1
|
Martins CA, Neves LT, de Oliveira MMBP, Bagatini PB, Barboza R, Mestriner RG, Xavier LL, Rasia-Filho AA. Neuroprotective effect of ACTH on collagenase-induced peri-intraventricular hemorrhage in newborn male rats. Sci Rep 2020; 10:17734. [PMID: 33082383 PMCID: PMC7576182 DOI: 10.1038/s41598-020-74712-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 10/06/2020] [Indexed: 12/23/2022] Open
Abstract
Peri-intraventricular hemorrhage (PIVH) is a common and serious prematurity-related complication in neonates. Adrenocorticotropic hormone (ACTH) has neuroprotective actions and is a candidate to ameliorate brain damage following PIVH. Here, we tested the efficacy of ACTH1-24 on a collagenase-induced lesion of the germinal matrix (GM) in newborn male rats. Animals received microinjection of the vehicle (PBS, 2 µl) or collagenase type VII (0.3 IU) into the GM/periventricular tissue on postnatal day (PN) 2. Twelve hours later pups received microinjection of either the agonist ACTH1-24 (0.048 mg/kg), or the antagonist SHU9119 (antagonist of MCR3/MCR4 receptors, 0.01 mg/kg), or their combination. Morphological outcomes included striatal injury extension, neuronal and glial cells counting, and immunohistochemical expression of brain lesion biomarkers ipsilateral and contralateral to the hemorrhagic site. Data were evaluated on PN 8. Collagenase induced PIVH and severe ipsilateral striatal lesion. ACTH1-24 dampened the deleterious effects of collagenase-induced hemorrhage in significantly reducing the extension of the damaged area, the striatal neuronal and glial losses, and the immunoreactive expression of the GFAP, S100β, and NG2-glia biomarkers in the affected periventricular area. SHU9119 blocked the glial density rescuing effect of ACTH1-24. ACTH1-24 could be further evaluated to determine its suitability for preclinical models of PVH in premature infants.
Collapse
Affiliation(s)
- Camila A Martins
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, 90170-050, Brazil
- Departamento de Ciências Básicas da Saúde/Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre, R. Sarmento Leite 245, Porto Alegre, RS, 90170-050, Brazil
| | - Laura Tartari Neves
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, 90619-900, Brazil
| | - Marina M B P de Oliveira
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, 90619-900, Brazil
| | - Pamela Brambilla Bagatini
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, 90619-900, Brazil
| | - Rafaela Barboza
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, 90619-900, Brazil
| | - Régis Gemerasca Mestriner
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, 90619-900, Brazil
| | - Léder Leal Xavier
- Laboratório de Biologia Celular e Tecidual, Escola de Ciências, Pontifícia Universidade Católica do Rio Grande do Sul, PUCRS, Porto Alegre, 90619-900, Brazil
| | - Alberto A Rasia-Filho
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, 90170-050, Brazil.
- Departamento de Ciências Básicas da Saúde/Fisiologia, Universidade Federal de Ciências da Saúde de Porto Alegre, R. Sarmento Leite 245, Porto Alegre, RS, 90170-050, Brazil.
- Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90170-050, Brazil.
| |
Collapse
|
2
|
[Effect of corticosterone on lissencephaly 1 expression in developing cerebral cortical neurons of fetal rats cultured in vitro]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19. [PMID: 28899473 PMCID: PMC7403054 DOI: 10.7499/j.issn.1008-8830.2017.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To investigate the effect of corticosterone on the expression of the neuronal migration protein lissencephaly 1 (LIS1) in developing cerebral cortical neurons of fetal rats. METHODS The primary cultured cerebral cortical neurons of fetal Wistar rats were divided into control group, low-dose group, and high-dose group. The neurons were exposed to the medium containing different concentrations of corticosterone (0 μmol/L for the control group, 0.1 μmol/L for the low-dose group, and 1.0 μmol/L for the high-dose group). The neurons were collected at 1, 4, and 7 days after intervention. Western blot and immunocytochemical staining were used to observe the change in LIS1 expression in neurons. RESULTS Western blot showed that at 7 days after intervention, the low- and high-dose groups had significantly higher expression of LIS1 in the cytoplasm and nucleus of cerebral cortical neurons than the control group (P<0.05), and the high-dose group had significantly lower expression of LIS1 in the cytoplasm of cerebral cortical neurons than the low-dose group (P<0.05). Immunocytochemical staining showed that at 1, 4, and 7 days after corticosterone intervention, the high-dose group had a significantly lower mean optical density of LIS1 than the control group and the low-dose group (P<0.05). At 7 days after intervention, the low-dose group had a significantly lower mean optical density of LIS1 than the control group (P<0.05). CONCLUSIONS Corticosterone downregulates the expression of the neuronal migration protein LIS1 in developing cerebral cortical neurons of fetal rats cultured in vitro, and such effect depends on the concentration of corticosterone and duration of corticosterone intervention.
Collapse
|
3
|
Carson R, Monaghan-Nichols AP, DeFranco DB, Rudine AC. Effects of antenatal glucocorticoids on the developing brain. Steroids 2016; 114:25-32. [PMID: 27343976 PMCID: PMC5052110 DOI: 10.1016/j.steroids.2016.05.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 05/25/2016] [Accepted: 05/30/2016] [Indexed: 01/13/2023]
Abstract
Glucocorticoids (GCs) regulate distinct physiological processes in the developing fetus, in particular accelerating organ maturation that enables the fetus to survive outside the womb. In preterm birth, the developing fetus does not receive sufficient exposure to endogenous GCs in utero for proper organ development predisposing the neonate to complications including intraventricular hemorrhage, respiratory distress syndrome (RDS) and necrotizing enterocolitis (NEC). Synthetic GCs (sGCs) have proven useful in the prevention of these complications since they are able to promote the rapid maturation of underdeveloped organs present in the fetus. While these drugs have proven to be clinically effective in the prevention of IVH, RDS and NEC, they may also trigger adverse developmental side effects. This review will examine the current clinical use of antenatal sGC therapy in preterm birth, their placental metabolism, and their effects on the developing brain.
Collapse
Affiliation(s)
- Ross Carson
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - A Paula Monaghan-Nichols
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Neurobiology, United States
| | - Donald B DeFranco
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Pharmacology and Chemical Biology, United States
| | - Anthony C Rudine
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Department of Pediatrics, Division of Newborn Medicine, United States.
| |
Collapse
|