1
|
Zhou C, Hu YF, Zhang Y, Wang CH, Liao XJ, Cheng FF, Jiang YY. Study on chemical characterization and sleep-improvement function of Prunella vulgaris L. based on the functional components. Food Res Int 2024; 192:114737. [PMID: 39147482 DOI: 10.1016/j.foodres.2024.114737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/17/2024]
Abstract
Prunella vulgaris L. (P. vulgaris) has great application value and development prospects in improving sleep. In this study, we continued to evaluate the sleep-improvement function and mechanism of P. vulgaris from both chemical characterization and function based on sleep-improvement functional ingredients, rosmarinic acid and salviaflaside, screened out in the previous stage as the index components. The chemical constituents of P. vulgaris and its phenolic acid fraction were characterized by the UPLC-MSn technology. The quality of the sleep-improvement phenolic acid fraction of P. vulgaris was scientifically evaluated by fingerprints combined with quantitative analysis of rosmarinic acid and salviaflaside. The function of phenolic acid parts of P. vulgaris in improving sleep was verified by different insomnia models including the PCPA-induced insomnia model and surface platform sleep deprivation model. HE staining was used to observe the effect of P. vulgaris on the morphology of nerve cells in different brain regions. In vivo experiments and molecular docking explored the sedative-hypnotic effects of functional ingredients of P. vulgaris. All these results investigated the material basis and mechanism of P. vulgaris to improve sleep from multiple perspectives, which contribute to providing a basis for the development of functional food to improve sleep.
Collapse
Affiliation(s)
- Chang Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yi-Fan Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cheng-Hao Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xue-Jing Liao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Fa-Feng Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Yan-Yan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China; The Key Research Laboratory of "Exploring Effective Substance in Classic and Famous Prescriptions of Traditional Chinese Medicine", The State Administration of Traditional Chinese Medicine of the People's Republic of China, Beijing 102488, China.
| |
Collapse
|
2
|
Gao H, Wang J, Zhang R, Luo T. Recent advances in neural mechanism of general anesthesia induced unconsciousness: insights from optogenetics and chemogenetics. Front Pharmacol 2024; 15:1360864. [PMID: 38655183 PMCID: PMC11035785 DOI: 10.3389/fphar.2024.1360864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
For over 170 years, general anesthesia has played a crucial role in clinical practice, yet a comprehensive understanding of the neural mechanisms underlying the induction of unconsciousness by general anesthetics remains elusive. Ongoing research into these mechanisms primarily centers around the brain nuclei and neural circuits associated with sleep-wake. In this context, two sophisticated methodologies, optogenetics and chemogenetics, have emerged as vital tools for recording and modulating the activity of specific neuronal populations or circuits within distinct brain regions. Recent advancements have successfully employed these techniques to investigate the impact of general anesthesia on various brain nuclei and neural pathways. This paper provides an in-depth examination of the use of optogenetic and chemogenetic methodologies in studying the effects of general anesthesia on specific brain nuclei and pathways. Additionally, it discusses in depth the advantages and limitations of these two methodologies, as well as the issues that must be considered for scientific research applications. By shedding light on these facets, this paper serves as a valuable reference for furthering the accurate exploration of the neural mechanisms underlying general anesthesia. It aids researchers and clinicians in effectively evaluating the applicability of these techniques in advancing scientific research and clinical practice.
Collapse
Affiliation(s)
- Hui Gao
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jingyi Wang
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Rui Zhang
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Tao Luo
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
3
|
Xia JM, Fan BQ, Yi XW, Ni WW, Zhou Y, Chen DD, Yi WJ, Feng LL, Xia Y, Li SS, Qu WM, Han Y, Huang ZL, Li WX. Medial Septal Glutamatergic Neurons Modulate States of Consciousness during Sevoflurane Anesthesia in Mice. Anesthesiology 2024; 140:102-115. [PMID: 37812765 DOI: 10.1097/aln.0000000000004798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
BACKGROUND Multiple neural structures involved in maintaining wakefulness have been found to promote arousal from general anesthesia. The medial septum is a critical region that modulates arousal behavior. This study hypothesized that glutamatergic neurons in the medial septum play a crucial role in regulating states of consciousness during sevoflurane general anesthesia. METHODS Adult male mice were used in this study. The effects of sevoflurane anesthesia on neuronal activity were determined by fiber photometry. Lesions and chemogenetic manipulations were used to study the effects of the altered activity of medial septal glutamatergic neurons on anesthesia induction, emergence, and sensitivity to sevoflurane. Optogenetic stimulation was used to observe the role of acute activation of medial septal glutamatergic neurons on cortical activity and behavioral changes during sevoflurane-induced continuous steady state of general anesthesia and burst suppression state. RESULTS The authors found that medial septal glutamatergic neuronal activity decreased during sevoflurane anesthesia induction and recovered in the early period of emergence. Chemogenetic activation of medial septal glutamatergic neurons prolonged the induction time (mean ± SD, hM3Dq-clozapine N-oxide vs. hM3Dq-saline, 297.5 ± 60.1 s vs. 229.4 ± 29.9 s, P < 0.001, n = 11) and decreased the emergence time (53.2 ± 11.8 s vs. 77.5 ± 33.5 s, P = 0.025, n = 11). Lesions or chemogenetic inhibition of these neurons produced the opposite effects. During steady state of general anesthesia and deep anesthesia-induced burst suppression state, acute optogenetic activation of medial septal glutamatergic neurons induced cortical activation and behavioral emergence. CONCLUSIONS The study findings reveal that activation of medial septal glutamatergic neurons has arousal-promoting effects during sevoflurane anesthesia in male mice. The activation of these neurons prolongs the induction and accelerates the emergence of anesthesia. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Jun-Ming Xia
- Department of Anesthesiology, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Bing-Qian Fan
- Department of Anesthesiology, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China; Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiu-Wen Yi
- Department of Anesthesiology, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Wen-Wen Ni
- Department of Anesthesiology, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Yu Zhou
- Department of Anesthesiology, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Dan-Dan Chen
- Department of Anesthesiology, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Wen-Jing Yi
- Department of Anesthesiology, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Li-Li Feng
- Department of Anesthesiology, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Ying Xia
- Department of Anesthesiology, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Shuang-Shuang Li
- Department of Anesthesiology, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yuan Han
- Department of Anesthesiology, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wen-Xian Li
- Department of Anesthesiology, Eye and Ear, Nose, and Throat Hospital of Fudan University, Shanghai, China
| |
Collapse
|
4
|
Fan BQ, Xia JM, Chen DD, Feng LL, Ding JH, Li SS, Li WX, Han Y. Medial septum glutamatergic neurons modulate nociception in chronic neuropathic pain via projections to lateral hypothalamus. Front Pharmacol 2023; 14:1171665. [PMID: 37266154 PMCID: PMC10229799 DOI: 10.3389/fphar.2023.1171665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
The medial septum (MS) contributes in pain processing and regulation, especially concerning persistent nociception. However, the role of MS glutamatergic neurons in pain and the underlying neural circuit mechanisms in pain remain poorly understood. In this study, chronic constrictive injury of the sciatic nerve (CCI) surgery was performed to induce thermal and mechanical hyperalgesia in mice. The chemogenetic activation of MS glutamatergic neurons decreased pain thresholds in naïve mice. In contrast, inhibition or ablation of these neurons has improved nociception thresholds in naïve mice and relieved thermal and mechanical hyperalgesia in CCI mice. Anterograde viral tracing revealed that MS glutamatergic neurons had projections to the lateral hypothalamus (LH) and supramammillary nucleus (SuM). We further demonstrated that MS glutamatergic neurons regulate pain thresholds by projecting to LH but not SuM, because the inhibition of MS-LH glutamatergic projections suppressed pain thresholds in CCI and naïve mice, yet, optogenetic activation or inhibition of MS-SuM glutamatergic projections had no effect on pain thresholds in naïve mice. In conclusion, our results reveal that MS glutamatergic neurons play a significant role in regulating pain perception and decipher that MS glutamatergic neurons modulate nociception via projections to LH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuan Han
- *Correspondence: Yuan Han, ; Wen-Xian Li,
| |
Collapse
|
5
|
Peng Y, Yuan C, Zhang Y. The role of the basal forebrain in general anesthesia. IBRAIN 2022; 9:102-110. [PMID: 37786520 PMCID: PMC10529324 DOI: 10.1002/ibra.12082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 10/04/2023]
Abstract
The basal forebrain is a group of nerve nuclei on the ventral side of the ventral ganglion, composed of γ-aminobutyric acid neurons, glutamatergic neurons, cholinergic neurons, and orexigenic neurons. Previous studies have focused on the involvement of the basal forebrain in regulating reward, learning, movement, sleep-awakening, and other neurobiological behaviors, but its role in the regulation of general anesthesia has not been systematically elucidated. Therefore, the different neuronal subtypes in the basal forebrain and projection pathways in general anesthesia will be discussed in this paper. In this paper, we aim to determine and elaborate on the role of the basal forebrain in general anesthesia and the development of theoretical research and provide a new theory.
Collapse
Affiliation(s)
- Yi‐Ting Peng
- Department of AnethesiologyThe Second Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Cheng‐Dong Yuan
- Department of AnethesiologyThe Second Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| | - Yi Zhang
- Department of AnethesiologyThe Second Affiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiGuizhouChina
- School of AnesthesiologyZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
6
|
Zhai X, Yuan Y, Xu L, Jun J, Li Y, Yan Y, Zhang L. Cerebrospinal fluid contacting nucleus and its 5-HT: A new insight into the regulation mechanism of general intravenous anesthesia. Brain Res 2022; 1798:148168. [DOI: 10.1016/j.brainres.2022.148168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/08/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
|
7
|
Leung LS, Ma J. Medial Septum Modulates Consciousness and Psychosis-Related Behaviors Through Hippocampal Gamma Activity. Front Neural Circuits 2022; 16:895000. [PMID: 35874429 PMCID: PMC9301478 DOI: 10.3389/fncir.2022.895000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormally high-amplitude hippocampal gamma activity (30–100 Hz) in behaving animals is seen after a hippocampal seizure, following injection of phencyclidine (PCP) or ketamine, and transiently in a delirium stage during induction of general anesthesia. High-amplitude hippocampal gamma activity in behaving rats is associated with hyperactive behavior and impairment in sensorimotor gating and sensory gating. The medial septum is necessary for the high-amplitude gamma activity and abnormal behaviors observed following a hippocampal seizure or injection of PCP/ketamine. Glutamatergic projection of the hippocampus to the nucleus accumbens (NAC) and dopaminergic transmission in NAC is necessary for abnormal behaviors. Large hippocampal gamma waves are suggested to contribute to seizure-induced automatism following temporal lobe seizures, and the schizophrenia-like symptoms induced by PCP/ketamine. Low-amplitude gamma activity is found during general anesthesia, associated with loss of consciousness in humans and loss of righting reflex in animals. Local inactivation or lesion of the medial septum, NAC, and brain areas connected to the septohippocampal-NAC system attenuates the increase in hippocampal gamma and associated behavioral disruptions induced by hippocampal seizure or PCP/ketamine. Inactivation or lesion of the septohippocampal-NAC system decreases the dose of anesthetic necessary for gamma decrease and loss of consciousness in animals. Thus, it is proposed that the septohippocampal-NAC system serves to control consciousness and the behavioral hyperactivity and neural dysfunctions during psychosis.
Collapse
|
8
|
Yang Q, Zhou F, Li A, Dong H. Neural Substrates for Regulation of Sleep and General Anesthesia. Curr Neuropharmacol 2021; 20:72-84. [PMID: 34906058 PMCID: PMC9199549 DOI: 10.2174/1570159x19666211214144639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/09/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022] Open
Abstract
General anesthesia has been successfully used in clinics for over 170 years, but its mechanisms of effect remain unclear. Behaviorally, general anesthesia is similar to sleep as it produces a reversible transition between wakefulness and the state of being unaware of one’s surroundings. A discussion regarding the common circuits of sleep and general anesthesia has been ongoing as an increasing number of sleep-arousal regulatory nuclei are reported to participate in the consciousness shift occurring during general anesthesia. Recently, with progress in research technology, both positive and negative evidence for overlapping neural circuits between sleep and general anesthesia has emerged. This article provides a review of the latest evidence on the neural substrates for sleep and general anesthesia regulation by comparing the roles of pivotal nuclei in sleep and anesthesia.
Collapse
Affiliation(s)
- Qianzi Yang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an. China
| | - Fang Zhou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an. China
| | - Ao Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an. China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an. China
| |
Collapse
|
9
|
Takeuchi Y, Nagy AJ, Barcsai L, Li Q, Ohsawa M, Mizuseki K, Berényi A. The Medial Septum as a Potential Target for Treating Brain Disorders Associated With Oscillopathies. Front Neural Circuits 2021; 15:701080. [PMID: 34305537 PMCID: PMC8297467 DOI: 10.3389/fncir.2021.701080] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
The medial septum (MS), as part of the basal forebrain, supports many physiological functions, from sensorimotor integration to cognition. With often reciprocal connections with a broad set of peers at all major divisions of the brain, the MS orchestrates oscillatory neuronal activities throughout the brain. These oscillations are critical in generating sensory and emotional salience, locomotion, maintaining mood, supporting innate anxiety, and governing learning and memory. Accumulating evidence points out that the physiological oscillations under septal influence are frequently disrupted or altered in pathological conditions. Therefore, the MS may be a potential target for treating neurological and psychiatric disorders with abnormal oscillations (oscillopathies) to restore healthy patterns or erase undesired ones. Recent studies have revealed that the patterned stimulation of the MS alleviates symptoms of epilepsy. We discuss here that stimulus timing is a critical determinant of treatment efficacy on multiple time scales. On-demand stimulation may dramatically reduce side effects by not interfering with normal physiological functions. A precise pattern-matched stimulation through adaptive timing governed by the ongoing oscillations is essential to effectively terminate pathological oscillations. The time-targeted strategy for the MS stimulation may provide an effective way of treating multiple disorders including Alzheimer's disease, anxiety/fear, schizophrenia, and depression, as well as pain.
Collapse
Affiliation(s)
- Yuichi Takeuchi
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Anett J. Nagy
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Lívia Barcsai
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Qun Li
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
| | - Masahiro Ohsawa
- Department of Neuropharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kenji Mizuseki
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Antal Berényi
- MTA-SZTE ‘Momentum’ Oscillatory Neuronal Networks Research Group, Department of Physiology, University of Szeged, Szeged, Hungary
- Neurocybernetics Excellence Center, University of Szeged, Szeged, Hungary
- HCEMM-USZ Magnetotherapeutics Research Group, University of Szeged, Szeged, Hungary
- Neuroscience Institute, New York University, New York, NY, United States
| |
Collapse
|
10
|
Wang L, Zhang W, Wu Y, Gao Y, Sun N, Ding H, Ren J, Yu L, Wang L, Yang F, Xi W, Yan M. Cholinergic-Induced Specific Oscillations in the Medial Prefrontal Cortex to Reverse Propofol Anesthesia. Front Neurosci 2021; 15:664410. [PMID: 34121993 PMCID: PMC8187623 DOI: 10.3389/fnins.2021.664410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/13/2021] [Indexed: 11/23/2022] Open
Abstract
General anesthesia is a drug-induced reversible state comprised of altered states of consciousness, amnesia, analgesia, and immobility. The medial frontal cortex (mPFC) has been discovered to modulate the level of consciousness through cholinergic and glutamatergic pathways. The optogenetic tools combined with in vivo electrophysiological recording were used to study the neural oscillatory modulation mechanisms in mPFC underlying the loss of consciousness (LOC) and emergence. We found that optogenetic activation of both cholinergic and glutamatergic neurons in the basal forebrain (BF) reversed the hypnotic effect of propofol and accelerated the emergence from propofol-induced unconsciousness. The cholinergic light-activation during propofol anesthesia increased the power in the β (12–20 Hz) and low γ (20–30 Hz) bands. Conversely, glutamatergic activation increased the power at less specific broad (1–150 Hz) bands. The cholinergic-induced alteration to specific power bands after LOC had opposite effects to that of propofol. These results suggested that the cholinergic system might act on more specific cortical neural circuits related to propofol anesthesia.
Collapse
Affiliation(s)
- Lieju Wang
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weijie Zhang
- Department of Anesthesiology, Interdisciplinary Institute of Neuroscience and Technology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Wu
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yibo Gao
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Na Sun
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Ding
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinxuan Ren
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lina Yu
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liangliang Wang
- Department of Anesthesiology, Interdisciplinary Institute of Neuroscience and Technology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fen Yang
- Department of Anesthesiology, Interdisciplinary Institute of Neuroscience and Technology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wang Xi
- Department of Anesthesiology, Interdisciplinary Institute of Neuroscience and Technology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Min Yan
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
An S, Sun H, Wu M, Xie D, Hu SW, Ding HL, Cao JL. Medial septum glutamatergic neurons control wakefulness through a septo-hypothalamic circuit. Curr Biol 2021; 31:1379-1392.e4. [DOI: 10.1016/j.cub.2021.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/04/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
|
12
|
Taksokhan A, Fraigne J, Peever J. Neuroscience: Glutamate neurons in the medial septum control wakefulness. Curr Biol 2021; 31:R340-R342. [PMID: 33848488 DOI: 10.1016/j.cub.2021.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite intensive research efforts, biologists still do not have a clear picture of the brain circuitry that controls behavioural arousal. However, new research has identified a novel septo-hypothalamic circuit that functions to promote wakefulness.
Collapse
Affiliation(s)
- Anita Taksokhan
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Jimmy Fraigne
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - John Peever
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
13
|
Luo TY, Cai S, Qin ZX, Yang SC, Shu Y, Liu CX, Zhang Y, Zhang L, Zhou L, Yu T, Yu SY. Basal Forebrain Cholinergic Activity Modulates Isoflurane and Propofol Anesthesia. Front Neurosci 2020; 14:559077. [PMID: 33192246 PMCID: PMC7652994 DOI: 10.3389/fnins.2020.559077] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Cholinergic neurons in the basal forebrain (BF) have long been considered to be the key neurons in the regulation of cortical and behavioral arousal, and cholinergic activation in the downstream region of the BF can arouse anesthetized rats. However, whether the activation of BF cholinergic neurons can induce behavior and electroencephalogram (EEG) recovery from anesthesia is unclear. In this study, based on a transgenic mouse line expressing ChAT-IRES-Cre, we applied a fiber photometry system combined with GCaMPs expression in the BF and found that both isoflurane and propofol inhibit the activity of BF cholinergic neurons, which is closely related to the consciousness transition. We further revealed that genetic lesion of BF cholinergic neurons was associated with a markedly increased potency of anesthetics, while designer receptor exclusively activated by designer drugs (DREADD)-activated BF cholinergic neurons was responsible for slower induction and faster recovery of anesthesia. We also documented a significant increase in δ power bands (1-4 Hz) and a decrease in β (12-25 Hz) power bands in BF cholinergic lesioned mice, while there was a clearly noticeable decline in EEG δ power of activated BF cholinergic neurons. Moreover, sensitivity to anesthetics was reduced after optical stimulation of BF cholinergic cells, yet it failed to restore wake-like behavior in constantly anesthetized mice. Our results indicate a functional role of BF cholinergic neurons in the regulation of general anesthesia. Inhibition of BF cholinergic neurons mediates the formation of unconsciousness induced by general anesthetics, and their activation promotes recovery from the anesthesia state.
Collapse
Affiliation(s)
- Tian-Yuan Luo
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi, China
| | - Shuang Cai
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Zai-Xun Qin
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi, China
| | - Shao-Cheng Yang
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Yue Shu
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Cheng-Xi Liu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi, China
| | - Yu Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi, China
| | - Lin Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi, China
| | - Liang Zhou
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Tian Yu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi, China.,Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Shou-Yang Yu
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| |
Collapse
|
14
|
Abstract
The neural mechanisms of sleep, a fundamental biological behavior from invertebrates to humans, have been a long-standing mystery and present an enormous challenge. Gradually, perspectives on the neurobiology of sleep have been more various with the technical innovations over the recent decades, and studies have now identified many specific neural circuits that selectively regulate the initiation and maintenance of wake, rapid eye movement (REM) sleep, and non-REM (NREM) sleep. The cholinergic system in basal forebrain (BF) that fire maximally during waking and REM sleep is one of the key neuromodulation systems related to waking and REM sleep. Here we outline the recent progress of the BF cholinergic system in sleep-wake cycle. The intricate local connectivity and multiple projections to other cortical and subcortical regions of the BF cholinergic system elaborately presented here form a conceptual framework for understanding the coordinating effects with the dissecting regions. This framework also provides evidences regarding the relationships between the general anesthesia and wakefulness/sleep cycle focusing on the neural circuitry of unconsciousness induced by anesthetic drugs.
Collapse
|
15
|
Neural pathways in medial septal cholinergic modulation of chronic pain: distinct contribution of the anterior cingulate cortex and ventral hippocampus. Pain 2018; 159:1550-1561. [DOI: 10.1097/j.pain.0000000000001240] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Fu B, Yu T, Yuan J, Gong X, Zhang M. Noradrenergic transmission in the central medial thalamic nucleus modulates the electroencephalographic activity and emergence from propofol anesthesia in rats. J Neurochem 2017; 140:862-873. [DOI: 10.1111/jnc.13939] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Bao Fu
- Department of Anesthesiology; Shanghai Children's Medical Center; Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection; Zunyi Medical University; Zunyi Guizhou China
| | - Jie Yuan
- Department of Anesthesiology; Shanghai Children's Medical Center; Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Xingrui Gong
- Department of Anesthesiology; Shanghai Children's Medical Center; Shanghai Jiaotong University School of Medicine; Shanghai China
| | - Mazhong Zhang
- Department of Anesthesiology; Shanghai Children's Medical Center; Shanghai Jiaotong University School of Medicine; Shanghai China
| |
Collapse
|
17
|
Gill RS, Mirsattari SM, Leung LS. Resting state functional network disruptions in a kainic acid model of temporal lobe epilepsy. Neuroimage Clin 2016; 13:70-81. [PMID: 27942449 PMCID: PMC5133653 DOI: 10.1016/j.nicl.2016.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 10/19/2016] [Accepted: 11/01/2016] [Indexed: 12/16/2022]
Abstract
We studied the graph topological properties of brain networks derived from resting-state functional magnetic resonance imaging in a kainic acid induced model of temporal lobe epilepsy (TLE) in rats. Functional connectivity was determined by temporal correlation of the resting-state Blood Oxygen Level Dependent (BOLD) signals between two brain regions during 1.5% and 2% isoflurane, and analyzed as networks in epileptic and control rats. Graph theoretical analysis revealed a significant increase in functional connectivity between brain areas in epileptic than control rats, and the connected brain areas could be categorized as a limbic network and a default mode network (DMN). The limbic network includes the hippocampus, amygdala, piriform cortex, nucleus accumbens, and mediodorsal thalamus, whereas DMN involves the medial prefrontal cortex, anterior and posterior cingulate cortex, auditory and temporal association cortex, and posterior parietal cortex. The TLE model manifested a higher clustering coefficient, increased global and local efficiency, and increased small-worldness as compared to controls, despite having a similar characteristic path length. These results suggest extensive disruptions in the functional brain networks, which may be the basis of altered cognitive, emotional and psychiatric symptoms in TLE.
Collapse
Affiliation(s)
- Ravnoor Singh Gill
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada
- Department of Physiology & Pharmacology, Western University, London, Ontario, Canada
| | - Seyed M. Mirsattari
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada
- Clinical Neurological Sciences, Western University, London, Ontario, Canada
- Department of Biomedical Imaging, Western University, London, Ontario, Canada
- Department of Biomedical Physics, Western University, London, Ontario, Canada
- Department of Psychology, Western University, London, Ontario, Canada
| | - L. Stan Leung
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada
- Department of Physiology & Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
18
|
Butorphanol suppression of histamine itch is mediated by nucleus accumbens and septal nuclei: a pharmacological fMRI study. J Invest Dermatol 2014; 135:560-568. [PMID: 25211175 PMCID: PMC4289457 DOI: 10.1038/jid.2014.398] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/06/2014] [Accepted: 08/29/2014] [Indexed: 01/14/2023]
Abstract
Opioid receptors in the central nervous system are important modulators of itch transmission. In this study, we examined the effect of mixed-action opioid butorphanol on histamine itch, cowhage itch and heat pain in healthy volunteers. Using functional MRI, we investigated significant changes in cerebral perfusion to identify the critical brain centers mediating the antipruritic effect of butorphanol. Butorphanol suppressed the itch induced experimentally with histamine, reduced the intensity of cowhage itch by approximately 35%, and did not affect heat pain sensitivity. In comparison with the placebo, butorphanol produced a bilateral deactivation of claustrum, insula and putamen, areas activated during itch processing. Analysis of cerebral perfusion patterns of brain processing of itch vs. itch inhibition under the effect of the drug, revealed that the reduction of cowhage itch by butorphanol was correlated with changes in cerebral perfusion in the midbrain, thalamus, S1, insula and cerebellum. The suppression of histamine itch by butorphanol was paralleled by the activation of nucleus accumbens and septal nuclei, structures expressing high levels of kappa opioid receptors. In conclusion, important relays of the mesolimbic circuit were involved in the inhibition of itch by butorphanol and could represent potential targets for the development of antipruritic therapy.
Collapse
|
19
|
Leung LS, Luo T, Ma J, Herrick I. Brain areas that influence general anesthesia. Prog Neurobiol 2014; 122:24-44. [PMID: 25172271 DOI: 10.1016/j.pneurobio.2014.08.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/03/2014] [Accepted: 08/19/2014] [Indexed: 10/24/2022]
Abstract
This document reviews the literature on local brain manipulation of general anesthesia in animals, focusing on behavioral and electrographic effects related to hypnosis or loss of consciousness. Local inactivation or lesion of wake-active areas, such as locus coeruleus, dorsal raphe, pedunculopontine tegmental nucleus, perifornical area, tuberomammillary nucleus, ventral tegmental area and basal forebrain, enhanced general anesthesia. Anesthesia enhancement was shown as a delayed emergence (recovery of righting reflex) from anesthesia or a decrease in the minimal alveolar concentration that induced loss of righting. Local activation of various wake-active areas, including pontis oralis and centromedial thalamus, promoted behavioral or electrographic arousal during maintained anesthesia and facilitated emergence. Lesion of the sleep-active ventrolateral preoptic area resulted in increased wakefulness and decreased isoflurane sensitivity, but only for 6 days after lesion. Inactivation of any structure within limbic circuits involving the medial septum, hippocampus, nucleus accumbens, ventral pallidum, and ventral tegmental area, amygdala, entorhinal and piriform cortex delayed emergence from anesthesia, and often reduced anesthetic-induced behavioral excitation. In summary, the concept that anesthesia works on the sleep-wake system has received strong support from studies that inactivated/lesioned or activated wake-active areas, and weak support from studies that lesioned sleep-active areas. In addition to the conventional wake-sleep areas, limbic structures such as the medial septum, hippocampus and prefrontal cortex are also involved in the behavioral response to general anesthesia. We suggest that hypnosis during general anesthesia may result from disrupting the wake-active neuronal activities in multiple areas and suppressing an atropine-resistant cortical activation associated with movements.
Collapse
Affiliation(s)
- L Stan Leung
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada N6A 5C1.
| | - Tao Luo
- Department of Anesthesiology, Peking University, Shenzhen Hospital, China
| | - Jingyi Ma
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| | - Ian Herrick
- Department of Anaesthesiology and Perioperative Medicine, The University of Western Ontario, London, Ontario, Canada N6A 5C1
| |
Collapse
|
20
|
Abstract
Abstract
Background:
Cholinergic drugs are known to modulate the response of general anesthesia. However, the sensitivity of isoflurane or other volatile anesthetics after selective lesion of septal cholinergic neurons that project to the hippocampus is not known.
Methods:
Male Long Evans rats had 192 immunoglobulin G-saporin infused into the medial septum (n = 10), in order to selectively lesion cholinergic neurons, whereas control, sham-lesioned rats were infused with saline (n = 12). Two weeks after septal infusion, the hypnotic properties of isoflurane and ketamine were measured using a behavioral endpoint of loss of righting reflex (LORR). Septal lesion was assessed by counting choline acetyltransferase–immunoreactive cells and parvalbumin-immunoreactive cells.
Results:
Rats with 192 immunoglobulin G-saporin lesion, as compared with control rats with sham lesion, showed a 85% decrease in choline acetyltransferase–immunoreactive, but not parvalbumin–immunoreactive, neurons in the medial septal area. Lesioned as compared with control rats showed increased isoflurane sensitivity, characterized by a leftward shift of the graph plotting cumulative LORR percent with isoflurane dose. However, lesioned and control rats were not different in their LORR sensitivity to ketamine. When administered with 1.375% isoflurane, LORR induction time was shorter, whereas emergence time was longer, in lesioned as compared with control rats. Hippocampal 62–100 Hz gamma power in the electroencephalogram decreased with isoflurane dose, with a decrease that was greater in lesioned (n = 5) than control rats (n = 5).
Conclusions:
These findings suggest a role of the septal cholinergic neurons in modulating the sensitivity to isoflurane anesthesia, which affects both induction and emergence. The sensitivity of hippocampal gamma power to isoflurane appears to indicate anesthesia (LORR) sensitivity.
Collapse
|
21
|
McCarren HS, Moore JT, Kelz MB. Assessing changes in volatile general anesthetic sensitivity of mice after local or systemic pharmacological intervention. J Vis Exp 2013:e51079. [PMID: 24192721 DOI: 10.3791/51079] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
One desirable endpoint of general anesthesia is the state of unconsciousness, also known as hypnosis. Defining the hypnotic state in animals is less straightforward than it is in human patients. A widely used behavioral surrogate for hypnosis in rodents is the loss of righting reflex (LORR), or the point at which the animal no longer responds to their innate instinct to avoid the vulnerability of dorsal recumbency. We have developed a system to assess LORR in 24 mice simultaneously while carefully controlling for potential confounds, including temperature fluctuations and varying gas flows. These chambers permit reliable assessment of anesthetic sensitivity as measured by latency to return of the righting reflex (RORR) following a fixed anesthetic exposure. Alternatively, using stepwise increases (or decreases) in anesthetic concentration, the chambers also enable determination of a population's sensitivity to induction (or emergence) as measured by EC50 and Hill slope. Finally, the controlled environmental chambers described here can be adapted for a variety of alternative uses, including inhaled delivery of other drugs, toxicology studies, and simultaneous real-time monitoring of vital signs.
Collapse
Affiliation(s)
- Hilary S McCarren
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania
| | | | | |
Collapse
|