1
|
Wang C, Guo X, Wang Y, Wang H. Silencing of miR-324-5p alleviates rat spinal cord injury by Sirt1. Neurosci Res 2021; 173:34-43. [PMID: 34051279 DOI: 10.1016/j.neures.2021.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/24/2021] [Accepted: 05/23/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are implicated in the pathogenesis of spinal cord injury (SCI) as primary regulators. Previous studies have reported that miR-324-5p is involved in the modulation of neural injury, while the underlying mechanisms of miR-324-5p in SCI remain unclear. In a SCI rat model, miR-324-5p was significantly upregulated in the spinal cord tissues after SCI. Downregulation of miR-324-5p via injection of adeno-associated viruses (AAV) expressing miR-324-5p inhibitor relieved animal motor deficits and pathological changes in the tissues. Furthermore, downregulation of miR-324-5p significantly altered the expression of genes regulating neural growth, apoptosis, and the inflammatory and antioxidant response, which are implicated in SCI pathogenesis. In a H2O2-induced cell injury model, miR-324-5p silencing rescued the elevated apoptosis of PC12 cells. Finally, miR-324-5p directly targeted the 3'-untranslated region of NAD-dependent protein deacetylase sirtuin-1 (Sirt1) and negatively regulated the levels of Sirt1, an anti-inflammatory protein involved in SCI. Silencing of Sirt1 aggravated SCI and rescued the effects of miR-324-5p downregulation in rats. Overall, our findings indicated that silencing of miR-324-5p alleviates the loss of animal locomotion and concurrently mediates several degenerative processes relevant to the pathogenesis of SCI by Sirt1, which may provide clues for SCI treatment.
Collapse
Affiliation(s)
- Chuanbao Wang
- Department of Orthopedics, Yantai Mountain Hospital, Yangtai, 264001, Shandong, China.
| | - Xiuli Guo
- Department of Gerontology, Yantai Mountain Hospital, Yangtai, 264001, Shandong, China
| | - Ying Wang
- Department of Neurology, Yantai Mountain Hospital, Yangtai, 264001, Shandong, China
| | - Hai Wang
- Department of Orthopedics, Yantai Mountain Hospital, Yangtai, 264001, Shandong, China
| |
Collapse
|
2
|
Alteration of glycinergic receptor expression in lumbar spinal motoneurons is involved in the mechanisms underlying spasticity after spinal cord injury. J Chem Neuroanat 2020; 106:101787. [PMID: 32339654 DOI: 10.1016/j.jchemneu.2020.101787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
Spasticity is a disabling motor disorder affecting 70% of people with brain and spinal cord injury. The rate-dependent depression (RDD) of the H reflex is the only electrophysiological measurement correlated with the degree of spasticity assessed clinically in spastic patients. Several lines of evidence suggest that the mechanism underlying the H reflex RDD depends on the strength of synaptic inhibition through GABAA (GABAAR) and glycine receptors (GlyR). In adult rats with spinal cord transection (SCT), we studied the time course of the expression of GABAAR and GlyR at the membrane of retrogradely identified Gastrocnemius and Tibialis anterior motoneurons (MNs) 3, 8 and 16 weeks after injury, and measured the RDD of the H reflex at similar post lesion times. Three weeks after SCT, a significant decrease in the expression of GABAA and GlyR was observed compared to intact rats, and the H-reflex RDD was much less pronounced than in controls. Eight weeks after SCT, GlyR values returned to normal. Simultaneously, we observed a tendency to recover normal RDD of the H reflex at higher frequencies. We tested whether an anti-inflammatory treatment using methylprednisolone performed immediately after SCT could prevent alterations in GABAA/glycine receptors and/or the development of spasticity observed 3 weeks after injury. This treatment restored control levels of GlyR but not the expression of GABAAR, and it completely prevented the attenuation of RDD. These data strongly suggest that alteration of glycinergic inhibition of lumbar MNs is involved in the mechanisms underlying spasticity after SCI.
Collapse
|
3
|
Sun J, Zhang J, Li K, Zheng Q, Song J, Liang Z, Ding T, Qiao L, Zhang J, Hu X, Wang Z. Photobiomodulation Therapy Inhibit the Activation and Secretory of Astrocytes by Altering Macrophage Polarization. Cell Mol Neurobiol 2020; 40:141-152. [PMID: 31446561 DOI: 10.1007/s10571-019-00728-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022]
Abstract
Spinal cord injury (SCI) stimulates reactive astrogliosis and the infiltration of macrophages, which interact with each other at the injured area. We previously found Photobiomodulation (PBM) significantly decreases the number of M1 macrophages at the injured area of SCI. But the exact nature of the astrocyte response following PBM and relationship with the macrophage have not been explored in detail. In this study, a BALB/c mice model with standardized bilateral spinal cord compression and a macrophage-astrocyte co-culture model were applied to study effects of PBM on astrocytes. Results showed that PBM inhibit the expression of the astrocyte markers glial fibrillary acidic protein (GFAP) and the secretion of chondroitin sulfate proteoglycans (CSPG) in the para-epicenter area, decrease the number of M1 macrophage in vivo. The in vitro experiments indicated M1 macrophages promote the cell viability of astrocytes and the expression of CSPG. However, PBM significantly inhibited the expression of GFAP, decreased activation of astrocyte, and downregulated the expression of CSPG by regulating M1 macrophages. These results demonstrate that PBM may regulate the interaction between macrophages and astrocytes after spinal cord injury, which inhibited the formation of glial scar.
Collapse
Affiliation(s)
- Jiakai Sun
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi'an, 710032, Shaanxi, China
| | - Jiawei Zhang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi'an, 710032, Shaanxi, China
| | - Kun Li
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi'an, 710032, Shaanxi, China
| | - Qiao Zheng
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi'an, 710032, Shaanxi, China
| | - Jiwei Song
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi'an, 710032, Shaanxi, China
| | - Zhuowen Liang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi'an, 710032, Shaanxi, China
| | - Tan Ding
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi'an, 710032, Shaanxi, China
| | - Lin Qiao
- Department of Orthopedics, Third Hospital of Chinese PLA, Baoji, Shaanxi, China
| | - Jianxin Zhang
- Department of Orthopedics, Weinan Central Hospital, Weinan, Shaanxi, China
| | - Xueyu Hu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi'an, 710032, Shaanxi, China.
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
4
|
Xie XK, Xu ZK, Xu K, Xiao YX. DUSP19 mediates spinal cord injury-induced apoptosis and inflammation in mouse primary microglia cells via the NF-kB signaling pathway. Neurol Res 2019; 42:31-38. [PMID: 31813339 DOI: 10.1080/01616412.2019.1685068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Objective: Spinal cord injury (SCI) is a common injury that seriously threatens human health. NF-κB may be involved in the secondary injury of SCI that is mediated by inflammation and aggravates damage. Our study was aimed to investigate the role of NF-κB signaling in DUSP19-mediated cleaved Caspase-3 expression and the release of inflammatory factors in vivo and in vitro.Materials and Methods: DUSP19 mRNA expression and the content of IL-6 and IL-8 in patients with traumatic SCI (TSCI) were measured by real-time PCR and ELISA, respectively. The levels of p-NF-κBp65, NF-κBp65 and cleaved Caspase-3 expression and the concentrations of IL-6 and IL-8 were measured by western blotting and ELISA, respectively.Results: Patients with TSCI showed lower DUSP19 expression and higher concentration of IL-6 and IL-8 compared with healthy controls. DUSP19 overexpression inhibited p-NF-κBp65 level, cleaved Caspase-3 expression, and production of IL-8 and IL-6 in the mice induced by TSCI. DUSP19 silencing increased p-NF-κBp65 level, cleaved Caspase-3 expression, and concentration of IL-6 and IL-8 in mouse primary microglia cells. DUSP19 overexpression had an inverse effect. Importantly, DUSP19 silencing and overexpression mediated p-NF-κBp65 level, cleaved Caspase-3 expression, and concentration of IL-6 and IL-8 in mouse primary microglia cells were reversed by NF-κB inhibitor pyrrolidine dithiocarbamate (PDTC) and NF-κB activator 12-myristate 13-acetate (PMA), respectively.Conclusion: These results suggested that DUSP19-mediated SCI-induced apoptosis and inflammation via NF-κB signaling and might therefore serve as a potential therapeutic target for SCI.
Collapse
Affiliation(s)
- Xian-Kuan Xie
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hang Zhou, Zhejiang, PR China
| | - Zheng-Kuan Xu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hang Zhou, Zhejiang, PR China
| | - Kan Xu
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hang Zhou, Zhejiang, PR China
| | - Yu-Xiang Xiao
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hang Zhou, Zhejiang, PR China
| |
Collapse
|
5
|
Management of the Spinal Cord Injury in the Neurocritical Care Unit. Neurocrit Care 2019. [DOI: 10.1017/9781107587908.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Stamegna JC, Sadelli K, Escoffier G, Girard SD, Veron AD, Bonnet A, Khrestchatisky M, Gauthier P, Roman FS. Grafts of Olfactory Stem Cells Restore Breathing and Motor Functions after Rat Spinal Cord Injury. J Neurotrauma 2018; 35:1765-1780. [PMID: 29357739 DOI: 10.1089/neu.2017.5383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The transplantation of olfactory ecto-mesenchymal stem cells (OEMSCs) could be a helpful therapeutic strategy for spinal cord repair. Using an acute rat model of high cervical contusion that provokes a persistent hemidiaphragmatic and foreleg paralysis, we evaluated the therapeutic effect of a delayed syngeneic transplantation (two days post-contusion) of OEMSCs within the injured spinal cord. Respiratory function was assessed using diaphragmatic electromyography and neuroelectrophysiological recordings of phrenic nerves (innervating the diaphragm). Locomotor function was evaluated using the ladder-walking locomotor test. Cellular reorganization in the injured area was also studied using immunohistochemical and microscopic techniques. We report a substantial improvement in breathing movements, in activities of the ipsilateral phrenic nerve and ipsilateral diaphragm, and also in locomotor abilities four months post-transplantation with nasal OEMSCs. Moreover, in the grafted spinal cord, axonal disorganization and inflammation were reduced. Some grafted stem cells adopted a neuronal phenotype, and axonal sparing was observed in the injury site. The therapeutic effect on the supraspinal command is presumably because of both neuronal replacements and beneficial paracrine effects on the injury area. Our study provides evidence that nasal OEMSCs could be a first step in clinical application, particularly in patients with reduced breathing/locomotor movements.
Collapse
Affiliation(s)
- Jean-Claude Stamegna
- 1 Institut de Neurophysiopathologie, Aix-Marseille Université , Marseille, France
| | - Kevin Sadelli
- 1 Institut de Neurophysiopathologie, Aix-Marseille Université , Marseille, France
| | - Guy Escoffier
- 1 Institut de Neurophysiopathologie, Aix-Marseille Université , Marseille, France
| | - Stéphane D Girard
- 1 Institut de Neurophysiopathologie, Aix-Marseille Université , Marseille, France
| | - Antoine D Veron
- 1 Institut de Neurophysiopathologie, Aix-Marseille Université , Marseille, France .,2 IRSEA, Research Institute in Semiochemistry and Applied Ethology , Apt, France
| | - Amandine Bonnet
- 1 Institut de Neurophysiopathologie, Aix-Marseille Université , Marseille, France
| | | | - Patrick Gauthier
- 3 Laboratoire de Neurosciences et Cognitives, Aix-Marseille Université , Marseille, France
| | - François S Roman
- 1 Institut de Neurophysiopathologie, Aix-Marseille Université , Marseille, France
| |
Collapse
|
7
|
Lapuente-Chala C, Céspedes-Rubio A. Biochemical events related to glial response in spinal cord injury. REVISTA DE LA FACULTAD DE MEDICINA 2018. [DOI: 10.15446/revfacmed.v66n2.61701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Introducción. La lesión de la médula espinal (LME) es un evento devastador con implicaciones físicas, psicológicas y socioeconómicas. En el tejido cercano a la lesión se instauran cambios morfofisiológicos que determinan la recuperación funcional del segmento medular y de los órganos efectores dependientes de los tractos axonales lesionados.Objetivo. Describir los eventos bioquímicos secuenciales más relevantes de la respuesta de las células gliales posterior a la LME.Materiales y métodos. Se realizó una búsqueda de publicaciones científicas de los últimos 18 años en las bases de datos PubMed y ScienceDirect, bajo los términos en inglés spinal cord injury (SCI), SCI pathophysiology, SCI inflammation, microglia in SCI, glial scar y chondroitin sulfate proteoglycans (CSPG).Resultados. Los procesos fisiopatológicos que se producen después de la LME determinan la recuperación neurológica de los pacientes. La activación de las células gliales juega un papel importante, ya que promueve la producción de moléculas bioactivas y la formación de barreras físicas que inhiben la regeneración neural.Conclusión. El conocimiento de los cambios neurobiológicos ocurridos tras la LME permite una mayor comprensión de la fisiopatología y favorece la búsqueda de nuevas alternativas terapéuticas que limiten la progresión de la lesión primaria y que minimicen el daño secundario responsable de la disfunción neurológica.
Collapse
|
8
|
Wang CH, Zhu LL, Ju KF, Liu JL, Li KP. Anti-inflammatory effect of delphinidin on intramedullary spinal pressure in a spinal cord injury rat model. Exp Ther Med 2017; 14:5583-5588. [PMID: 29285096 DOI: 10.3892/etm.2017.5206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 11/25/2016] [Indexed: 12/23/2022] Open
Abstract
Delphinidin, a flavonoid polyphenolic compound, is widely found in nature and is used as a food supplement due to its pharmacological activity. The aims of the present study were to examine the anti-inflammatory effect of delphinidin in alleviating spinal cord injury (SCI)-induced inflammation in a rat model and to determine the underlying mechanisms in SCI. The Basso, Beattie, Bresnahan (BBB) scores of rats were assessed to evaluate the effect of delphinidin on the recovery of motor function. ELISA kits were also used to analyze the activities of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2) and caspase-3. In addition, the protein expression levels of nuclear factor (NF)-κB, activator protein 1 (AP-1) and p38-MAPK protein expression were measured using western blot analysis. Treatment with delphinidin significantly increased the BBB scores, as well as inhibited the intramedullary spinal pressure in SCI rats. Delphinidin treatment also significantly suppressed the levels of inflammatory factors and NF-κB protein expression in SCI rats. Finally, treatment with delphinidin significantly inhibited NF-κB stimulation, COX-2 activity, PGE2 production, and AP-1 and p38-MAPK protein expression in SCI rats. These results suggest that the anti-inflammatory effect of delphinidin alleviated inflammation in the SCI rat model via alleviation of the intramedullary spinal pressure through the NF-κB and p38-MAPK signaling pathways.
Collapse
Affiliation(s)
- Cheng-Hu Wang
- Department of Orthopedics, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Lin-Lin Zhu
- Department of Orthopedics, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Ke-Feng Ju
- Department of Orthopedics, Weifang Cancer Hospital The Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261000, P.R. China
| | - Jin-Long Liu
- Department of Orthopedics, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| | - Kun-Peng Li
- Department of Orthopedics, Liaocheng People's Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
9
|
Yang C, Li X, Sun L, Guo W, Tian W. Potential of human dental stem cells in repairing the complete transection of rat spinal cord. J Neural Eng 2017; 14:026005. [PMID: 28085005 DOI: 10.1088/1741-2552/aa596b] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Pomeshchik Y, Kidin I, Korhonen P, Savchenko E, Jaronen M, Lehtonen S, Wojciechowski S, Kanninen K, Koistinaho J, Malm T. Interleukin-33 treatment reduces secondary injury and improves functional recovery after contusion spinal cord injury. Brain Behav Immun 2015; 44:68-81. [PMID: 25153903 DOI: 10.1016/j.bbi.2014.08.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/11/2014] [Accepted: 08/12/2014] [Indexed: 12/29/2022] Open
Abstract
Interleukin-33 (IL-33) is a member of the interleukin-1 cytokine family and highly expressed in the naïve mouse brain and spinal cord. Despite the fact that IL-33 is known to be inducible by various inflammatory stimuli, its cellular localization in the central nervous system and role in pathological conditions is controversial. Administration of recombinant IL-33 has been shown to attenuate experimental autoimmune encephalomyelitis progression in one study, yet contradictory reports also exist. Here we investigated for the first time the pattern of IL-33 expression in the contused mouse spinal cord and demonstrated that after spinal cord injury (SCI) IL-33 was up-regulated and exhibited a nuclear localization predominantly in astrocytes. Importantly, we found that treatment with recombinant IL-33 alleviated secondary damage by significantly decreasing tissue loss, demyelination and astrogliosis in the contused mouse spinal cord, resulting in dramatically improved functional recovery. We identified both central and peripheral mechanisms of IL-33 action. In spinal cord, IL-33 treatment reduced the expression of pro-inflammatory tumor necrosis factor-alpha and promoted the activation of anti-inflammatory arginase-1 positive M2 microglia/macrophages, which chronically persisted in the injured spinal cord for up to at least 42 days after the treatment. In addition, IL-33 treatment showed a tendency towards reduced T-cell infiltration into the spinal cord. In the periphery, IL-33 treatment induced a shift towards the Th2 type cytokine profile and reduced the percentage and absolute number of cytotoxic, tumor necrosis factor-alpha expressing CD4+ cells in the spleen. Additionally, IL-33 treatment increased expression of T-regulatory cell marker FoxP3 and reduced expression of M1 marker iNOS in the spleen. Taken together, these results provide the first evidence that IL-33 administration is beneficial after CNS trauma. Treatment with IL33 may offer a novel therapeutic strategy for patients with acute contusion SCI.
Collapse
Affiliation(s)
- Yuriy Pomeshchik
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Iurii Kidin
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Paula Korhonen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Ekaterina Savchenko
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Merja Jaronen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Sarka Lehtonen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Sara Wojciechowski
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Katja Kanninen
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Jari Koistinaho
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.
| | - Tarja Malm
- Department of Neurobiology, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
11
|
Liu D, Huang Y, Li B, Jia C, Liang F, Fu Q. Carvedilol promotes neurological function, reduces bone loss and attenuates cell damage after acute spinal cord injury in rats. Clin Exp Pharmacol Physiol 2015; 42:202-12. [PMID: 25424914 DOI: 10.1111/1440-1681.12345] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/04/2014] [Accepted: 11/11/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Da Liu
- Department of Orthopaedic Surgery; Shengjing Hospital of China Medical University; Shenyang China
| | - Ying Huang
- Department of Ultrasound; Shengjing Hospital of China Medical University; Shenyang China
| | - Bin Li
- Department of Orthopaedic Surgery; Shengjing Hospital of China Medical University; Shenyang China
| | - Changqing Jia
- Department of Orthopaedic Surgery; Shengjing Hospital of China Medical University; Shenyang China
| | - Feng Liang
- Department of Orthopaedic Surgery; Shengjing Hospital of China Medical University; Shenyang China
| | - Qin Fu
- Department of Orthopaedic Surgery; Shengjing Hospital of China Medical University; Shenyang China
| |
Collapse
|
12
|
Wagner AK. A Rehabilomics framework for personalized and translational rehabilitation research and care for individuals with disabilities: Perspectives and considerations for spinal cord injury. J Spinal Cord Med 2014; 37:493-502. [PMID: 25029659 PMCID: PMC4166184 DOI: 10.1179/2045772314y.0000000248] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Despite many people having similar clinical presentation, demographic factors, and clinical care, outcome can differ for those sustaining significant injury such as spinal cord injury (SCI) and traumatic brain injury (TBI). In addition to traditional demographic, social, and clinical factors, variability also may be attributable to innate (including genetic, transcriptomic proteomic, epigenetic) biological variation that individuals bring to recovery and their unique response to their care and environment. Technologies collectively called "-omics" enable simultaneous measurement of an enormous number of biomolecules that can capture many potential biological contributors to heterogeneity of injury/disease course and outcome. Due to the nature of injury and complex disease, and its associations with impairment, disability, and recovery, rehabilitation does not lend itself to a singular "protocolized" plan of therapy. Yet, by nature and by necessity, rehabilitation medicine operates as a functional model of "Personalized Care". Thus, the challenge for successful programs of translational rehabilitation care and research is to identify viable approaches to examine broad populations, with varied impairments and functional limitations, and to identify effective treatment responses that incorporate personalized protocols to optimize functional recovery. The Rehabilomics framework is a translational model that provides an "-omics" overlay to the scientific study of rehabilitation processes and multidimensional outcomes. Rehabilomics research provides novel opportunities to evaluate the neurobiology of complex injury or chronic disease and can be used to examine methods and treatments for person-centered care among populations with disabilities. Exemplars for application in SCI and other neurorehabilitation populations are discussed.
Collapse
Affiliation(s)
- Amy K. Wagner
- Correspondence to: Amy K. Wagner, MD Department of Physical Medicine and Rehabilitation, Safar Center for Resuscitation Research, University of Pittsburgh, 3471 5th Avenue Suite 202, Pittsburgh, PA 15213, USA.
| |
Collapse
|