1
|
Nishida N, Kanehara M, Kaneguchi A, Ozawa J. Three-dimensional analysis of locomotion patterns after hindlimb suspension and subsequent long-term reloading in growing rats. J Biomech 2024; 176:112389. [PMID: 39476732 DOI: 10.1016/j.jbiomech.2024.112389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/01/2024] [Accepted: 10/24/2024] [Indexed: 11/10/2024]
Abstract
The long-term effects of insufficient weight loading during growth on locomotion patterns are not fully understood. The purpose of this study was to determine 1) the effects of hindlimb suspension (HS) in skeletally immature rats on locomotion patterns using a treadmill and a three-dimensional (3D) motion analysis system, and 2) the relationships between locomotion patterns and femoral morphologies, which were reconstructed from 3D computed tomography images taken at 54 weeks old. Four-week-old female rats were subjected to HS four or eight weeks, followed by reloading for until reaching up to 54 weeks old. Age-matched untreated rats served as controls. Motion analysis revealed that four and/or eight weeks of HS resulted in increased pelvis oscillation in the frontal plane during steps, decreased hip adduction angle, and toe-out (increased foot abduction angle) during the load response phase at one and five weeks after reloading. Interestingly, the decreased hip adduction angle and toe-out induced by eight weeks of HS persisted even at 54 weeks old. Pearson's correlation analysis revealed a strong relationship between the hip adduction angle and femoral anteversion angle (r = -0.78) and a moderate relationship between the medial/lateral condyle height (an index of asymmetric condyle size) and toe-out angle (r = 0.66). These results suggest that insufficient weight loading during growth may induce abnormal locomotion patterns via abnormal femoral morphologies that may persist over time.
Collapse
Affiliation(s)
- Norikazu Nishida
- Graduate School of Medical Technology and Health Welfare Sciences, Hiroshima International University. Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan.
| | - Marina Kanehara
- Graduate School of Medical Technology and Health Welfare Sciences, Hiroshima International University. Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan.
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan.
| |
Collapse
|
2
|
Ruggiero L, Gruber M. Neuromuscular mechanisms for the fast decline in rate of force development with muscle disuse - a narrative review. J Physiol 2024. [PMID: 39467095 DOI: 10.1113/jp285667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
The removal of skeletal muscle tension (unloading or disuse) is followed by many changes in the neuromuscular system, including muscle atrophy and loss of isometric maximal strength (measured by maximal force, Fmax). Explosive strength, i.e. the ability to develop the highest force in the shortest possible time, to maximise rate of force development (RFD), is a fundamental neuromuscular capability, often more functionally relevant than maximal muscle strength. In the present review, we discuss data from studies that looked at the effect of muscle unloading on isometric maximal versus explosive strength. We present evidence that muscle unloading yields a greater decline in explosive relative to maximal strength. The longer the unloading duration, the smaller the difference between the decline in the two measures. Potential mechanisms that may explain the greater decline in measures of RFD relative to Fmax after unloading are higher recruitment thresholds and lower firing rates of motor units, slower twitch kinetics, impaired excitation-contraction coupling, and decreased tendon stiffness. Using a Hill-type force model, we showed that this ensemble of adaptations minimises the loss of force production at submaximal contraction intensities, at the expense of a disproportionately lower RFD. With regard to the high functional relevance of RFD on one hand, and the boosted detrimental effects of inactivity on RFD on the other hand, it seems crucial to implement specific exercises targeting explosive strength in populations that experience muscle disuse over a longer time.
Collapse
Affiliation(s)
- Luca Ruggiero
- Human Performance Research Centre, Department of Sports Science, University of Konstanz, Konstanz, Germany
| | - Markus Gruber
- Human Performance Research Centre, Department of Sports Science, University of Konstanz, Konstanz, Germany
| |
Collapse
|
3
|
Saunders SE, Santin JM. Hibernation reduces GABA signaling in the brainstem to enhance motor activity of breathing at cool temperatures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.09.561534. [PMID: 37873475 PMCID: PMC10592683 DOI: 10.1101/2023.10.09.561534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Background Neural circuits produce reliable activity patterns despite disturbances in the environment. For this to occur, neurons elicit synaptic plasticity during perturbations. However, recent work suggests that plasticity not only regulates circuit activity during disturbances, but these modifications may also linger to stabilize circuits during future perturbations. The implementation of such a regulation scheme for real-life environmental challenges of animals remains unclear. Amphibians provide insight into this problem in a rather extreme way, as circuits that generate breathing are inactive for several months during underwater hibernation and use compensatory plasticity to promote ventilation upon emergence. Results Using ex vivo brainstem preparations and electrophysiology, we find that hibernation in American bullfrogs reduces GABAA receptor (GABAAR) inhibition in respiratory rhythm generating circuits and motor neurons, consistent with a compensatory response to chronic inactivity. Although GABAARs are normally critical for breathing, baseline network output at warm temperatures was not affected. However, when assessed across a range of temperatures, hibernators with reduced GABAAR signaling had greater activity at cooler temperatures, enhancing respiratory motor output under conditions that otherwise strongly depress breathing. Conclusions Hibernation reduces GABAAR signaling to promote robust respiratory output only at cooler temperatures. Although animals do not ventilate lungs during hibernation, we suggest this would be beneficial for stabilizing breathing when the animal passes through a large temperature range during emergence in the spring. More broadly, these results demonstrate that compensatory synaptic plasticity can increase the operating range of circuits in harsh environments, thereby promoting adaptive behavior in conditions that suppress activity.
Collapse
Affiliation(s)
- Sandy E. Saunders
- University of Missouri-Columbia, Division of Biological Sciences, Missouri, United States of America
| | - Joseph M. Santin
- University of Missouri-Columbia, Division of Biological Sciences, Missouri, United States of America
| |
Collapse
|
4
|
Sergeeva XV, Lvova ID, Sharlo KA. Disuse-Induced Muscle Fatigue: Facts and Assumptions. Int J Mol Sci 2024; 25:4984. [PMID: 38732203 PMCID: PMC11084575 DOI: 10.3390/ijms25094984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Skeletal muscle unloading occurs during a wide range of conditions, from space flight to bed rest. The unloaded muscle undergoes negative functional changes, which include increased fatigue. The mechanisms of unloading-induced fatigue are far from complete understanding and cannot be explained by muscle atrophy only. In this review, we summarize the data concerning unloading-induced fatigue in different muscles and different unloading models and provide several potential mechanisms of unloading-induced fatigue based on recent experimental data. The unloading-induced changes leading to increased fatigue include both neurobiological and intramuscular processes. The development of intramuscular fatigue seems to be mainly contributed by the transformation of soleus muscle fibers from a fatigue-resistant, "oxidative" "slow" phenotype to a "fast" "glycolytic" one. This process includes slow-to-fast fiber-type shift and mitochondrial density decline, as well as the disruption of activating signaling interconnections between slow-type myosin expression and mitochondrial biogenesis. A vast pool of relevant literature suggests that these events are triggered by the inactivation of muscle fibers in the early stages of muscle unloading, leading to the accumulation of high-energy phosphates and calcium ions in the myoplasm, as well as NO decrease. Disturbance of these secondary messengers leads to structural changes in muscles that, in turn, cause increased fatigue.
Collapse
Affiliation(s)
| | | | - Kristina A. Sharlo
- Institute of Biomedical Problems, RAS, Khorosevskoye Shosse, 76a, 123007 Moscow, Russia; (X.V.S.); (I.D.L.)
| |
Collapse
|
5
|
Gaffney CJ, Drinkwater A, Joshi SD, O'Hanlon B, Robinson A, Sands KA, Slade K, Braithwaite JJ, Nuttall HE. Short-Term Immobilization Promotes a Rapid Loss of Motor Evoked Potentials and Strength That Is Not Rescued by rTMS Treatment. Front Hum Neurosci 2021; 15:640642. [PMID: 33981206 PMCID: PMC8107283 DOI: 10.3389/fnhum.2021.640642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/01/2021] [Indexed: 11/23/2022] Open
Abstract
Short-term limb immobilization results in skeletal muscle decline, but the underlying mechanisms are incompletely understood. This study aimed to determine the neurophysiologic basis of immobilization-induced skeletal muscle decline, and whether repetitive Transcranial Magnetic Stimulation (rTMS) could prevent any decline. Twenty-four healthy young males (20 ± 0.5 years) underwent unilateral limb immobilization for 72 h. Subjects were randomized between daily rTMS (n = 12) using six 20 Hz pulse trains of 1.5 s duration with a 60 s inter-train-interval delivered at 90% resting Motor Threshold (rMT), or Sham rTMS (n = 12) throughout immobilization. Maximal grip strength, EMG activity, arm volume, and composition were determined at 0 and 72 h. Motor Evoked Potentials (MEPs) were determined daily throughout immobilization to index motor excitability. Immobilization induced a significant reduction in motor excitability across time (−30% at 72 h; p < 0.05). The rTMS intervention increased motor excitability at 0 h (+13%, p < 0.05). Despite daily rTMS treatment, there was still a significant reduction in motor excitability (−33% at 72 h, p < 0.05), loss in EMG activity (−23.5% at 72 h; p < 0.05), and a loss of maximal grip strength (−22%, p < 0.001) after immobilization. Interestingly, the increase in biceps (Sham vs. rTMS) (+0.8 vs. +0.1 mm, p < 0.01) and posterior forearm (+0.3 vs. +0.0 mm, p < 0.05) skinfold thickness with immobilization in Sham treatment was not observed following rTMS treatment. Reduced MEPs drive the loss of strength with immobilization. Repetitive Transcranial Magnetic Stimulation cannot prevent this loss of strength but further investigation and optimization of neuroplasticity protocols may have therapeutic benefit.
Collapse
Affiliation(s)
- Christopher J Gaffney
- Lancaster Medical School, Health Innovation One, Lancaster University, Lancaster, United Kingdom
| | - Amber Drinkwater
- Department of Psychology, Faculty of Science & Technology, Lancaster University, Lancaster, United Kingdom
| | - Shalmali D Joshi
- Department of Psychology, Faculty of Science & Technology, Lancaster University, Lancaster, United Kingdom
| | - Brandon O'Hanlon
- Department of Psychology, Faculty of Science & Technology, Lancaster University, Lancaster, United Kingdom
| | - Abbie Robinson
- Department of Psychology, Faculty of Science & Technology, Lancaster University, Lancaster, United Kingdom
| | - Kayle-Anne Sands
- Department of Psychology, Faculty of Science & Technology, Lancaster University, Lancaster, United Kingdom
| | - Kate Slade
- Department of Psychology, Faculty of Science & Technology, Lancaster University, Lancaster, United Kingdom
| | - Jason J Braithwaite
- Department of Psychology, Faculty of Science & Technology, Lancaster University, Lancaster, United Kingdom
| | - Helen E Nuttall
- Department of Psychology, Faculty of Science & Technology, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
6
|
Central Nervous System Responses to Simulated Galactic Cosmic Rays. Int J Mol Sci 2018; 19:ijms19113669. [PMID: 30463349 PMCID: PMC6275046 DOI: 10.3390/ijms19113669] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
In preparation for lunar and Mars missions it is essential to consider the challenges to human health that are posed by long-duration deep space habitation via multiple stressors, including ionizing radiation, gravitational changes during flight and in orbit, other aspects of the space environment such as high level of carbon dioxide, and psychological stress from confined environment and social isolation. It remains unclear how these stressors individually or in combination impact the central nervous system (CNS), presenting potential obstacles for astronauts engaged in deep space travel. Although human spaceflight research only within the last decade has started to include the effects of radiation transmitted by galactic cosmic rays to the CNS, radiation is currently considered to be one of the main stressors for prolonged spaceflight and deep space exploration. Here we will review the current knowledge of CNS damage caused by simulated space radiation with an emphasis on neuronal and glial responses along with cognitive functions. Furthermore, we will present novel experimental approaches to integrate the knowledge into more comprehensive studies, including multiple stressors at once and potential translation to human functions. Finally, we will discuss the need for developing biomarkers as predictors for cognitive decline and therapeutic countermeasures to prevent CNS damage and the loss of cognitive abilities.
Collapse
|
7
|
Fourneau J, Canu MH, Cieniewski-Bernard C, Bastide B, Dupont E. Synaptic protein changes after a chronic period of sensorimotor perturbation in adult rats: a potential role of phosphorylation/O-GlcNAcylation interplay. J Neurochem 2018; 147:240-255. [DOI: 10.1111/jnc.14474] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Julie Fourneau
- EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société; Univ. Lille; Lille France
| | - Marie-Hélène Canu
- EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société; Univ. Lille; Lille France
| | | | - Bruno Bastide
- EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société; Univ. Lille; Lille France
| | - Erwan Dupont
- EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société; Univ. Lille; Lille France
| |
Collapse
|
8
|
Adami R, Pagano J, Colombo M, Platonova N, Recchia D, Chiaramonte R, Bottinelli R, Canepari M, Bottai D. Reduction of Movement in Neurological Diseases: Effects on Neural Stem Cells Characteristics. Front Neurosci 2018; 12:336. [PMID: 29875623 PMCID: PMC5974544 DOI: 10.3389/fnins.2018.00336] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/30/2018] [Indexed: 01/04/2023] Open
Abstract
Both astronauts and patients affected by chronic movement-limiting pathologies face impairment in muscle and/or brain performance. Increased patient survival expectations and the expected longer stays in space by astronauts may result in prolonged motor deprivation and consequent pathological effects. Severe movement limitation can influence not only the motor and metabolic systems but also the nervous system, altering neurogenesis and the interaction between motoneurons and muscle cells. Little information is yet available about the effect of prolonged muscle disuse on neural stem cells characteristics. Our in vitro study aims to fill this gap by focusing on the biological and molecular properties of neural stem cells (NSCs). Our analysis shows that NSCs derived from the SVZ of HU mice had shown a reduced proliferation capability and an altered cell cycle. Furthermore, NSCs obtained from HU animals present an incomplete differentiation/maturation. The overall results support the existence of a link between reduction of exercise and muscle disuse and metabolism in the brain and thus represent valuable new information that could clarify how circumstances such as the absence of load and the lack of movement that occurs in people with some neurological diseases, may affect the properties of NSCs and contribute to the negative manifestations of these conditions.
Collapse
Affiliation(s)
- Raffaella Adami
- Department of Health Science, University of Milan, Milan, Italy
| | - Jessica Pagano
- Department of Health Science, University of Milan, Milan, Italy
| | - Michela Colombo
- Department of Health Science, University of Milan, Milan, Italy
| | | | - Deborah Recchia
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | | | - Monica Canepari
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Daniele Bottai
- Department of Health Science, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Viaro R, Bonazzi L, Maggiolini E, Franchi G. Cerebellar Modulation of Cortically Evoked Complex Movements in Rats. Cereb Cortex 2018; 27:3525-3541. [PMID: 27329134 DOI: 10.1093/cercor/bhw167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Intracortical microstimulation (ICMS) delivered to the motor cortex (M1) via long- or short-train duration (long- or short-duration ICMS) can evoke coordinated complex movements or muscle twitches, respectively. The role of subcortical cerebellar input in M1 output, in terms of long- and short-duration ICMS-evoked movement and motor skill performance, was evaluated in rats with bilateral lesion of the deep cerebellar nuclei. After the lesion, distal forelimb movements were seldom observed, and almost 30% of proximal forelimb movements failed to match criteria defining the movement class observed under control conditions. The classifiable movements could be evoked in different cortical regions with respect to control and many kinematic variables were strongly affected. Furthermore, movement endpoints within the rat's workspace shrunk closer to the body, while performance in the reaching/grasping task worsened. Surprisingly, neither the threshold current values for evoking movements nor the overall size of forelimb movement representation changed with respect to controls in either long- or short-duration ICMS. We therefore conclude that cerebellar input via the motor thalamus is crucial for expressing the basic functional features of the motor cortex.
Collapse
Affiliation(s)
- Riccardo Viaro
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy.,Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
| | - Laura Bonazzi
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Emma Maggiolini
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, 44121 Ferrara, Italy
| | - Gianfranco Franchi
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
10
|
Time course of changes in corticospinal excitability after short-term forearm/hand immobilization. Neuroreport 2017; 28:1092-1096. [DOI: 10.1097/wnr.0000000000000891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Effect of hindlimb unloading on stereological parameters of the motor cortex and hippocampus in male rats. Neuroreport 2016; 27:1202-5. [PMID: 27607230 DOI: 10.1097/wnr.0000000000000675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hindlimb unloading (HU) can cause motion and cognition dysfunction, although its cellular and molecular mechanisms are not well understood. The aim of the present study was to determine the stereological parameters of the brain areas involved in motion (motor cortex) and spatial learning - memory (hippocampus) under an HU condition. Sixteen adult male rats, kept under a 12 : 12 h light-dark cycle, were divided into two groups of freely moving (n=8) and HU (n=8) rats. The volume of motor cortex and hippocampus, the numerical cell density of neurons in layers I, II-III, V, and VI of the motor cortex, the entire motor cortex as well as the primary motor cortex, and the numerical density of the CA1, CA3, and dentate gyrus subregions of the hippocampus were estimated. No significant differences were observed in the evaluated parameters. Our results thus indicated that motor cortical and hippocampal atrophy and cell loss may not necessarily be involved in the motion and spatial learning memory impairment in the rat.
Collapse
|
12
|
Mysoet J, Canu MH, Gillet C, Fourneau J, Garnier C, Bastide B, Dupont E. Reorganization of motor cortex and impairment of motor performance induced by hindlimb unloading are partially reversed by cortical IGF-1 administration. Behav Brain Res 2016; 317:434-443. [PMID: 27717815 DOI: 10.1016/j.bbr.2016.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
Abstract
Immobilization, bed rest, or sedentary lifestyle, are known to induce a profound impairment in sensorimotor performance. These alterations are due to a combination of peripheral and central factors. Previous data conducted on a rat model of disuse (hindlimb unloading, HU) have shown a profound reorganization of motor cortex and an impairment of motor performance. Recently, our interest was turned towards the role of insulin-like growth factor 1 (IGF-1) in cerebral plasticity since this growth factor is considered as the mediator of beneficial effects of exercise on the central nervous system, and its cortical level is decreased after a 14-day period of HU. In the present study, we attempted to determine whether a chronic subdural administration of IGF-1 in HU rats could prevent deleterious effects of HU on the motor cortex and on motor activity. We demonstrated that HU induces a shrinkage of hindlimb cortical representation and an increase in current threshold to elicit a movement. Administration of IGF-1 in HU rats partially reversed these changes. The functional evaluation revealed that IGF-1 prevents the decrease in spontaneous activity found in HU rats and the changes in hip kinematics during overground locomotion, but had no effect of challenged locomotion (ladder rung walking test). Taken together, these data clearly indicate the implication of IGF-1 in cortical plastic mechanisms and in behavioral alteration induced by a decreased in sensorimotor activity.
Collapse
Affiliation(s)
- Julien Mysoet
- Univ. Lille, EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Eurasport, 413 Rue Eugène Avinée, F-59120 Loos, France.
| | - Marie-Hélène Canu
- Univ. Lille, EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Eurasport, 413 Rue Eugène Avinée, F-59120 Loos, France.
| | - Christophe Gillet
- Univ. Valenciennes, LAMIH UMR CNRS 8201 - Laboratory of Industrial and Human Automation control, Mechanical engineering and Computer Science, Le Mont Houy, F-59313 Valenciennes cedex 9, France.
| | - Julie Fourneau
- Univ. Lille, EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Eurasport, 413 Rue Eugène Avinée, F-59120 Loos, France.
| | - Cyril Garnier
- Univ. Valenciennes, LAMIH UMR CNRS 8201 - Laboratory of Industrial and Human Automation control, Mechanical engineering and Computer Science, Le Mont Houy, F-59313 Valenciennes cedex 9, France.
| | - Bruno Bastide
- Univ. Lille, EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Eurasport, 413 Rue Eugène Avinée, F-59120 Loos, France.
| | - Erwan Dupont
- Univ. Lille, EA 7369 - URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, Eurasport, 413 Rue Eugène Avinée, F-59120 Loos, France.
| |
Collapse
|
13
|
Dyer AH, Vahdatpour C, Sanfeliu A, Tropea D. The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience 2016; 325:89-99. [DOI: 10.1016/j.neuroscience.2016.03.056] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/29/2016] [Accepted: 03/24/2016] [Indexed: 02/07/2023]
|
14
|
Banzrai C, Nodera H, Kawarai T, Higashi S, Okada R, Mori A, Shimatani Y, Osaki Y, Kaji R. Impaired Axonal Na(+) Current by Hindlimb Unloading: Implication for Disuse Neuromuscular Atrophy. Front Physiol 2016; 7:36. [PMID: 26909041 PMCID: PMC4754663 DOI: 10.3389/fphys.2016.00036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/26/2016] [Indexed: 12/12/2022] Open
Abstract
This study aimed to characterize the excitability changes in peripheral motor axons caused by hindlimb unloading (HLU), which is a model of disuse neuromuscular atrophy. HLU was performed in normal 8-week-old male mice by fixing the proximal tail by a clip connected to the top of the animal's cage for 3 weeks. Axonal excitability studies were performed by stimulating the sciatic nerve at the ankle and recording the compound muscle action potential (CMAP) from the foot. The amplitudes of the motor responses of the unloading group were 51% of the control amplitudes [2.2 ± 1.3 mV (HLU) vs. 4.3 ± 1.2 mV (Control), P = 0.03]. Multiple axonal excitability analysis showed that the unloading group had a smaller strength-duration time constant (SDTC) and late subexcitability (recovery cycle) than the controls [0.075 ± 0.01 (HLU) vs. 0.12 ± 0.01 (Control), P < 0.01; 5.4 ± 1.0 (HLU) vs. 10.0 ± 1.3 % (Control), P = 0.01, respectively]. Three weeks after releasing from HLU, the SDTC became comparable to the control range. Using a modeling study, the observed differences in the waveforms could be explained by reduced persistent Na+ currents along with parameters related to current leakage. Quantification of RNA of a SCA1A gene coding a voltage-gated Na+ channel tended to be decreased in the sciatic nerve in HLU. The present study suggested that axonal ion currents are altered in vivo by HLU. It is still undetermined whether the dysfunctional axonal ion currents have any pathogenicity on neuromuscular atrophy or are the results of neural plasticity by atrophy.
Collapse
Affiliation(s)
| | - Hiroyuki Nodera
- Department of Neurology, Tokushima University Tokushima, Japan
| | | | - Saki Higashi
- Department of Neurology, Tokushima University Tokushima, Japan
| | - Ryo Okada
- Department of Neurology, Tokushima University Tokushima, Japan
| | - Atsuko Mori
- Department of Neurology, Tokushima University Tokushima, Japan
| | | | - Yusuke Osaki
- Department of Neurology, Tokushima University Tokushima, Japan
| | - Ryuji Kaji
- Department of Neurology, Tokushima University Tokushima, Japan
| |
Collapse
|
15
|
Santin JM, Hartzler LK. Control of lung ventilation following overwintering conditions in bullfrogs, Lithobates catesbeianus. J Exp Biol 2016; 219:2003-14. [DOI: 10.1242/jeb.136259] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/14/2016] [Indexed: 12/19/2022]
Abstract
Ranid frogs in northern latitudes survive winter at cold temperatures in aquatic habitats often completely covered by ice. Cold-submerged frogs survive aerobically for several months relying exclusively on cutaneous gas exchange while maintaining temperature-specific acid-base balance. Depending on the overwintering hibernaculum, frogs in northern latitudes could spend several months without access to air, need to breathe, or chemosensory drive to use neuromuscular processes that regulate and enable pulmonary ventilation. Therefore, we performed experiments to determine whether aspects of the respiratory control system of bullfrogs, Lithobates catesbeianus, are maintained or suppressed following minimal use of air breathing in overwintering environments. Based on the necessity for control of lung ventilation in early spring, we hypothesized that critical components of the respiratory control system of bullfrogs would be functional following simulated overwintering. We found that bullfrogs recently removed from simulated overwintering environments exhibited similar resting ventilation when assessed at 24°C compared to warm-acclimated control bullfrogs. Additionally, ventilation met resting metabolic and, presumably, acid-base regulation requirements, indicating preservation of basal respiratory function despite prolonged disuse in the cold. Recently emerged bullfrogs underwent similar increases in ventilation during acute oxygen lack (aerial hypoxia) compared to warm-acclimated frogs; however, CO2-related hyperventilation was significantly blunted following overwintering. Overcoming challenges to gas exchange during overwintering have garnered attention in ectothermic vertebrates, but this study uncovers robust and labile aspects of the respiratory control system at a time point correlating with early spring following minimal/no use of lung breathing in cold-aquatic overwintering habitats.
Collapse
Affiliation(s)
- Joseph M. Santin
- Wright State University, Department of Biological Sciences, 3640 Colonel Glenn. Hwy. Dayton, OH 45435, USA
- Wright State University, Biomedical Sciences PhD Program, 3640 Colonel Glenn. Hwy. Dayton, OH 45435, USA
| | - Lynn K. Hartzler
- Wright State University, Department of Biological Sciences, 3640 Colonel Glenn. Hwy. Dayton, OH 45435, USA
| |
Collapse
|
16
|
Intermittent application of hypergravity by centrifugation attenuates disruption of rat gait induced by 2 weeks of simulated microgravity. Behav Brain Res 2015; 287:276-84. [PMID: 25819803 DOI: 10.1016/j.bbr.2015.03.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/14/2015] [Accepted: 03/14/2015] [Indexed: 11/23/2022]
Abstract
The effects of intermittent hypergravity on gait alterations and hindlimb muscle atrophy in rats induced by 2 weeks of simulated microgravity were investigated. Rats were submitted to hindlimb unloading for 2 weeks (unloading period), followed by 2 weeks of reloading (recovery period). During the unloading period, animals were subjected to the following treatments: (1) free in cages (Control); (2) continuous unloading (UL); (3) released from unloading for 1 hour per day (UL+1G); (4) hypergravity for 1h per day using a centrifuge for small animals (UL+2G). The relative weights of muscles to the whole body weight and kinematics properties of hindlimbs during gait were evaluated. UL rats walked with their hindlimbs overextended, and the oscillation of their limb motion had become narrowed and forward-shifted after the unloading period, and this persisted for at least 2 weeks after the termination of unloading. However, these locomotor alterations were attenuated in rats subjected to UL+2G centrifugation despite minor systematic changes in muscle recovery. These findings indicate hypergravity application could counteract the adverse effects of simulated or actual microgravity environments.
Collapse
|
17
|
Tajino J, Ito A, Nagai M, Zhang X, Yamaguchi S, Iijima H, Aoyama T, Kuroki H. Discordance in recovery between altered locomotion and muscle atrophy induced by simulated microgravity in rats. J Mot Behav 2015; 47:397-406. [PMID: 25789843 DOI: 10.1080/00222895.2014.1003779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Exposure to a microgravity environment leads to adverse effects in motion and musculoskeletal properties. However, few studies have investigated the recovery of altered locomotion and muscle atrophy simultaneously. The authors investigated altered locomotion in rats submitted to simulated microgravity by hindlimb unloading for 2 weeks. Motion deficits were characterized by hyperextension of the knees and ankle joints and forward-shifted limb motion. Furthermore, these locomotor deficits did not revert to their original form after a 2-week recovery period, although muscle atrophy in the hindlimbs had recovered, implying discordance in recovery between altered locomotion and muscle atrophy, and that other factors such as neural drives might control behavioral adaptations to microgravity.
Collapse
Affiliation(s)
- Junichi Tajino
- a Department of Motor Function Analysis , Human Health Sciences, Graduate School of Medicine, Kyoto University , Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Budri M, Lodi E, Franchi G. Sensorimotor restriction affects complex movement topography and reachable space in the rat motor cortex. Front Syst Neurosci 2014; 8:231. [PMID: 25565987 PMCID: PMC4264501 DOI: 10.3389/fnsys.2014.00231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/19/2014] [Indexed: 11/25/2022] Open
Abstract
Long-duration intracortical microstimulation (ICMS) studies with 500 ms of current pulses suggest that the forelimb area of the motor cortex is organized into several spatially distinct functional zones that organize movements into complex sequences. Here we studied how sensorimotor restriction modifies the extent of functional zones, complex movements, and reachable space representation in the rat forelimb M1. Sensorimotor restriction was achieved by means of whole-forelimb casting of 30 days duration. Long-duration ICMS was carried out 12 h and 14 days after cast removal. Evoked movements were measured using a high-resolution 3D optical system. Long-term cast caused: (i) a reduction in the number of sites where complex forelimb movement could be evoked; (ii) a shrinkage of functional zones but no change in their center of gravity; (iii) a reduction in movement with proximal/distal coactivation; (iv) a reduction in maximal velocity, trajectory and vector length of movement, but no changes in latency or duration; (v) a large restriction of reachable space. Fourteen days of forelimb freedom after casting caused: (i) a recovery of the number of sites where complex forelimb movement could be evoked; (ii) a recovery of functional zone extent and movement with proximal/distal coactivation; (iii) an increase in movement kinematics, but only partial restoration of control rat values; (iv) a slight increase in reachability parameters, but these remained far below baseline values. We pose the hypothesis that specific aspects of complex movement may be stored within parallel motor cortex re-entrant systems.
Collapse
Affiliation(s)
- Mirco Budri
- Section of Human Physiology, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara Ferrara, Italy
| | - Enrico Lodi
- Section of Human Physiology, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara Ferrara, Italy
| | - Gianfranco Franchi
- Section of Human Physiology, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara Ferrara, Italy
| |
Collapse
|
19
|
Lei J, Pertovaara A, You HJ. Effects of simulated weightlessness on intramuscular hypertonic saline induced muscle nociception and spinal Fos expression in rats. Brain Res 2014; 1594:204-14. [PMID: 25446440 DOI: 10.1016/j.brainres.2014.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 10/20/2014] [Accepted: 11/08/2014] [Indexed: 12/30/2022]
Abstract
We assessed the effects of simulated weightlessness, hindlimb unloading (HU) by 7 days of tail suspension, on noxious mechanically and heat evoked spinal withdrawal reflexes and spinal Fos expression during muscle nociception elicited by intramuscular (i.m.) injection of hypertonic (HT; 5.8%) saline into gastrocnemius muscle in rats. In HU rats, i.m. HT saline-induced secondary mechanical hyperalgesia was enhanced, and secondary heat hypoalgesia was significantly delayed. After 7 days of HU, basal Fos expression in spinal L4-6 segments was bilaterally enhanced only in superficial (I-II) but not middle and deep laminae (III-VI) of the spinal dorsal horn, which finding was not influenced by tail denervation. Unilateral i.m. HT saline injection increased spinal Fos expression bilaterally in both the control rats and 7 days of HU rats. The HT saline-induced bilateral increase of spinal Fos occurred within 0.5h and reached its peak within 1h, after which it gradually returned to the control levels within 8h. Spatial patterns of spinal Fos expression differed between the control group and 7 days of HU group. In superficial laminae, the HT saline-induced increases in Fos expression were higher and in the middle and deep laminae V-VI lower in the 7 days of HU than control rats. It is suggested that supraspinal mechanisms presumably underlie the effects of HU on spinally-organized nociception. Simulated weightlessness may enhance descending facilitation and weaken descending inhibition of nociception.
Collapse
Affiliation(s)
- Jing Lei
- Center for Biomedical Research on Pain (CBRP), College of Medicine, Xi׳an Jiaotong University, Xi׳an 710061, PR China
| | - Antti Pertovaara
- Institute of Biomedicine/Physiology, University of Helsinki, POB 63, Helsinki 00014, Finland
| | - Hao-Jun You
- Center for Biomedical Research on Pain (CBRP), College of Medicine, Xi׳an Jiaotong University, Xi׳an 710061, PR China.
| |
Collapse
|
20
|
Hypoactivity affects IGF-1 level and PI3K/AKT signaling pathway in cerebral structures implied in motor control. PLoS One 2014; 9:e107631. [PMID: 25226394 PMCID: PMC4166665 DOI: 10.1371/journal.pone.0107631] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 08/21/2014] [Indexed: 11/19/2022] Open
Abstract
A chronic reduction in neuromuscular activity through prolonged body immobilization in human alters motor task performance through a combination of peripheral and central factors. Studies performed in a rat model of sensorimotor restriction have shown functional and biochemical changes in sensorimotor cortex. However, the underlying mechanisms are still unclear. Interest was turned towards a possible implication of Insulin-like Growth Factor 1 (IGF-1), a growth factor known to mediate neuronal excitability and synaptic plasticity by inducing phosphorylation cascades which include the PI3K–AKT pathway. In order to better understand the influence of IGF-1 in cortical plasticity in rats submitted to a sensorimotor restriction, we analyzed the effect of hindlimb unloading on IGF-1 and its main molecular pathway in structures implied in motor control (sensorimotor cortex, striatum, cerebellum). IGF-1 level was determined by ELISA, and phosphorylation of its receptor and proteins of the PI3K–AKT pathway by immunoblot. In the sensorimotor cortex, our results indicate that HU induces a decrease in IGF-1 level; this alteration is associated to a decrease in activation of PI3K-AKT pathway. The same effect was observed in the striatum, although to a lower extent. No variation was noticed in the cerebellum. These results suggest that IGF-1 might contribute to cortical and striatal plasticity induced by a chronic sensorimotor restriction.
Collapse
|
21
|
Viaro R, Budri M, Parmiani P, Franchi G. Adaptive changes in the motor cortex during and after longterm forelimb immobilization in adult rats. J Physiol 2014; 592:2137-52. [PMID: 24566543 DOI: 10.1113/jphysiol.2013.268821] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Experimental and clinical studies have attempted to evaluate the changes in cortical activity seen after immobilization-induced longterm sensorimotor restriction, although results remain controversial. We used intracortical microstimulation (ICMS), which provides topographic movement representations of the motor areas in both hemispheres with optimal spatial characterization, combined with behavioural testing to unravel the effects of limb immobilization on movement representations in the rat primary motor cortex (M1). Unilateral forelimb immobilization in rats was achieved by casting the entire limb and leaving the cast in place for 15 or 30 days. Changes in M1 were bilateral and specific for the forelimb area, but were stronger in the contralateral-to-cast hemisphere. The threshold current required to evoke forelimb movement increased progressively over the period in cast, whereas the forelimb area size decreased and the non-excitable area size increased. Casting resulted in a redistribution of proximal/distal movement representations: proximal forelimb representation increased, whereas distal representation decreased in size. ICMS after cast removal showed a reversal of changes, which remained partial at 15 days. Local application of the GABAA-antagonist bicuculline revealed the impairment of cortical synaptic connectivity in the forelimb area during the period of cast and for up to 15 days after cast removal. Six days of rehabilitation using a rotarod performance protocol after cast removal did not advance map size normalization in the contralateral-to-cast M1 and enabled the cortical output towards the distal forelimb only in sites that had maintained their excitability. These results are relevant to our understanding of adult M1 plasticity during and after sensorimotor deprivation, and to new approaches to conditions that require longterm limb immobilization.
Collapse
Affiliation(s)
- Riccardo Viaro
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy Department of Robotics, Brain and Cognitive Sciences, Italian Institute of Technology, Genoa, Italy
| | - Mirco Budri
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Pierantonio Parmiani
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy
| | - Gianfranco Franchi
- Department of Biomedical and Specialty Surgical Sciences, Section of Human Physiology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
22
|
Dendritic spine remodeling induced by hindlimb unloading in adult rat sensorimotor cortex. Behav Brain Res 2013; 249:1-7. [DOI: 10.1016/j.bbr.2013.04.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/10/2013] [Accepted: 04/13/2013] [Indexed: 01/21/2023]
|