (ESCs), as well as myogenic cells derived from them, are considered as a promising source of therapeutic cells. Among the factors crucial for the specification of myogenic precursor cells is Pax7 that sustains proper function of satellite cells. In our previous studies we showed that ESCs lacking functional Pax7 are able to form myoblasts in vitro when differentiated within embryoid bodies and their outgrowths. In the current study we showed that ESCs lacking functional Pax7, cultured in vitro in monolayer in the medium supplemented with horse serum and 5azaC, expressed higher levels of factors associated with myogenesis, such as Pdgfra, Pax3, Myf5, and MyoD. Importantly, skeletal myosin immunolocalization confirmed that myogenic differentiation of ESCs was more effective in case of cells lacking Pax7. Our in vivo studies showed that ESCs transplanted into regenerating skeletal muscles were detectable at day 7 of regeneration and the number of Pax7-/- ESCs detected was significantly higher than of control cells. Our results support the concept that lack of functional Pax7 promotes proliferation of differentiating ESCs and for this reason more of them can turn into myogenic lineage.
Collapse
Affiliation(s)
- Anita Helinska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Maciej Krupa
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Karolina Archacka
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Areta M Czerwinska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Katarzyna Janczyk-Ilach
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Maria A Ciemerych
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Institute of Zoology, Faculty of Biology, University of Warsaw, Poland.
| |
Collapse
|
9
|
Crist C. Emerging new tools to study and treat muscle pathologies: genetics and molecular mechanisms underlying skeletal muscle development, regeneration, and disease. J Pathol 2016; 241:264-272. [PMID: 27762447 DOI: 10.1002/path.4830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 12/13/2022]
Abstract
Skeletal muscle is the most abundant tissue in our body, is responsible for generating the force required for movement, and is also an important thermogenic organ. Skeletal muscle is an enigmatic tissue because while on the one hand, skeletal muscle regeneration after injury is arguably one of the best-studied stem cell-dependent regenerative processes, on the other hand, skeletal muscle is still subject to many degenerative disorders with few therapeutic options in the clinic. It is important to develop new regenerative medicine-based therapies for skeletal muscle. Future therapeutic strategies should take advantage of rapidly developing technologies enabling the differentiation of skeletal muscle from human pluripotent stem cells, along with precise genome editing, which will go hand in hand with a steady and focused approach to understanding underlying mechanisms of skeletal muscle development, regeneration, and disease. In this review, I focus on highlighting the recent advances that particularly have relied on developmental and molecular biology approaches to understanding muscle development and stem cell function. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Colin Crist
- Lady Davis Institute for Medical Research, Jewish General Hospital, and Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Negroni E, Gidaro T, Bigot A, Butler-Browne GS, Mouly V, Trollet C. Invited review: Stem cells and muscle diseases: advances in cell therapy strategies. Neuropathol Appl Neurobiol 2015; 41:270-87. [PMID: 25405809 DOI: 10.1111/nan.12198] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 11/14/2014] [Indexed: 12/22/2022]
Abstract
Despite considerable progress to increase our understanding of muscle genetics, pathophysiology, molecular and cellular partners involved in muscular dystrophies and muscle ageing, there is still a crucial need for effective treatments to counteract muscle degeneration and muscle wasting in such conditions. This review focuses on cell-based therapy for muscle diseases. We give an overview of the different parameters that have to be taken into account in such a therapeutic strategy, including the influence of muscle ageing, cell proliferation and migration capacities, as well as the translation of preclinical results in rodent into human clinical approaches. We describe recent advances in different types of human myogenic stem cells, with a particular emphasis on myoblasts but also on other candidate cells described so far [CD133+ cells, aldehyde dehydrogenase-positive cells (ALDH+), muscle-derived stem cells (MuStem), embryonic stem cells (ES) and induced pluripotent stem cells (iPS)]. Finally, we provide an update of ongoing clinical trials using cell therapy strategies.
Collapse
Affiliation(s)
- Elisa Negroni
- Institut de Myologie, CNRS FRE3617, UPMC Univ Paris 06, UM76, INSERM U974, Sorbonne Universités, 47 bd de l'Hôpital, Paris, 75013, France
| | | | | | | | | | | |
Collapse
|
11
|
Perini I, Elia I, Lo Nigro A, Ronzoni F, Berardi E, Grosemans H, Fukada SI, Sampaolesi M. Myogenic induction of adult and pluripotent stem cells using recombinant proteins. Biochem Biophys Res Commun 2015; 464:755-61. [PMID: 26164231 DOI: 10.1016/j.bbrc.2015.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 07/03/2015] [Indexed: 01/19/2023]
Abstract
Met Activating Genetically Improved Chimeric Factor 1 (Magic-F1) is a human recombinant protein, derived from dimerization of the receptor-binding domain of hepatocyte growth factor. Previous experiments demonstrate that in transgenic mice, the skeletal muscle specific expression of Magic-F1 can induce a constitutive muscular hypertrophy, improving running performance and accelerating muscle regeneration after injury. In order to evaluate the therapeutic potential of Magic-F1, we tested its effect on multipotent and pluripotent stem cells. In murine mesoangioblasts (adult vessel-associated stem cells), the presence of Magic-F1 did not alter their osteogenic, adipogenic or smooth muscle differentiation ability. However, when analyzing their myogenic potential, mesoangioblasts expressing Magic-F1 differentiated spontaneously into myotubes. Finally, Magic-F1 inducible cassette was inserted into a murine embryonic stem cell line by homologous recombination. When embryonic stem cells were subjected to myogenic differentiation, the presence of Magic-F1 resulted in the upregulation of Pax3 and Pax7 that enhanced the myogenic commitment of transgenic pluripotent stem cells. Taken together our results candidate Magic-F1 as a potent myogenic stimulator, able to enhance muscular differentiation from both adult and pluripotent stem cells.
Collapse
Affiliation(s)
- Ilaria Perini
- Translational Cardiomyology Laboratory, Embryo and Stem Cell Biology Unit, Dept of Development and Regeneration, KU Leuven, Belgium
| | - Ilaria Elia
- Translational Cardiomyology Laboratory, Embryo and Stem Cell Biology Unit, Dept of Development and Regeneration, KU Leuven, Belgium; Vesalius Research Center, Belgium and Department of Oncology, VIB, KU Leuven, Belgium
| | - Antonio Lo Nigro
- Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Regenerative Medicine and Biomedical Technologies Unit, Palermo, Italy; Embryo and Stem Cell Biology Unit, Dept of Development and Regeneration, KU Leuven, Belgium
| | - Flavio Ronzoni
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Emanuele Berardi
- Translational Cardiomyology Laboratory, Embryo and Stem Cell Biology Unit, Dept of Development and Regeneration, KU Leuven, Belgium
| | - Hanne Grosemans
- Translational Cardiomyology Laboratory, Embryo and Stem Cell Biology Unit, Dept of Development and Regeneration, KU Leuven, Belgium
| | - So-ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Pharmaceutical Sciences, Osaka University, Japan
| | - Maurilio Sampaolesi
- Translational Cardiomyology Laboratory, Embryo and Stem Cell Biology Unit, Dept of Development and Regeneration, KU Leuven, Belgium; Division of Human Anatomy, Dept of Public Health, Experimental and Forensic Medicine, University of Pavia, Italy.
| |
Collapse
|
12
|
McCullagh KJA, Perlingeiro RCR. Coaxing stem cells for skeletal muscle repair. Adv Drug Deliv Rev 2015; 84:198-207. [PMID: 25049085 PMCID: PMC4295015 DOI: 10.1016/j.addr.2014.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/19/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023]
Abstract
Skeletal muscle has a tremendous ability to regenerate, attributed to a well-defined population of muscle stem cells called satellite cells. However, this ability to regenerate diminishes with age and can also be dramatically affected by multiple types of muscle diseases, or injury. Extrinsic and/or intrinsic defects in the regulation of satellite cells are considered to be major determinants for the diminished regenerative capacity. Maintenance and replenishment of the satellite cell pool is one focus for muscle regenerative medicine, which will be discussed. There are other sources of progenitor cells with myogenic capacity, which may also support skeletal muscle repair. However, all of these myogenic cell populations have inherent difficulties and challenges in maintaining or coaxing their derivation for therapeutic purpose. This review will highlight recent reported attributes of these cells and new bioengineering approaches to creating a supply of myogenic stem cells or implants applicable for acute and/or chronic muscle disorders.
Collapse
Affiliation(s)
- Karl J A McCullagh
- Department of Physiology, School of Medicine and Regenerative Medicine Institute, National University of Ireland Galway, Ireland
| | - Rita C R Perlingeiro
- Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
13
|
WNT3A promotes myogenesis of human embryonic stem cells and enhances in vivo engraftment. Sci Rep 2014; 4:5916. [PMID: 25084050 PMCID: PMC5379990 DOI: 10.1038/srep05916] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/10/2014] [Indexed: 02/08/2023] Open
Abstract
The ability of human embryonic stem cells (hESCs) to differentiate into skeletal muscle cells is an important criterion in using them as a cell source to ameliorate skeletal muscle impairments. However, differentiation of hESCs into skeletal muscle cells still remains a challenge, often requiring introduction of transgenes. Here, we describe the use of WNT3A protein to promote in vitro myogenic commitment of hESC-derived cells and their subsequent in vivo function. Our findings show that the presence of WNT3A in culture medium significantly promotes myogenic commitment of hESC-derived progenitors expressing a mesodermal marker, platelet-derived growth factor receptor-α (PDGFRA), as evident from the expression of myogenic markers, including DES, MYOG, MYH1, and MF20. In vivo transplantation of these committed cells into cardiotoxin-injured skeletal muscles of NOD/SCID mice reveals survival and engraftment of the donor cells. The cells contributed to the regeneration of damaged muscle fibers and the satellite cell compartment. In lieu of the limited cell source for treating skeletal muscle defects, the hESC-derived PDGFRA(+) cells exhibit significant in vitro expansion while maintaining their myogenic potential. The results described in this study provide a proof-of-principle that myogenic progenitor cells with in vivo engraftment potential can be derived from hESCs without genetic manipulation.
Collapse
|
14
|
Bertoni C. Emerging gene editing strategies for Duchenne muscular dystrophy targeting stem cells. Front Physiol 2014; 5:148. [PMID: 24795643 PMCID: PMC4001063 DOI: 10.3389/fphys.2014.00148] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/28/2014] [Indexed: 01/06/2023] Open
Abstract
The progressive loss of muscle mass characteristic of many muscular dystrophies impairs the efficacy of most of the gene and molecular therapies currently being pursued for the treatment of those disorders. It is becoming increasingly evident that a therapeutic application, to be effective, needs to target not only mature myofibers, but also muscle progenitors cells or muscle stem cells able to form new muscle tissue and to restore myofibers lost as the result of the diseases or during normal homeostasis so as to guarantee effective and lost lasting effects. Correction of the genetic defect using oligodeoxynucleotides (ODNs) or engineered nucleases holds great potential for the treatment of many of the musculoskeletal disorders. The encouraging results obtained by studying in vitro systems and model organisms have set the groundwork for what is likely to become an emerging field in the area of molecular and regenerative medicine. Furthermore, the ability to isolate and expand from patients various types of muscle progenitor cells capable of committing to the myogenic lineage provides the opportunity to establish cell lines that can be used for transplantation following ex vivo manipulation and expansion. The purpose of this article is to provide a perspective on approaches aimed at correcting the genetic defect using gene editing strategies and currently under development for the treatment of Duchenne muscular dystrophy (DMD), the most sever of the neuromuscular disorders. Emphasis will be placed on describing the potential of using the patient own stem cell as source of transplantation and the challenges that gene editing technologies face in the field of regenerative biology.
Collapse
Affiliation(s)
- Carmen Bertoni
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles CA, USA
| |
Collapse
|
15
|
Rinaldi F, Perlingeiro RCR. Stem cells for skeletal muscle regeneration: therapeutic potential and roadblocks. Transl Res 2014; 163:409-17. [PMID: 24299739 PMCID: PMC3976768 DOI: 10.1016/j.trsl.2013.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/01/2013] [Accepted: 11/07/2013] [Indexed: 02/06/2023]
Abstract
Conditions involving muscle wasting, such as muscular dystrophies, cachexia, and sarcopenia, would benefit from approaches that promote skeletal muscle regeneration. Stem cells are particularly attractive because they are able to differentiate into specialized cell types while retaining the ability to self-renew and, thus, provide a long-term response. This review will discuss recent advancements on different types of stem cells that have been attributed to be endowed with muscle regenerative potential. We will discuss the nature of these cells and their advantages and disadvantages in regards to therapy for muscular dystrophies.
Collapse
Affiliation(s)
- Fabrizio Rinaldi
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minn
| | - Rita C R Perlingeiro
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, Minn.
| |
Collapse
|
16
|
Meregalli M, Farini A, Sitzia C, Torrente Y. Advancements in stem cells treatment of skeletal muscle wasting. Front Physiol 2014; 5:48. [PMID: 24575052 PMCID: PMC3921573 DOI: 10.3389/fphys.2014.00048] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/25/2014] [Indexed: 01/01/2023] Open
Abstract
Muscular dystrophies (MDs) are a heterogeneous group of inherited disorders, in which progressive muscle wasting and weakness is often associated with exhaustion of muscle regeneration potential. Although physiological properties of skeletal muscle tissue are now well known, no treatments are effective for these diseases. Muscle regeneration was attempted by means transplantation of myogenic cells (from myoblast to embryonic stem cells) and also by interfering with the malignant processes that originate in pathological tissues, such as uncontrolled fibrosis and inflammation. Taking into account the advances in the isolation of new subpopulation of stem cells and in the creation of artificial stem cell niches, we discuss how these emerging technologies offer great promises for therapeutic approaches to muscle diseases and muscle wasting associated with aging.
Collapse
Affiliation(s)
- Mirella Meregalli
- Stem Cell Laboratory, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Milano, Italy
| | - Andrea Farini
- Stem Cell Laboratory, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Milano, Italy
| | - Clementina Sitzia
- Stem Cell Laboratory, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Milano, Italy
| | - Yvan Torrente
- Stem Cell Laboratory, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Centro Dino Ferrari, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano Milano, Italy
| |
Collapse
|
17
|
Leung M, Cooper A, Jana S, Tsao CT, Petrie TA, Zhang M. Nanofiber-Based in Vitro System for High Myogenic Differentiation of Human Embryonic Stem Cells. Biomacromolecules 2013; 14:4207-16. [DOI: 10.1021/bm4009843] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Matthew Leung
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Ashleigh Cooper
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Soumen Jana
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Ching-Ting Tsao
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Timothy A. Petrie
- Department
of Pharmacology, University of Washington, Seattle, Washington 98195, United States
| | - Miqin Zhang
- Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
18
|
Hwang Y, Suk S, Lin S, Tierney M, Du B, Seo T, Mitchell A, Sacco A, Varghese S. Directed in vitro myogenesis of human embryonic stem cells and their in vivo engraftment. PLoS One 2013; 8:e72023. [PMID: 23977197 PMCID: PMC3747108 DOI: 10.1371/journal.pone.0072023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 07/04/2013] [Indexed: 12/27/2022] Open
Abstract
Development of human embryonic stem cell (hESC)-based therapy requires derivation of in vitro expandable cell populations that can readily differentiate to specified cell types and engraft upon transplantation. Here, we report that hESCs can differentiate into skeletal muscle cells without genetic manipulation. This is achieved through the isolation of cells expressing a mesodermal marker, platelet-derived growth factor receptor-α (PDGFRA), following embryoid body (EB) formation. The ESC-derived cells differentiated into myoblasts in vitro as evident by upregulation of various myogenic genes, irrespective of the presence of serum in the medium. This result is further corroborated by the presence of sarcomeric myosin and desmin, markers for terminally differentiated cells. When transplanted in vivo, these pre-myogenically committed cells were viable in tibialis anterior muscles 14 days post-implantation. These hESC-derived cells, which readily undergo myogenic differentiation in culture medium containing serum, could be a viable cell source for skeletal muscle repair and tissue engineering to ameliorate various muscle wasting diseases.
Collapse
Affiliation(s)
- Yongsung Hwang
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
| | - Samuel Suk
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
| | - Susan Lin
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
| | - Matthew Tierney
- Sanford Children’s Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Bin Du
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
| | - Timothy Seo
- Department of Nanoengineering, University of California San Diego, San Diego, California, United States of America
| | - Aaron Mitchell
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
| | - Alessandra Sacco
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
| | - Shyni Varghese
- Department of Bioengineering, University of California San Diego, San Diego, California, United States of America
- Department of Nanoengineering, University of California San Diego, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Konieczny P, Swiderski K, Chamberlain JS. Gene and cell-mediated therapies for muscular dystrophy. Muscle Nerve 2013; 47:649-63. [PMID: 23553671 DOI: 10.1002/mus.23738] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2012] [Indexed: 12/29/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a devastating muscle disorder that affects 1 in 3,500 boys. Despite years of research and considerable progress in understanding the molecular mechanism of the disease and advancement of therapeutic approaches, there is no cure for DMD. The current treatment options are limited to physiotherapy and corticosteroids, and although they provide a substantial improvement in affected children, they only slow the course of the disorder. On a more optimistic note, more recent approaches either significantly alleviate or eliminate muscular dystrophy in murine and canine models of DMD and importantly, many of them are being tested in early phase human clinical trials. This review summarizes advancements that have been made in viral and nonviral gene therapy as well as stem cell therapy for DMD with a focus on the replacement and repair of the affected dystrophin gene.
Collapse
Affiliation(s)
- Patryk Konieczny
- Department of Neurology, The University of Washington School of Medicine, Seattle, Washington 98105, USA
| | | | | |
Collapse
|
20
|
Tabebordbar M, Wang ET, Wagers AJ. Skeletal muscle degenerative diseases and strategies for therapeutic muscle repair. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 8:441-75. [PMID: 23121053 DOI: 10.1146/annurev-pathol-011811-132450] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Skeletal muscle is a highly specialized, postmitotic tissue that must withstand chronic mechanical and physiological stress throughout life to maintain proper contractile function. Muscle damage or disease leads to progressive weakness and disability, and manifests in more than 100 different human disorders. Current therapies to treat muscle degenerative diseases are limited mostly to the amelioration of symptoms, although promising new therapeutic directions are emerging. In this review, we discuss the pathological basis for the most common muscle degenerative diseases and highlight new and encouraging experimental and clinical opportunities to prevent or reverse these afflictions.
Collapse
Affiliation(s)
- Mohammadsharif Tabebordbar
- Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
21
|
Wilschut KJ, Ling VB, Bernstein HS. Concise review: stem cell therapy for muscular dystrophies. Stem Cells Transl Med 2012. [PMID: 23197695 DOI: 10.5966/sctm.2012-0071] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Muscular dystrophy comprises a group of genetic diseases that cause progressive weakness and degeneration of skeletal muscle resulting from defective proteins critical to muscle structure and function. This leads to premature exhaustion of the muscle stem cell pool that maintains muscle integrity during normal use and exercise. Stem cell therapy holds promise as a treatment for muscular dystrophy by providing cells that can both deliver functional muscle proteins and replenish the stem cell pool. Here, we review the current state of research on myogenic stem cells and identify the important challenges that must be addressed as stem cell therapy is brought to the clinic.
Collapse
|
22
|
Myoblasts derived from normal hESCs and dystrophic hiPSCs efficiently fuse with existing muscle fibers following transplantation. Mol Ther 2012; 20:2153-67. [PMID: 22990676 PMCID: PMC3498803 DOI: 10.1038/mt.2012.188] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) have an endless self-renewal capacity and can theoretically differentiate into all types of lineages. They thus represent an unlimited source of cells for therapies of regenerative diseases, such as Duchenne muscular dystrophy (DMD), and for tissue repair in specific medical fields. However, at the moment, the low number of efficient specific lineage differentiation protocols compromises their use in regenerative medicine. We developed a two-step procedure to differentiate hESCs and dystrophic hiPSCs in myogenic cells. The first step was a culture in a myogenic medium and the second step an infection with an adenovirus expressing the myogenic master gene MyoD. Following infection, the cells expressed several myogenic markers and formed abundant multinucleated myotubes in vitro. When transplanted in the muscle of Rag/mdx mice, these cells participated in muscle regeneration by fusing very well with existing muscle fibers. Our findings provide an effective method that will permit to use hESCs or hiPSCs for preclinical studies in muscle repair.
Collapse
|
23
|
Bentzinger CF, Wang YX, von Maltzahn J, Rudnicki MA. The emerging biology of muscle stem cells: implications for cell-based therapies. Bioessays 2012; 35:231-41. [PMID: 22886714 PMCID: PMC3594813 DOI: 10.1002/bies.201200063] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cell-based therapies for degenerative diseases of the musculature remain on the verge of feasibility. Myogenic cells are relatively abundant, accessible, and typically harbor significant proliferative potential ex vivo. However, their use for therapeutic intervention is limited due to several critical aspects of their complex biology. Recent insights based on mouse models have advanced our understanding of the molecular mechanisms controlling the function of myogenic progenitors significantly. Moreover, the discovery of atypical myogenic cell types with the ability to cross the blood-muscle barrier has opened exciting new therapeutic avenues. In this paper, we outline the major problems that are currently associated with the manipulation of myogenic cells and discuss promising strategies to overcome these obstacles.
Collapse
Affiliation(s)
- C Florian Bentzinger
- The Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
24
|
Asuelime GE, Shi Y. A case of cellular alchemy: lineage reprogramming and its potential in regenerative medicine. J Mol Cell Biol 2012; 4:190-6. [PMID: 22371436 PMCID: PMC3408064 DOI: 10.1093/jmcb/mjs005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The field of regenerative medicine is rapidly gaining momentum as an increasing number of reports emerge concerning the induced conversions observed in cellular fate reprogramming. While in recent years, much attention has been focused on the conversion of fate-committed somatic cells to an embryonic-like or pluripotent state, there are still many limitations associated with the applications of induced pluripotent stem cell reprogramming, including relatively low reprogramming efficiency, the times required for the reprogramming event to take place, the epigenetic instability, and the tumorigenicity associated with the pluripotent state. On the other hand, lineage reprogramming involves the conversion from one mature cell type to another without undergoing conversion to an unstable intermediate. It provides an alternative approach in regenerative medicine that has a relatively lower risk of tumorigenesis and increased efficiency within specific cellular contexts. While lineage reprogramming provides exciting potential, there is still much to be assessed before this technology is ready to be applied in a clinical setting.
Collapse
Affiliation(s)
- Grace E. Asuelime
- Department of Neurosciences, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
- Department of Biological Sciences, California State Polytechnic University Pomona, 3801 West Temple Ave., Pomona, CA 91768, USA
| | - Yanhong Shi
- Department of Neurosciences, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA 91010, USA
| |
Collapse
|
25
|
von Roth P, Duda GN, Radojewski P, Preininger B, Perka C, Winkler T. Mesenchymal stem cell therapy following muscle trauma leads to improved muscular regeneration in both male and female rats. ACTA ACUST UNITED AC 2012; 9:129-36. [PMID: 22361839 DOI: 10.1016/j.genm.2012.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/19/2011] [Accepted: 01/18/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Mesenchymal stem cell (MSC) therapy has the potential to enhance muscular regeneration. In previous publications, our group was able to show a dose-response relationship in female animals between the amount of transplanted cells and muscle force. The impact of sex on the regeneration of musculoskeletal injuries following MSC transplantation remains unclear. OBJECTIVE We investigated histologic and biomechanical regeneration parameters in rats after autologous transplantation of MSCs. Our hypothesis was that female rats have greater muscle regeneration potential than male rats after autologous MSC transplantation. METHODS Thirty-six Sprague-Dawley rats received an open crush trauma of the left soleus muscle. One week after trauma, 2.5 × 10(6) autologous MSCs, harvested from tibial biopsies, were transplanted locally (female, n = 9; male, n = 9). Control animals received saline solution (female, n = 9; male, n = 9). Histologic analysis and biomechanical evaluation by in vivo muscle force measurement were performed 3 weeks after transplantation. RESULTS MSC therapy improved the force of the injured soleus in male rats significantly (twitch: treated, 0.76 [0.51-1.15]; twitch: untreated, 0.45 [0.32-0.73] [P = 0.01]; tetany: treated, 0.63 [0.4-1.21], tetany: untreated, 0.34 [0.16-0.48] [P = 0.04]). Force measurements in females also revealed significant improvements (twitch: treated, 0.71 [0.38-0.96]; twitch: untreated, 0.36 [0.18-0.63] [P = 0.005]; tetany: treated, 0.53 [0.21-0.68]; tetany: untreated, 0.27 [0.11-0.47] [P = 0.01]). The intersexual comparison of fast twitch and tetanic contraction forces revealed no significance (twitch, P = 0.55; tetany, P = 0.19). The histologic analysis showed no differences in the amount of fibrotic tissue (male, P = 0.9; female, P = 0.14) and the size of muscle area (male, P = 0.2; female, P = 0.56) following treatment. Male animals showed higher values for muscle area (P = 0.011) and less fibrosis (P = 0.028), independent of treatment. CONCLUSION The outcome of skeletal muscle regeneration after injury can be improved in animals of both sexes with MSC transplantation.
Collapse
Affiliation(s)
- Philipp von Roth
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Free University of Berlin and Humboldt University of Berlin, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Mouse and human pluripotent stem cells and the means of their myogenic differentiation. Results Probl Cell Differ 2012; 55:321-56. [PMID: 22918815 DOI: 10.1007/978-3-642-30406-4_18] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem cells, are an important tool in the studies focusing at the differentiation of various cell types, including skeletal myoblasts. They are also considered as a source of the cells that due to their pluripotent character and availability could be turned into any required tissue and then used in future in regenerative medicine. However, the methods of the derivation of some of cell types from pluripotent cells still need to be perfected. This chapter summarizes the history and current advancements in the derivation and testing of pluripotent stem cells-derived skeletal myoblasts. It focuses at the in vitro methods allowing the differentiation of stem cells grown in monolayer or propagated as embryoid bodies, and also at in vivo tests allowing the verification of the functionality of obtained skeletal myoblasts.
Collapse
|
27
|
|
28
|
Shadrach JL, Wagers AJ. Stem cells for skeletal muscle repair. Philos Trans R Soc Lond B Biol Sci 2011; 366:2297-306. [PMID: 21727135 DOI: 10.1098/rstb.2011.0027] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is a highly specialized tissue composed of non-dividing, multi-nucleated muscle fibres that contract to generate force in a controlled and directed manner. Skeletal muscle is formed during embryogenesis from a subset of muscle precursor cells, which generate both differentiated muscle fibres and specialized muscle-forming stem cells known as satellite cells. Satellite cells remain associated with muscle fibres after birth and are responsible for muscle growth and repair throughout life. Failure in satellite cell function can lead to delayed, impaired or failed recovery after muscle injury, and such failures become increasingly prominent in cases of progressive muscle disease and in old age. Recent progress in the isolation of muscle satellite cells and elucidation of the cellular and molecular mediators controlling their activity indicate that these cells represent promising therapeutic targets. Such satellite cell-based therapies may involve either direct cell replacement or development of drugs that enhance endogenous muscle repair mechanisms. Here, we discuss recent breakthroughs in understanding both the cell intrinsic and extrinsic regulators that determine the formation and function of muscle satellite cells, as well as promising paths forward to realizing their full therapeutic potential.
Collapse
Affiliation(s)
- Jennifer L Shadrach
- Department of Stem Cell and Regenerative Biology, Howard Hughes Medical Institute, Harvard University and Joslin Diabetes Center, Bauer Center, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | | |
Collapse
|
29
|
Negroni E, Vallese D, Vilquin JT, Butler-Browne G, Mouly V, Trollet C. Current advances in cell therapy strategies for muscular dystrophies. Expert Opin Biol Ther 2011; 11:157-76. [PMID: 21219234 DOI: 10.1517/14712598.2011.542748] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Muscular dystrophies are a heterogeneous group of genetic diseases characterized by muscle weakness, wasting and degeneration. Cell therapy consists of delivering myogenic precursor cells to damaged tissue for the complementation of missing proteins and/or the regeneration of new muscle fibres. AREAS COVERED We focus on human candidate cells described so far (myoblasts, mesoangioblasts, pericytes, myoendothelial cells, CD133(+) cells, aldehyde-dehydrogenase-positive cells, mesenchymal stem cells, embryonic stem cells, induced pluripotent stem cells), gene-based strategies developed to modify cells prior to injection, animal models (dystrophic and/or immunodeficient) used for pre-clinical studies, and clinical trials that have been performed using cell therapy strategies. The approaches are reviewed in terms of feasibility, hurdles, potential solutions and/or research areas from where the solution may come and potential application in terms of types of dystrophies and targets. EXPERT OPINION Cell therapy for muscular dystrophies should be put in the context of which dystrophy or muscle group is targeted, what tools are available at hand, but even more importantly what can cell therapy bring as compared with and/or in combination with other therapeutic strategies. The solution will probably be the right dosage of these combinations adapted to each dystrophy, or even to each type of mutation within a dystrophy.
Collapse
Affiliation(s)
- Elisa Negroni
- Unité Thérapies des Maladies du muscle strié, UMRS974, UPMC Université Paris 6, UM76, INSERM U974, CNRS UMR 7215, Institut de Myologie, Paris, France
| | | | | | | | | | | |
Collapse
|
30
|
Meng J, Muntoni F, Morgan JE. Stem cells to treat muscular dystrophies – Where are we? Neuromuscul Disord 2011; 21:4-12. [DOI: 10.1016/j.nmd.2010.10.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/13/2010] [Accepted: 10/08/2010] [Indexed: 12/18/2022]
|
31
|
Ichida JK, Kiskinis E, Eggan K. Shushing down the epigenetic landscape towards stem cell differentiation. Development 2010; 137:2455-60. [DOI: 10.1242/dev.049130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In February 2010, researchers interested in stem cell biology gathered in Keystone, Colorado, USA to discuss their findings on the origins and behaviors of pluripotent and multipotent stem cells, and their therapeutic potential. Here, we review the presentations at that meeting and the questions that emerged concerning how a stem cell `decides' to self-renew or differentiate, what their distinct properties are and how this information can be used to develop novel therapies.
Collapse
Affiliation(s)
- Justin K. Ichida
- The Howard Hughes Medical Institute, Stowers Medical Institute, Harvard Stem Cell Institute and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Evangelos Kiskinis
- The Howard Hughes Medical Institute, Stowers Medical Institute, Harvard Stem Cell Institute and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kevin Eggan
- The Howard Hughes Medical Institute, Stowers Medical Institute, Harvard Stem Cell Institute and the Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|