1
|
Erdem M, Soker EB, Ozdogru D, Balal M, Ciloglu E. Evaluation of retinal microvascular changes with OCT-A in Parkinson disease and essential tremor. Medicine (Baltimore) 2024; 103:e40752. [PMID: 39654240 PMCID: PMC11630959 DOI: 10.1097/md.0000000000040752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
This study aimed to evaluate the presence and comparison of microvascular abnormalities in essential tremor (ET) and Parkinson disease (PD) using optical coherence tomography angiography (OCT-A) and to show the relationship between retinal microvascular changes and disease stage in the patient group. A total of 176 eyes, including 26 PD diagnosed according to the United Kingdom PD Society Brain Bank criteria, 31 ET diagnosed according to the Washington heights-inwood genetic study of ET (WHIGET) criteria and 31 healthy controls, were included in the study. Unified PD assessment scale (UPDRS) motor scores, non-motor symptom scale (NMS), modified Hoehn&Yahr stages (mH&Y) and Fahn-Toloso-Marin grading scale were recorded. All patients were evaluated in terms of visual acuity, fundus examination, intraocular pressure measurements, and refractive errors in Ophthalmology department. Deep macular vascular density was significantly decreased in PD compared to both the controls and ET(P < .05). In the measurements in the inferior quadrant of the retinal nerve fiber layer (RNFL) of the optic disc (OD), the values of the controls were significantly higher than those of PD in both eyes (P = .014 and P = .010). Radial peripapillary capillarity density in the left eye was substantially lower in ET than in controls (P = .045). In both eyes, OD radial peripapillary capillarity inside the disc small values of PD were significantly lower than those of ET and controls (P < .05). In our study, deep macular vascular density, RNFL and radial peripapillary capillarity were significantly lower in PD compared with ET and control groups, and radial peripapillary capillarity was lower in ET compared with control group. This study provides valuable information regarding the potential of OCT-A as a diagnostic tool for PD and ET.
Collapse
Affiliation(s)
- Miray Erdem
- Department of Neurology, Adana City Training and Research Hospital, Adana, Türkiye
| | - Elif Banu Soker
- Department of Neurology, Adana City Training and Research Hospital, Adana, Türkiye
| | - Derya Ozdogru
- Department of Neurology, Adana City Training and Research Hospital, Adana, Türkiye
| | - Mehmet Balal
- Department of Neurology, Çukurova University Faculty of Medicine, Adana, Türkiye
| | - Emine Ciloglu
- Department of Ophthalmology, Adana City Training and Research Hospital, Adana, Türkiye
| |
Collapse
|
2
|
Molecular and Cellular Interactions in Pathogenesis of Sporadic Parkinson Disease. Int J Mol Sci 2022; 23:ijms232113043. [PMID: 36361826 PMCID: PMC9657547 DOI: 10.3390/ijms232113043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
An increasing number of the population all around the world suffer from age-associated neurodegenerative diseases including Parkinson’s disease (PD). This disorder presents different signs of genetic, epigenetic and environmental origin, and molecular, cellular and intracellular dysfunction. At the molecular level, α-synuclein (αSyn) was identified as the principal molecule constituting the Lewy bodies (LB). The gut microbiota participates in the pathogenesis of PD and may contribute to the loss of dopaminergic neurons through mitochondrial dysfunction. The most important pathogenetic link is an imbalance of Ca2+ ions, which is associated with redox imbalance in the cells and increased generation of reactive oxygen species (ROS). In this review, genetic, epigenetic and environmental factors that cause these disorders and their cause-and-effect relationships are considered. As a constituent of environmental factors, the example of organophosphates (OPs) is also reviewed. The role of endothelial damage in the pathogenesis of PD is discussed, and a ‘triple hit hypothesis’ is proposed as a modification of Braak’s dual hit one. In the absence of effective therapies for neurodegenerative diseases, more and more evidence is emerging about the positive impact of nutritional structure and healthy lifestyle on the state of blood vessels and the risk of developing these diseases.
Collapse
|
3
|
Ouellette J, Lacoste B. From Neurodevelopmental to Neurodegenerative Disorders: The Vascular Continuum. Front Aging Neurosci 2021; 13:749026. [PMID: 34744690 PMCID: PMC8570842 DOI: 10.3389/fnagi.2021.749026] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Structural and functional integrity of the cerebral vasculature ensures proper brain development and function, as well as healthy aging. The inability of the brain to store energy makes it exceptionally dependent on an adequate supply of oxygen and nutrients from the blood stream for matching colossal demands of neural and glial cells. Key vascular features including a dense vasculature, a tightly controlled environment, and the regulation of cerebral blood flow (CBF) all take part in brain health throughout life. As such, healthy brain development and aging are both ensured by the anatomical and functional interaction between the vascular and nervous systems that are established during brain development and maintained throughout the lifespan. During critical periods of brain development, vascular networks remodel until they can actively respond to increases in neural activity through neurovascular coupling, which makes the brain particularly vulnerable to neurovascular alterations. The brain vasculature has been strongly associated with the onset and/or progression of conditions associated with aging, and more recently with neurodevelopmental disorders. Our understanding of cerebrovascular contributions to neurological disorders is rapidly evolving, and increasing evidence shows that deficits in angiogenesis, CBF and the blood-brain barrier (BBB) are causally linked to cognitive impairment. Moreover, it is of utmost curiosity that although neurodevelopmental and neurodegenerative disorders express different clinical features at different stages of life, they share similar vascular abnormalities. In this review, we present an overview of vascular dysfunctions associated with neurodevelopmental (autism spectrum disorders, schizophrenia, Down Syndrome) and neurodegenerative (multiple sclerosis, Huntington's, Parkinson's, and Alzheimer's diseases) disorders, with a focus on impairments in angiogenesis, CBF and the BBB. Finally, we discuss the impact of early vascular impairments on the expression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Julie Ouellette
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
4
|
Al-Bachari S, Naish JH, Parker GJM, Emsley HCA, Parkes LM. Blood-Brain Barrier Leakage Is Increased in Parkinson's Disease. Front Physiol 2020; 11:593026. [PMID: 33414722 PMCID: PMC7784911 DOI: 10.3389/fphys.2020.593026] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
Background Blood–brain barrier (BBB) disruption has been noted in animal models of Parkinson’s disease (PD) and forms the basis of the vascular hypothesis of neurodegeneration, yet clinical studies are lacking. Objective To determine alterations in BBB integrity in PD, with comparison to cerebrovascular disease. Methods Dynamic contrast enhanced magnetic resonance images were collected from 49 PD patients, 15 control subjects with cerebrovascular disease [control positive (CP)] and 31 healthy control subjects [control negative (CN)], with all groups matched for age. Quantitative maps of the contrast agent transfer coefficient across the BBB (Ktrans) and plasma volume (vp) were produced using Patlak analysis. Differences in Ktrans and vp were assessed with voxel-based analysis as well as in regions associated with PD pathophysiology. In addition, the volume of white matter lesions (WMLs) was obtained from T2-weighted fluid attenuation inversion recovery (FLAIR) images. Results Higher Ktrans, reflecting higher BBB leakage, was found in the PD group than in the CN group using voxel-based analysis; differences were most prominent in the posterior white matter regions. Region of interest analysis confirmed Ktrans to be significantly higher in PD than in CN, predominantly driven by differences in the substantia nigra, normal-appearing white matter, WML and the posterior cortex. WML volume was significantly higher in PD compared to CN. Ktrans values and WML volume were similar in PD and CP, suggesting a similar burden of cerebrovascular disease despite lower cardiovascular risk factors. Conclusion These results show BBB disruption in PD.
Collapse
Affiliation(s)
- Sarah Al-Bachari
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom.,Department of Neurology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, United Kingdom.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Josephine H Naish
- Division of Cardiovascular sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Bioxydyn Limited, Manchester, United Kingdom
| | - Geoff J M Parker
- Bioxydyn Limited, Manchester, United Kingdom.,Centre for Medical Image Computing, Department of Computer Science and Department of Neuroinflammation, University College London, London, United Kingdom
| | - Hedley C A Emsley
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom.,Department of Neurology, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, United Kingdom.,Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Laura M Parkes
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.,Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
5
|
Jia J, Li C, Zhang T, Sun J, Peng S, Xie Q, Huang Y, Yi L. CeO 2@PAA-LXW7 Attenuates LPS-Induced Inflammation in BV2 Microglia. Cell Mol Neurobiol 2019; 39:1125-1137. [PMID: 31256326 DOI: 10.1007/s10571-019-00707-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/13/2019] [Indexed: 12/14/2022]
Abstract
Microglia are the inherent immune effector cells in the central nervous system (CNS), are activated rapidly when the CNS is stimulated by ischaemia, infection, injury, etc. and participate in and aggravate the development of inflammatory reactions in the CNS. During the process of microglial activation, inflammatory factors such as TNF-α and IL-1β and an abundance of reactive oxygen species (ROS)/reactive nitrogen species (RNS), are released by damaged nerve cells. LXW7 is a small molecule peptide and specifically binds with integrin αvβ3. Cerium oxide nanoparticles (nanoceria) are strong free radical scavengers and are widely used in many studies. In this research, a model of inflammation was established using lipopolysaccharide (LPS) to induce BV2 microglia activation, and the effects of CeO2@PAA (synthetic nanoscale cerium oxide particles), LXW7 and CeO2@PAA-LXW7 were evaluated. We detected the expression level of inflammatory factors, the release of NO in BV2 cells and the generation of intracellular ROS. The expression levels of focal adhesion kinase (FAK) and signal transducer and activator of transcription 3 (STAT3) and their phosphorylated proteins were detected in BV2 microglia. We found that CeO2@PAA, LXW7 and CeO2@PAA-LXW7 all effectively inhibited the activation of BV2 microglia, reduced the production of cytokines and the release of NO and reduced the production of intracellular ROS. The three treatments all inhibited the phosphorylation of FAK and STAT3 in BV2 microglia. Regarding these effects, CeO2@PAA-LXW7 was more effective than the other two monotherapies. Our data indicate that CeO2@PAA, LXW7 and CeO2@PAA-LXW7 can exert a neuroprotective function by inhibiting the inflammatory response of LPS-induced BV2 microglia. LXW7 may inhibit the activation of FAK and STAT3 signals in combination with integrin αvβ3 to restrain neuroinflammation and the antioxidative stress effect of cerium oxide; hence, CeO2@PAA-LXW7 can exert a more robust anti-inflammatory and neuroprotective effect via synergistically suppressing the ability of LXW7 to influence the integrin pathway and the free radical-scavenging ability of CeO2@PAA.
Collapse
Affiliation(s)
- Jingjing Jia
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong Province, China
| | - Changyan Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia Province, China
| | - Ting Zhang
- Department of Phoenix International Medical Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Jingjing Sun
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong Province, China
| | - Sijia Peng
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong Province, China
| | - Qizhi Xie
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong Province, China
| | - Yining Huang
- Department of Neurology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| | - Li Yi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518036, Guangdong Province, China.
| |
Collapse
|
6
|
Johnsen KB, Burkhart A, Thomsen LB, Andresen TL, Moos T. Targeting the transferrin receptor for brain drug delivery. Prog Neurobiol 2019; 181:101665. [DOI: 10.1016/j.pneurobio.2019.101665] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
|
7
|
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98:813-880. [PMID: 29488822 PMCID: PMC5966715 DOI: 10.1152/physrev.00011.2017] [Citation(s) in RCA: 726] [Impact Index Per Article: 103.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
Collapse
Affiliation(s)
- Michael Fricker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Aviva M Tolkovsky
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Vilmante Borutaite
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Michael Coleman
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Guy C Brown
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
8
|
Vilalta A, Brown GC. Neurophagy, the phagocytosis of live neurons and synapses by glia, contributes to brain development and disease. FEBS J 2017; 285:3566-3575. [PMID: 29125686 DOI: 10.1111/febs.14323] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 12/25/2022]
Abstract
It was previously thought that neurons were phagocytosed only when dead or dying. However, it is increasingly clear that viable synapses, dendrites, axons and whole neurons can be phagocytosed alive (defined here as neurophagy), and this may contribute to a wide range of developmental, physiological and pathological processes. Phagocytosis of live synapses, dendrites and axons by glia contributes to experience-dependent sculpting of neuronal networks during development, but excessive phagocytosis of synapses may contribute to pathology in Alzheimer's disease, schizophrenia and ageing. Neurons can expose phosphatidylserine or calreticulin, which act as 'eat me' signals provoking phagocytosis via microglial receptors, whereas sialylation of neuronal surfaces acts as a 'don't eat me' signal that inhibits phagocytosis and desialylation can provoke phagocytosis. Opsonins, such as complement components and apolipoproteins, are released during inflammation and enhance engulfment. Phagocytosis of neurons is seen in multiple human diseases, but it is as yet unclear whether inhibition of phagocytosis will be beneficial in treating neurological diseases. Here we review the signals regulating glial phagocytosis of live neurons and synapses, and the involvement of this phagocytosis in development and disease.
Collapse
Affiliation(s)
- Anna Vilalta
- Department of Biochemistry, University of Cambridge, UK
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, UK
| |
Collapse
|
9
|
Luo L, Chen J, Su D, Chen M, Luo B, Pi R, Wang L, Shen W, Wang R. L-F001, a Multifunction ROCK Inhibitor Prevents 6-OHDA Induced Cell Death Through Activating Akt/GSK-3beta and Nrf2/HO-1 Signaling Pathway in PC12 Cells and Attenuates MPTP-Induced Dopamine Neuron Toxicity in Mice. Neurochem Res 2017; 42:615-624. [PMID: 28078613 DOI: 10.1007/s11064-016-2117-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/01/2016] [Accepted: 11/18/2016] [Indexed: 12/01/2022]
Abstract
Amounting evidences demonstrated that Rho/Rho-associated kinase (ROCK) might be a novel target for the therapy of Parkinson's disease (PD). Recently, we synthesized L-F001 and revealed it was a potent ROCK inhibitor with multifunctional effects. Here we investigated the effects of L-F001 in PD models. We found that L-F001 potently attenuated 6-OHDA-induced cytotoxicity in PC12 cells and significantly decreased intracellular reactive oxygen species (ROS), prevented the 6-OHDA-induced decline of mitochondrial membrane potential and intracellular GSH levels. In addition, L-F001 increased Akt and GSK-3beta phosphorylation and induced the nuclear Nrf2 and HO-1 expression in a time- and concentration-dependent manner. Moreover, L-F001 restored the levels of p-Akt and p-GSK-3beta (Ser9) as well as HO-1 expression reduced by 6-OHDA. Those effects were blocked by the specific PI3K inhibitor, LY294002, indicating the involvement of Akt/GSK-3beta pathway in the neuroprotective effect of L-F001. In addition, L-F001 significantly attenuated the tyrosinehydroxylase immunoreactive cell loss in 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP)-induced mice PD model. Together, our findings suggest that L-F001 prevents 6-OHDA-induced cell death through activating Akt/GSK-3beta and Nrf2/HO-1 signaling pathway and attenuates MPTP-induced dopaminergic neuron toxicity in mice. L-F001 might be a promising drug candidate for PD.
Collapse
Affiliation(s)
- Liting Luo
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.,Department of Pharmacy, Zhuhai Maternal and Child Health Hospital, Zhuhai, 519000, China.,Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China.,International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jingkao Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China.,International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Dan Su
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China
| | - Meihui Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China.,International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Bingling Luo
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Rongbiao Pi
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510080, China.,International Joint Laboratory (SYSU-PolyU HK) of Novel Anti-Dementia Drugs of Guangdong, Guangzhou, 510006, China.,National and Local United Engineering Lab of Druggability and New Drugs Evaluation, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lan Wang
- Department of Neurology, Puai Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, China
| | - Wei Shen
- Department of Neurology, Puai Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430033, China.
| | - Rikang Wang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330006, China.
| |
Collapse
|
10
|
Abstract
Microglia, the brain's professional phagocytes, can remove dead and dying neurons as well as synapses and the processes of live neurons. However, we and others have recently shown that microglia can also execute neuronal death by phagocytosing stressed-but-viable neurons - a process that we have termed phagoptosis. In this Progress article, we discuss evidence suggesting that phagoptosis may contribute to neuronal loss during brain development, inflammation, ischaemia and neurodegeneration.
Collapse
|
11
|
Astrocyte-specific IKK2 activation in mice is sufficient to induce neuroinflammation but does not increase susceptibility to MPTP. Neurobiol Dis 2012; 48:481-7. [PMID: 22750522 DOI: 10.1016/j.nbd.2012.06.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/19/2012] [Accepted: 06/22/2012] [Indexed: 12/21/2022] Open
Abstract
A key regulator of inflammatory gene expression is the transcription factor NF-κB that is controlled by the IκB proteins. We used a transgenic mouse model expressing a constitutively active IκB-kinase-2 (IKK2-CA) in astrocytes under control of the human glial fibrillary acidic protein promotor (IKK2-mice) to investigate neuroinflammation, proinflammatory cytokine expression, microglial activation and a potential enhanced susceptibility to the neurotoxin MPTP (4×10 mg/kg). Readouts included the determination of cytokines, striatal dopamine (DA), nigral tyrosine hydroxylase (TH) positive neurons, microglial activation and motor activity. IKK2-CA expression in astrocytes conditionally induced by the tet-off system resulted in a widespread neuroinflammation indicated by the increased expression of inflammatory cytokines and the presence of activated microglia and astrogliosis. Additionally, striatal DA concentrations but not nigral TH-positive neurons were reduced in IKK2-mice by 20%. Motor activity of IKK2-mice was not affected. Surprisingly, there was a similar reduction in striatal DA concentrations and the number of nigral TH-positive neurons in IKK2 and control mice after MPTP treatment. In conclusion, although naïve IKK2-mice showed reduced striatal DA concentrations and an increase in inflammatory markers in the brain, a higher susceptibility to MPTP was not observed. This finding argues against a prominent role of astrocyte specific, IKK2-mediated neuroinflammation in MPTP-induced neurodegeneration.
Collapse
|