1
|
Smith PO, Huang G, Devries K, Nazhat SN, Phillips JB. Automated production of nerve repair constructs containing endothelial cell tube-like structures. Biofabrication 2024; 17:015024. [PMID: 39500048 DOI: 10.1088/1758-5090/ad8efd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Engineered neural tissue (EngNT) is a stabilised aligned cellular hydrogel that offers a potential alternative to the nerve autograft for the treatment of severe peripheral nerve injury. This work aimed to automate the production of EngNT, to improve the feasibility of scalable manufacture for clinical translation. Endothelial cells were used as the cellular component of the EngNT, with the formation of endothelial cell tube-like structures mimicking the polarised vascular structures formed early on in the natural regenerative process. Gel aspiration-ejection for the production of EngNT was automated by integrating a syringe pump with a robotic positioning system, using software coded in Python to control both devices. Having established the production method and tested mechanical properties, the EngNT containing human umbilical vein endothelial cells (EngNT-HUVEC) was characterised in terms of viability and alignment, compatibility with neurite outgrowth from rat dorsal root ganglion neurons and formation of endothelial cell networksin vitro. EngNT-HUVEC manufactured using the automated system contained viable and aligned endothelial cells, which developed into a network of multinucleated endothelial cell tube-like structures inside the constructs and an outer layer of endothelialisation. The EngNT-HUVEC constructs were made in various sizes within minutes. Constructs provided support and guidance to regenerating neuritesin vitro. This work automated the formation of EngNT, facilitating high throughput manufacture at scale. The formation of endothelial cell tube-like structures within stabilised hydrogels provides an engineered tissue with potential for use in nerve repair.
Collapse
Affiliation(s)
- Poppy O Smith
- UCL Centre for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
| | - Guanbingxue Huang
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada
| | - Kate Devries
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada
| | - Showan N Nazhat
- Department of Mining and Materials Engineering, McGill University, Montreal, Quebec, Canada
| | - James B Phillips
- UCL Centre for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
2
|
Weiss SN, Legato JM, Liu Y, Vaccaro CN, Da Silva RP, Miskiel S, Gilbert GV, Hakonarson H, Fuller DA, Buono RJ. An analysis of differential gene expression in peripheral nerve and muscle utilizing RNA sequencing after polyethylene glycol nerve fusion in a rat sciatic nerve injury model. PLoS One 2024; 19:e0304773. [PMID: 39231134 PMCID: PMC11373823 DOI: 10.1371/journal.pone.0304773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/19/2024] [Indexed: 09/06/2024] Open
Abstract
Application of polyethylene glycol (PEG) to a peripheral nerve injury at the time of primary neurorrhaphy is thought to prevent Wallerian degeneration via direct axolemma fusion. The molecular mechanisms of nerve fusion and recovery are unclear. Our study tested the hypothesis that PEG alters gene expression in neural and muscular environments as part of its restorative properties. Lewis rats underwent unilateral sciatic nerve transection with immediate primary repair. Subjects were randomly assigned to receive either PEG treatment or standard repair at the time of neurorrhaphy. Samples of sciatic nerve distal to the injury and tibialis muscle at the site of innervation were harvested at 24 hours and 4 weeks postoperatively. Total RNA sequencing and subsequent bioinformatics analyses were used to identify significant differences in differentially expressed genes (DEGs) and their related biological pathways (p<0.05) in PEG-treated subjects compared to non-PEG controls. No significant DEGs were identified in PEG-treated sciatic nerve compared to controls after 24 hours, but 1,480 DEGs were identified in PEG-treated tibialis compared to controls. At 4 weeks, 918 DEGs were identified in PEG-treated sciatic nerve, whereas only 3 DEGs remained in PEG-treated tibialis compared to controls. DEGs in sciatic were mostly upregulated (79%) and enriched in pathways present during nervous system development and growth, whereas DEGs in muscle were mostly downregulated (77%) and related to inflammation and tissue repair. Our findings indicate that PEG application during primary neurorrhaphy leads to significant differential gene regulation in the neural and muscular environment that is associated with improved functional recovery in animals treated with PEG compared to sham non-PEG controls. A detailed understanding of key molecules underlying PEG function in recovery after peripheral nerve repair may facilitate amplification of PEG effects through systemic or focal treatments at the time of neurotmesis.
Collapse
Affiliation(s)
- Samantha N Weiss
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, United States of America
| | - Joseph M Legato
- Bone and Joint Institute, Cooper University Hospital, Camden, New Jersey, United States of America
| | - Yichuan Liu
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Courtney N Vaccaro
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Renata Pellegrino Da Silva
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Sandra Miskiel
- Bone and Joint Institute, Cooper University Hospital, Camden, New Jersey, United States of America
| | - Grace V Gilbert
- Bone and Joint Institute, Cooper University Hospital, Camden, New Jersey, United States of America
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - David A Fuller
- Bone and Joint Institute, Cooper University Hospital, Camden, New Jersey, United States of America
| | - Russell J Buono
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, New Jersey, United States of America
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Xu S, Ito A, Zhao Z, Nakahara R, Tai C, Miyamoto F, Kuroki H, Aoyama T. Repetitive magnetic stimulation prevents dorsal root ganglion neuron death and enhances nerve regeneration in a sciatic nerve injury rat model. Sci Rep 2024; 14:19016. [PMID: 39152157 PMCID: PMC11329503 DOI: 10.1038/s41598-024-69251-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Peripheral nerve injury (PNI) often leads to retrograde cell death in the spinal cord and dorsal root ganglia (DRG), hindering nerve regeneration and functional recovery. Repetitive magnetic stimulation (rMS) promotes nerve regeneration following PNI. Therefore, this study aimed to investigate the effects of rMS on post-injury neuronal death and nerve regeneration. Seventy-two rats underwent autologous sciatic nerve grafting and were divided into two groups: the rMS group, which received rMS and the control (CON) group, which received no treatment. Motor neuron, DRG neuron, and caspase-3 positive DRG neuron counts, as well as DRG mRNA expression analyses, were conducted at 1-, 4-, and 8-weeks post-injury. Functional and axon regeneration analyses were performed at 8-weeks post-injury. The CON group demonstrated a decreased DRG neuron count starting from 1 week post-injury, whereas the rMS group exhibited significantly higher DRG neuron counts at 1- and 4-weeks post-injury. At 8-weeks post-injury, the rMS group demonstrated a significantly greater myelinated nerve fiber density in autografted nerves. Furthermore, functional analysis showed significant improvements in latency and toe angle in the rMS group. Overall, these results suggest that rMS can prevent DRG neuron death and enhance nerve regeneration and motor function recovery after PNI.
Collapse
Affiliation(s)
- Shixuan Xu
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Zixi Zhao
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ryo Nakahara
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Chia Tai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Fumika Miyamoto
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tomoki Aoyama
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin, Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
4
|
Tang X, Huang Y, Fu W, Wang P, Feng L, Yang J, Zhu H, Huang X, Ming Q, Li P. Digirseophene A promotes recovery in injured developing cerebellum via AMPK/AKT/GSK3β pathway-mediated neural stem cell proliferation. Biomed Pharmacother 2024; 177:117046. [PMID: 38981241 DOI: 10.1016/j.biopha.2024.117046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
Neural stem cells (NSCs) exhibit a remarkable capacity for self-renewal and have the potential to differentiate into various neural lineage cells, which makes them pivotal in the management of neurological disorders. Harnessing the inherent potential of endogenous NSCs for enhancing nerve repair and regeneration represents an optimal approach to addressing diseases of the nervous system. In this study, we explored the potential of a novel benzophenone derivative named Digirseophene A (DGA), which was isolated from the endophytic fungus Corydalis tomentella. Previous experiments have extensively identified and characterized DGA, revealing its unique properties. Our findings demonstrate the remarkable capability of DGA to stimulate neural stem cell proliferation, both in vitro and in vivo. Furthermore, we established a model of radiation-induced cerebellar injury to assess the effects of DGA on the distribution of different cell subpopulations within the damaged cerebellum, thereby suggesting its beneficial role in cerebellar repair. In addition, our observations on a primary NSCs model revealed that DGA significantly increased cellular oxygen consumption, indicating increased energy and metabolic demands. By utilizing various pathway inhibitors in combination with DGA, we successfully demonstrated its ability to counteract the suppressive impacts of AMPK and GSK3β inhibitors on NSC proliferation. Collectively, our research results strongly suggest that DGA, as an innovative compound, exerts its role in activating NSCs and promoting injury repair through the regulation of the AMPK/AKT/GSK3β pathway.
Collapse
Affiliation(s)
- Xiangyu Tang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Yuting Huang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Wenying Fu
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Pengbo Wang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Liyuan Feng
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Jie Yang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Hongyan Zhu
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Xiuning Huang
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China
| | - Qianliang Ming
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China.
| | - Peng Li
- College of Pharmacy and Laboratory Medicine, Army Medical University, No. 30 Gaotanyan Centre Street, Shapingba District, Chong Qing, China.
| |
Collapse
|
5
|
Stassart RM, Gomez-Sanchez JA, Lloyd AC. Schwann Cells as Orchestrators of Nerve Repair: Implications for Tissue Regeneration and Pathologies. Cold Spring Harb Perspect Biol 2024; 16:a041363. [PMID: 38199866 PMCID: PMC11146315 DOI: 10.1101/cshperspect.a041363] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Peripheral nerves exist in a stable state in adulthood providing a rapid bidirectional signaling system to control tissue structure and function. However, following injury, peripheral nerves can regenerate much more effectively than those of the central nervous system (CNS). This multicellular process is coordinated by peripheral glia, in particular Schwann cells, which have multiple roles in stimulating and nurturing the regrowth of damaged axons back to their targets. Aside from the repair of damaged nerves themselves, nerve regenerative processes have been linked to the repair of other tissues and de novo innervation appears important in establishing an environment conducive for the development and spread of tumors. In contrast, defects in these processes are linked to neuropathies, aging, and pain. In this review, we focus on the role of peripheral glia, especially Schwann cells, in multiple aspects of nerve regeneration and discuss how these findings may be relevant for pathologies associated with these processes.
Collapse
Affiliation(s)
- Ruth M Stassart
- Paul-Flechsig-Institute of Neuropathology, University Clinic Leipzig, Leipzig 04103, Germany
| | - Jose A Gomez-Sanchez
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante 03010, Spain
- Instituto de Neurociencias CSIC-UMH, Sant Joan de Alicante 03550, Spain
| | - Alison C Lloyd
- UCL Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
6
|
Stadlmayr S, Peter K, Millesi F, Rad A, Wolf S, Mero S, Zehl M, Mentler A, Gusenbauer C, Konnerth J, Schniepp HC, Lichtenegger H, Naghilou A, Radtke C. Comparative Analysis of Various Spider Silks in Regard to Nerve Regeneration: Material Properties and Schwann Cell Response. Adv Healthc Mater 2024; 13:e2302968. [PMID: 38079208 PMCID: PMC11468126 DOI: 10.1002/adhm.202302968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/20/2023] [Indexed: 12/26/2023]
Abstract
Peripheral nerve reconstruction through the employment of nerve guidance conduits with Trichonephila dragline silk as a luminal filling has emerged as an outstanding preclinical alternative to avoid nerve autografts. Yet, it remains unknown whether the outcome is similar for silk fibers harvested from other spider species. This study compares the regenerative potential of dragline silk from two orb-weaving spiders, Trichonephila inaurata and Nuctenea umbratica, as well as the silk of the jumping spider Phidippus regius. Proliferation, migration, and transcriptomic state of Schwann cells seeded on these silks are investigated. In addition, fiber morphology, primary protein structure, and mechanical properties are studied. The results demonstrate that the increased velocity of Schwann cells on Phidippus regius fibers can be primarily attributed to the interplay between the silk's primary protein structure and its mechanical properties. Furthermore, the capacity of silk fibers to trigger cells toward a gene expression profile of a myelinating Schwann cell phenotype is shown. The findings for the first time allow an in-depth comparison of the specific cellular response to various native spider silks and a correlation with the fibers' material properties. This knowledge is essential to open up possibilities for targeted manufacturing of synthetic nervous tissue replacement.
Collapse
Affiliation(s)
- Sarah Stadlmayr
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Karolina Peter
- Institute for Physics and Materials ScienceUniversity of Natural Resources and Life SciencesVienna1190Austria
| | - Flavia Millesi
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
- Austrian Cluster for Tissue RegenerationViennaAustria
| | - Anda Rad
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
| | - Sonja Wolf
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
| | - Sascha Mero
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
| | - Martin Zehl
- Department of Analytical ChemistryFaculty of ChemistryUniversity of ViennaVienna1090Austria
| | - Axel Mentler
- Institute of Soil ResearchUniversity of Natural Resources and Life SciencesVienna1190Austria
| | - Claudia Gusenbauer
- Institute of Wood Technology and Renewable MaterialsUniversity of Natural Resources and Life SciencesTulln an der Donau3430Austria
| | - Johannes Konnerth
- Institute of Wood Technology and Renewable MaterialsUniversity of Natural Resources and Life SciencesTulln an der Donau3430Austria
| | | | - Helga Lichtenegger
- Institute for Physics and Materials ScienceUniversity of Natural Resources and Life SciencesVienna1190Austria
| | - Aida Naghilou
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
- Austrian Cluster for Tissue RegenerationViennaAustria
- Medical Systems Biophysics and BioengineeringLeiden Academic Centre for Drug ResearchLeiden UniversityLeiden2333The Netherlands
| | - Christine Radtke
- Department of PlasticReconstructive and Aesthetic SurgeryMedical University of ViennaVienna1090Austria
- Austrian Cluster for Tissue RegenerationViennaAustria
| |
Collapse
|
7
|
Cong M, Wu X, Zhu L, Gu G, Ding F, Li G, Shi H. Anisotropic microtopography surface of chitosan scaffold regulating skin precursor-derived Schwann cells towards repair phenotype promotes neural regeneration. Regen Biomater 2024; 11:rbae005. [PMID: 38414797 PMCID: PMC10898340 DOI: 10.1093/rb/rbae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/29/2024] Open
Abstract
For repairing peripheral nerve and spinal cord defects, biomaterial scaffold-based cell-therapy was emerged as an effective strategy, requiring the positive response of seed cells to biomaterial substrate and environment signals. Previous work highlighted that the imposed surface properties of scaffold could provide important guidance cues to adhered cells for polarization. However, the insufficiency of native Schwann cells and unclear cellular response mechanisms remained to be addressed. Given that, this study aimed to illuminate the micropatterned chitosan-film action on the rat skin precursor-derived Schwann cells (SKP-SCs). Chitosan-film with different ridge/groove size was fabricated and applied for the SKP-SCs induction. Results indicated that SKP-SCs cultured on 30 μm size microgroove surface showed better oriented alignment phenotype. Induced SKP-SCs presented similar genic phenotype as repair Schwann cells, increasing expression of c-Jun, neural cell adhesion molecule, and neurotrophic receptor p75. Moreover, SKP-SC-secretome was subjected to cytokine array GS67 assay, data indicated the regulation of paracrine phenotype, a panel of cytokines was verified up-regulated at secreted level and gene expression level in induced SKP-SCs. These up-regulated cytokines exhibit a series of promotive neural regeneration functions, including cell survival, cell migration, cell proliferation, angiogenesis, axon growth, and cellular organization etc. through bioinformatics analysis. Furthermore, the effectively polarized SKP-SCs-sourced secretome, promoted the proliferation and migration capacity of the primarily cultured native rat Schwann cells, and augmented neurites growth of the cultured motoneurons, as well as boosted axonal regrowth of the axotomy-injured motoneurons. Taken together, SKP-SCs obtained pro-neuroregeneration phenotype in adaptive response to the anisotropic topography surface of chitosan-film, displayed the oriented parallel growth, the transition towards repair Schwann cell genic phenotype, and the enhanced paracrine effect on neural regeneration. This study provided novel insights into the potency of anisotropic microtopography surface to Schwann-like cells phenotype regulation, that facilitating to provide promising engineered cell-scaffold in neural injury therapies.
Collapse
Affiliation(s)
- Meng Cong
- Key Laboratory of Neuroregenration of Jiangsu and Ministry of Education and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Xia Wu
- Key Laboratory of Neuroregenration of Jiangsu and Ministry of Education and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Lingjie Zhu
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong 226001, China
| | - Guohao Gu
- Key Laboratory of Neuroregenration of Jiangsu and Ministry of Education and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Fei Ding
- Key Laboratory of Neuroregenration of Jiangsu and Ministry of Education and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Guicai Li
- Key Laboratory of Neuroregenration of Jiangsu and Ministry of Education and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Haiyan Shi
- Key Laboratory of Neuroregenration of Jiangsu and Ministry of Education and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong 226001, China
| |
Collapse
|
8
|
Warner WS, Stubben C, Yeoh S, Light AR, Mahan MA. Next-generation RNA sequencing elucidates transcriptomic signatures of pathophysiologic nerve regeneration. Sci Rep 2023; 13:8856. [PMID: 37258605 PMCID: PMC10232541 DOI: 10.1038/s41598-023-35606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/20/2023] [Indexed: 06/02/2023] Open
Abstract
The cellular and molecular underpinnings of Wallerian degeneration have been robustly explored in laboratory models of successful nerve regeneration. In contrast, there is limited interrogation of failed regeneration, which is the challenge facing clinical practice. Specifically, we lack insight on the pathophysiologic mechanisms that lead to the formation of neuromas-in-continuity (NIC). To address this knowledge gap, we have developed and validated a novel basic science model of rapid-stretch nerve injury, which provides a biofidelic injury with NIC development and incomplete neurologic recovery. In this study, we applied next-generation RNA sequencing to elucidate the temporal transcriptional landscape of pathophysiologic nerve regeneration. To corroborate genetic analysis, nerves were subject to immunofluorescent staining for transcripts representative of the prominent biological pathways identified. Pathophysiologic nerve regeneration produces substantially altered genetic profiles both temporally and in the mature neuroma microenvironment, in contrast to the coordinated genetic signatures of Wallerian degeneration and successful regeneration. To our knowledge, this study presents as the first transcriptional study of NIC pathophysiology and has identified cellular death, fibrosis, neurodegeneration, metabolism, and unresolved inflammatory signatures that diverge from pathways elaborated by traditional models of successful nerve regeneration.
Collapse
Affiliation(s)
- Wesley S Warner
- Department of Neurosurgery, Clinical Neurosciences Center, The University of Utah, 175 North Medical Dr. East, Salt Lake City, UT, 84132, USA
| | - Christopher Stubben
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, USA
| | - Stewart Yeoh
- Department of Neurosurgery, Clinical Neurosciences Center, The University of Utah, 175 North Medical Dr. East, Salt Lake City, UT, 84132, USA
| | - Alan R Light
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Mark A Mahan
- Department of Neurosurgery, Clinical Neurosciences Center, The University of Utah, 175 North Medical Dr. East, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
9
|
Jiang L, Ouyang X, Zhang D, Wang G, Zhang Z, Wang W, Yan H. The role of Gel-Ppy-modified nerve conduit on the repair of sciatic nerve defect in rat model. FASEB J 2023; 37:e22921. [PMID: 37052612 DOI: 10.1096/fj.202201969r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023]
Abstract
The serious clinical challenge of peripheral nerve injury (PNI) is nerve regeneration. Nerve conduit represents a promising strategy to contribute to nerve regeneration by bridging injured nerve gaps. However, due to a unique microenvironment of nerve tissue, autologous nerves have not been substituted by nerve conduit. Nerve regeneration after nerve conduit implantation depends on many factors, such as conductivity and biocompatibility. Therefore, Gelatin (Gel) with biocompatibility and polypyrrole (Ppy) with conductivity is highly concerned. In this paper, Gel-Ppy modified nerve conduit was fabricated with great biocompatibility and conductivity to evaluate its properties of enhancing nerve regeneration in vivo and in vitro. The proliferation of Schwann cells on Gel-Ppy modified nerve conduit was remarkably increased. Consistent with in vitro results, the Gel-Ppy nerve conduit could contribute to the regeneration of Schwann cell in vivo. The axon diameters and myelin sheath thickness were also enhanced, resulting in the amelioration of muscle atrophy, nerve conduction, and motor function recovery. To explain this interesting phenomenon, western blot results indicated that the Gel-Ppy conduit facilitated nerve regeneration via upregulating the Rap1 pathway to induce neurite outgrowth. Therefore, the above results demonstrated that Gel-Ppy modified nerve conduit could provide an acceptable microenvironment for nerve regeneration and be popularized as a novel therapeutic strategy of PNI.
Collapse
Affiliation(s)
- Liangfu Jiang
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics (Division of Wound Repair), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xingyu Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Dupiao Zhang
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Gang Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Zhe Zhang
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hede Yan
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics (Division of Hand Surgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Uzel E, Durgun ME, Esentürk-Güzel İ, Güngör S, Özsoy Y. Nanofibers in Ocular Drug Targeting and Tissue Engineering: Their Importance, Advantages, Advances, and Future Perspectives. Pharmaceutics 2023; 15:pharmaceutics15041062. [PMID: 37111550 PMCID: PMC10145046 DOI: 10.3390/pharmaceutics15041062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Nanofibers are frequently encountered in daily life as a modern material with a wide range of applications. The important advantages of production techniques, such as being easy, cost effective, and industrially applicable are important factors in the preference for nanofibers. Nanofibers, which have a broad scope of use in the field of health, are preferred both in drug delivery systems and tissue engineering. Due to the biocompatible materials used in their construction, they are also frequently preferred in ocular applications. The fact that they have a long drug release time as a drug delivery system and have been used in corneal tissue studies, which have been successfully developed in tissue engineering, stand out as important advantages of nanofibers. This review examines nanofibers, their production techniques and general information, nanofiber-based ocular drug delivery systems, and tissue engineering concepts in detail.
Collapse
Affiliation(s)
- Egemen Uzel
- Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul 34010, Türkiye
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul 34126, Türkiye
| | - Meltem Ezgi Durgun
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul 34126, Türkiye
| | - İmren Esentürk-Güzel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Türkiye
| | - Sevgi Güngör
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul 34126, Türkiye
| | - Yıldız Özsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, Istanbul 34126, Türkiye
- Correspondence: ; Tel.: +90-212-4400000 (ext. 13498)
| |
Collapse
|
11
|
Alakpa EV, Bahrd A, Wiklund K, Andersson M, Novikov LN, Ljungberg C, Kelk P. Bioprinted Schwann and Mesenchymal Stem Cell Co-Cultures for Enhanced Spatial Control of Neurite Outgrowth. Gels 2023; 9:gels9030172. [PMID: 36975621 PMCID: PMC10048219 DOI: 10.3390/gels9030172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Bioprinting nerve conduits supplemented with glial or stem cells is a promising approach to promote axonal regeneration in the injured nervous system. In this study, we examined the effects of different compositions of bioprinted fibrin hydrogels supplemented with Schwann cells and mesenchymal stem cells (MSCs) on cell viability, production of neurotrophic factors, and neurite outgrowth from adult sensory neurons. To reduce cell damage during bioprinting, we analyzed and optimized the shear stress magnitude and exposure time. The results demonstrated that fibrin hydrogel made from 9 mg/mL of fibrinogen and 50IE/mL of thrombin maintained the gel’s highest stability and cell viability. Gene transcription levels for neurotrophic factors were significantly higher in cultures containing Schwann cells. However, the amount of the secreted neurotrophic factors was similar in all co-cultures with the different ratios of Schwann cells and MSCs. By testing various co-culture combinations, we found that the number of Schwann cells can feasibly be reduced by half and still stimulate guided neurite outgrowth in a 3D-printed fibrin matrix. This study demonstrates that bioprinting can be used to develop nerve conduits with optimized cell compositions to guide axonal regeneration.
Collapse
Affiliation(s)
- Enateri V Alakpa
- Department of Integrative Medical Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Anton Bahrd
- Department of Physics, Umeå University, SE-901 87 Umeå, Sweden
| | - Krister Wiklund
- Department of Physics, Umeå University, SE-901 87 Umeå, Sweden
| | | | - Lev N Novikov
- Department of Integrative Medical Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Christina Ljungberg
- Department of Surgical and Perioperative Science, Section of Hand and Plastic Surgery, Umeå University, SE-901 87 Umeå, Sweden
| | - Peyman Kelk
- Department of Integrative Medical Biology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
12
|
Yu C, Wang X, Qin J. Effect of necrostatin-1 on sciatic nerve crush injury in rat models. J Orthop Surg Res 2023; 18:74. [PMID: 36717933 PMCID: PMC9885697 DOI: 10.1186/s13018-023-03565-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Necrostatin-1 (Nec-1) is an inhibitor of the receptor interacting protein (RIP)1 kinase, which acts as an inhibitor of necroptosis, a special form of necrosis. In the present study, the effect of Nec-1 on peripheral nerve injury (PNI) was investigated. METHODS The PNI model was established by inducing sciatic nerve injury. Hematoxylin-eosin and immunofluorescence staining techniques were used to assess the extent of injury to nerve fibers and necrosis of Schwann cells (SCs). Western blotting was performed to detect the expression of necroptosis-related factors (RIP1 and RIP3). The concentrations of tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and the oxidative stress-related enzyme malondialdehyde (MDA) were determined to indicate the degree of inflammation and oxidative stress. RESULTS Nec-1 could decrease the degree of peripheral nerve lesions after PNI and protect SCs and axons by inhibiting necroptosis. Furthermore, Nec-1 could reduce necroptosis by inhibiting RIP1 and effectively reduce inflammation and reactive oxygen species production at the early stage of PNI. CONCLUSIONS Alleviation of necroptosis by Nec-1 may provide new insights into therapies for the early stages of peripheral nerve repair after PNI.
Collapse
Affiliation(s)
- Chen Yu
- grid.89957.3a0000 0000 9255 8984Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing, 210000 Jiangsu China
| | - Xiaoxu Wang
- grid.412017.10000 0001 0266 8918Department of Orthopaedics, The Second Hospital, University of South China, Hengyang, 421000 Hunan China
| | - Jian Qin
- grid.89957.3a0000 0000 9255 8984Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing, 210000 Jiangsu China
| |
Collapse
|
13
|
Jin XH, Fang JQ, Wang JG, Xu B, Wang X, Liu SH, Chen F, Liu JJ. PCL NGCs integrated with urolithin-A-loaded hydrogels for nerve regeneration. J Mater Chem B 2022; 10:8771-8784. [PMID: 36196763 DOI: 10.1039/d2tb01624a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammation and oxidative stress are among the leading causes of poor prognosis after peripheral nerve injury (PNI). Urolithin-A (UA), an intermediate product produced by the catabolism of ellagitannins in the gastrointestinal tract, has anti-inflammatory, antioxidant, and immunomodulatory properties for inflammation, oxidative damage, and aging-related diseases. Hence, we prepared UA-loaded hydrogels and embedded them in the lumen of PCL nerve guide conduits (NGCs). The hydrogels continuously released appropriate doses of UA into the microenvironment. Based on in vitro studies, UA facilitates cell proliferation and reduces oxidative damage. Besides, the experimental evaluation revealed good biocompatibility of the materials involved. We implanted NGCs into rat models to bridge the sciatic nerve defects in an in vivo study. The sciatic functional index of the PCL/collagen/UA group was comparable to that of the autograft group. Additionally, the consequences of electrophysiological, gastrocnemius muscle and nerve histology assessment of the PCL/collagen/UA group were better than those in the PCL and PCL/collagen groups and close to those in the autograft group. In this study, UA sustained release via the PCL/collagen/UA NGC was found to be an effective alternative treatment for PNI, validating our hypothesis that UA could promote regeneration of nerve tissue.
Collapse
Affiliation(s)
- Xue-Han Jin
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China.
| | - Jia-Qi Fang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China.
| | - Jian-Guang Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China.
| | - Bo Xu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China.
| | - Xu Wang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Shu-Hao Liu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China.
| | - Feng Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China.
| | - Jun-Jian Liu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, 301 Yanchang Road, Shanghai, 200072, P. R. China.
| |
Collapse
|
14
|
Efficacy of Nerve-Derived Hydrogels to Promote Axon Regeneration Is Influenced by the Method of Tissue Decellularization. Int J Mol Sci 2022; 23:ijms23158746. [PMID: 35955880 PMCID: PMC9369339 DOI: 10.3390/ijms23158746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Injuries to large peripheral nerves are often associated with tissue defects and require reconstruction using autologous nerve grafts, which have limited availability and result in donor site morbidity. Peripheral nerve-derived hydrogels could potentially supplement or even replace these grafts. In this study, three decellularization protocols based on the ionic detergents sodium dodecyl sulfate (P1) and sodium deoxycholate (P2), or the organic solvent tri-n-butyl phosphate (P3), were used to prepare hydrogels. All protocols resulted in significantly decreased amounts of genomic DNA, but the P2 hydrogel showed the best preservation of extracellular matrix proteins, cytokines, and chemokines, and reduced levels of sulfated glycosaminoglycans. In vitro P1 and P2 hydrogels supported Schwann cell viability, secretion of VEGF, and neurite outgrowth. Surgical repair of a 10 mm-long rat sciatic nerve gap was performed by implantation of tubular polycaprolactone conduits filled with hydrogels followed by analyses using diffusion tensor imaging and immunostaining for neuronal and glial markers. The results demonstrated that the P2 hydrogel considerably increased the number of axons and the distance of regeneration into the distal nerve stump. In summary, the method used to decellularize nerve tissue affects the efficacy of the resulting hydrogels to support regeneration after nerve injury.
Collapse
|
15
|
Dong C, Ubogu EE. Pro-inflammatory cytokines and leukocyte integrins associated with chronic neuropathic pain in traumatic and inflammatory neuropathies: Initial observations and hypotheses. Front Immunol 2022; 13:935306. [PMID: 35983047 PMCID: PMC9378781 DOI: 10.3389/fimmu.2022.935306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Leukocyte infiltration and persistence within peripheral nerves have been implicated in chronic nociception pathogenesis in murine peripheral neuropathy models. Endoneurial cytokine and chemokine expression contribute to leukocyte infiltration and maintenance of a pro-inflammatory state that delays peripheral nerve recovery and promotes chronic pain behaviors in these mice. However, there has been a failure to translate murine model data into safe and effective treatments for chronic neuropathic pain in peripheral neuropathy patients, or develop reliable biomarkers that may help diagnose or determine treatment responses in affected patients. Initial work showed that persistent sciatic nerve CD11b+ CD45+ leukocyte infiltration was associated with disease severity in three mouse models of inflammatory and traumatic peripheral neuropathies, implying a direct contributing role in disease pathogenesis. In support of this, CD11b+ leukocytes were also seen in the sural nerve biopsies of chronic neuropathic pain patients with three different peripheral neuropathies. Systemic CD11b antagonism using a validated function-neutralizing monoclonal antibody effectively treated chronic nociception following unilateral sciatic nerve crush injury (a representative traumatic neuropathy model associated with axonal degeneration and increased blood-nerve barrier permeability) and does not cause drug addiction behaviors in adult mice. These data suggest that CD11b could be an effective molecular target for chronic neuropathic pain treatment in inflammatory and traumatic peripheral neuropathies. Despite known murine peripheral neuropathy model limitations, our initial work suggests that early expression of pro-inflammatory cytokines, such as tissue inhibitor of metalloproteinases-1 may predict subsequent chronic nociception development following unilateral sciatic nerve crush injury. Studies aligning animal model investigation with observational data from well-characterized human peripheral neuropathies, including transcriptomics and proteomics, as well as animal model studies using a human clinical trial design should foster the identification of clinically relevant biomarkers and effective targeted treatments with limited addiction potential for chronic neuropathic pain in peripheral neuropathy patients.
Collapse
|
16
|
Ye Z, Wei J, Zhan C, Hou J. Role of Transforming Growth Factor Beta in Peripheral Nerve Regeneration: Cellular and Molecular Mechanisms. Front Neurosci 2022; 16:917587. [PMID: 35769702 PMCID: PMC9234557 DOI: 10.3389/fnins.2022.917587] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Peripheral nerve injury (PNI) is one of the most common concerns in trauma patients. Despite significant advances in repair surgeries, the outcome can still be unsatisfactory, resulting in morbidities such as loss of sensory or motor function and reduced quality of life. This highlights the need for more supportive strategies for nerve regrowth and adequate recovery. Multifunctional cytokine transforming growth factor-β (TGF-β) is essential for the development of the nervous system and is known for its neuroprotective functions. Accumulating evidence indicates its involvement in multiple cellular and molecular responses that are critical to peripheral nerve repair. Following PNI, TGF-β is released at the site of injury where it can initiate a series of phenotypic changes in Schwann cells (SCs), modulate immune cells, activate neuronal intrinsic growth capacity, and regulate blood nerve barrier (BNB) permeability, thus enhancing the regeneration of the nerves. Notably, TGF-β has already been applied experimentally in the treatment of PNI. These treatments with encouraging outcomes further demonstrate its regeneration-promoting capacity. Herein, we review the possible roles of TGF-β in peripheral nerve regeneration and discuss the underlying mechanisms, thus providing new cues for better treatment of PNI.
Collapse
Affiliation(s)
- Zhiqian Ye
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junbin Wei
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chaoning Zhan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jin Hou,
| |
Collapse
|
17
|
Li B, Zhang Z, Wang H, Zhang D, Han T, Chen H, Chen J, Chen Z, Xie Y, Wang L, Bsoul N, Zhou X, Yan H. Melatonin promotes peripheral nerve repair through Parkin-mediated mitophagy. Free Radic Biol Med 2022; 185:52-66. [PMID: 35504358 DOI: 10.1016/j.freeradbiomed.2022.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
Abstract
Schwann cells (SCs) are the major glial cells in peripheral nervous system. They unsheathe and myelinate axons and play an essential role in peripheral nerve regeneration. Several studies report that Parkin-mediated mitophagy is associated with various diseases. Melatonin promotes proliferation of central glial cells. Little is known about the effect of melatonin and Parkin-mediated mitophagy on peripheral nerve repair. In this study, using a rat model of a peripheral nerve injury (PNI) and in vitro model established by RSC96 cells treated with tert-butyl hydroperoxide (TBHP), we found that Parkin-mediated mitophagy can effectively reduce the production of mitochondrial reactive oxygen species (ROS), maintain the balance of mitochondrial membrane potential, maintain autophagic flux, and inhibit mitochondrial apoptosis. At the same time, we found that the increase of Parkin under stress is a manifestation of the RSC96 cells' resistance to oxidative stress to maintain RSC96 cells' balance. In our experiment, melatonin is similar to a Parkin agonist, up-regulating the expression of Parkin, enhancing all the positive results of Parkin in a stress state, such as inhibiting active oxygen production, maintaining autophagic flux, and inhibiting mitochondrial apoptosis. In addition, we design in vivo experiments to verify in In vitro experiments. In in vivo, melatonin promotes the expression of Parkin, maintains autophagic flux, inhibits apoptosis, promotes myelin regeneration, reduces the regeneration of collagen fibers around damaged tissues, and promotes peripheral nerve repair. When adenovirus was used to down-regulate the expression of Parkin, we found that all the positive effects of melatonin were attenuated. Collectively, these findings indicate that melatonin upregulates Parkin-mediated mitophagy and promotes peripheral nerve repair. The results provide a basis for development of effective drugs for PNI treatment.
Collapse
Affiliation(s)
- Baolong Li
- Department of Orthopedics (Division of Hand and Microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Key Laboratory of structural malformations in children, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China
| | - Zhe Zhang
- Department of Orthopedics (Division of Hand and Microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Key Laboratory of structural malformations in children, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China
| | - Hui Wang
- Department of Orthopedics (Division of Hand and Microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Key Laboratory of structural malformations in children, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China
| | - Dupiao Zhang
- Department of Orthopedics (Division of Hand and Microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Key Laboratory of structural malformations in children, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China
| | - Tao Han
- Department of Orthopedics (Division of Hand and Microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Key Laboratory of structural malformations in children, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China
| | - Hongyu Chen
- Department of Orthopedics (Division of Hand and Microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Key Laboratory of structural malformations in children, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China
| | - Jianpeng Chen
- Department of Orthopedics (Division of Hand and Microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Key Laboratory of structural malformations in children, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China
| | - Zhengtai Chen
- Department of Orthopedics (Division of Hand and Microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Key Laboratory of structural malformations in children, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China
| | - Yutong Xie
- Department of Orthopedics (Division of Hand and Microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Key Laboratory of structural malformations in children, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China
| | - Liang Wang
- Department of Orthopedics (Division of Hand and Microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Key Laboratory of structural malformations in children, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China
| | - Najeeb Bsoul
- Department of Orthopedics (Division of Hand and Microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Key Laboratory of structural malformations in children, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China
| | - Xijie Zhou
- Department of Orthopedics (Division of Hand and Microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Key Laboratory of structural malformations in children, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China.
| | - Hede Yan
- Department of Orthopedics (Division of Hand and Microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Key Laboratory of structural malformations in children, Wenzhou, 325000, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
18
|
Kawai H, Ito A, Wang T, Xu S, Kuroki H. Investigating the Optimal Initiation Time of Ultrasound Therapy for Peripheral Nerve Regeneration after Axonotmesis in Rats. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:304-312. [PMID: 34740495 DOI: 10.1016/j.ultrasmedbio.2021.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
This study was aimed at identifying the optimal initiation time of ultrasound (US) therapy for peripheral nerve regeneration after axonotmesis. Thirty-six rats with sciatic nerve crush injury were divided into four groups that received US irradiation initiated 1, 7 or 14 d after injury, or sham stimulation for 4 wk. Motor function analysis was conducted weekly; however, there was no significant improvement attributed to US treatment. Four weeks after injury, compound muscle action potential amplitude values of the group in which US irradiation was initiated 1 d after the injury exhibited significant improvement compared with the sham stimulation group. In addition, myelin sheath thickness was significantly greater in the 1-d group than in other groups. These results indicate that US treatment initiated 1 d after peripheral nerve injury promotes maximum regeneration.
Collapse
Affiliation(s)
- Hideki Kawai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Japan Society for the Promotion of Science, Tokyo, Japan
| | - Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Tianshu Wang
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shixuan Xu
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
19
|
Ito A, Araya Y, Kawai H, Kuroki H. Ultrasound Stimulation Inhibits Morphological Degeneration of Motor Endplates in the Denervated Skeletal Muscle of Rats. Neurosci Insights 2022; 17:26331055221138508. [PMID: 36420426 PMCID: PMC9677316 DOI: 10.1177/26331055221138508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/24/2022] [Indexed: 11/21/2022] Open
Abstract
Recovery of motor function after peripheral nerve injury requires treatment of
the neuromuscular junction (NMJ), as well as the injured nerve and skeletal
muscle. The purpose of this study was to examine the effects of ultrasound (US)
stimulation on NMJ degeneration after denervation using a rat model of peroneal
nerve transection. Twelve-week-old male Wistar rats were randomly assigned to 3
groups: US stimulation, sham stimulation, and intact. US or sham stimulation was
performed on the left tibialis anterior (TA) muscle starting the day after
peroneal nerve transection for 5 minutes daily under anesthesia. Four weeks
later, the number and morphology of the motor endplates were analyzed to assess
NMJ in the TA muscle. The endplates were classified as normal, partially
fragmented, or fully fragmented for morphometric analysis. In addition, the
number of terminal Schwann cells (tSCs) per endplate and percentage of endplates
with tSCs (tSC retention percentage) were calculated to evaluate the effect of
tSCs on NMJs. Our results showed that endplates degenerated 4 weeks after
transection, with a decrease in the normal type and an increase in the fully
fragmented type in both the US and sham groups compared to the intact group.
Furthermore, the US group showed significant suppression of the normal type
decrease and a fully fragmented type increase compared to the sham group. These
results suggest that US stimulation inhibits endplate degeneration in denervated
TA muscles. In contrast, the number of endplates and tSC and tSC retention
percentages were not significantly different between the US and sham groups.
Further investigations are required to determine the molecular mechanisms by
which US stimulation suppresses degeneration.
Collapse
Affiliation(s)
- Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuki Araya
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Kawai
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
20
|
Zhang X, Meng Y, Gong B, Wang T, Lu Y, Zhang L, Xue J. Electrospun Nanofibers for Manipulating the Soft Tissue Regeneration. J Mater Chem B 2022; 10:7281-7308. [DOI: 10.1039/d2tb00609j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Soft tissue damage is a common clinical problem that affects the lives of a large number of patients all over the world. It is of great importance to develop functional...
Collapse
|
21
|
Pardal-Fernandez JM, Grande-Martin A, Godes-Medrano B. A case of ulnar nerve section at the elbow alleviated by Martin-Gruber communicating branch. Diagnostic characterization. HAND SURGERY & REHABILITATION 2021; 41:270-272. [PMID: 34954408 DOI: 10.1016/j.hansur.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/04/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022]
Abstract
Martin-Gruber communicating branch may be a confounding factor in the diagnosis of ulnar neuropathy at the elbow. It may also lead to a surprising level of motor function conservation despite evident neuropathy. We present a patient with ulnar nerve section at the elbow who underwent early treatment by nerve suture. At 7 months, function was good, despite sonographic findings of neurotmesis at the elbow. Electroneurography revealed Martin-Gruber communicating branch. This type of communicating branch can be associated with functional conservation despite ulnar nerve section. Electrophysiological and ultrasound findings can be highly contributive in defining these conditions.
Collapse
Affiliation(s)
- J M Pardal-Fernandez
- Department of Clinical Neurophysiology, University General Hospital, C/ Hnos. Falcó, S/N, 02006 Albacete, Spain.
| | - A Grande-Martin
- Department of Clinical Neurophysiology, University General Hospital, C/ Hnos. Falcó, S/N, 02006 Albacete, Spain
| | - B Godes-Medrano
- Department of Clinical Neurophysiology, University General Hospital, C/ Hnos. Falcó, S/N, 02006 Albacete, Spain
| |
Collapse
|
22
|
Engineered neural tissue made using clinical-grade human neural stem cells supports regeneration in a long gap peripheral nerve injury model. Acta Biomater 2021; 135:203-213. [PMID: 34455110 DOI: 10.1016/j.actbio.2021.08.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/08/2021] [Accepted: 08/19/2021] [Indexed: 12/11/2022]
Abstract
A surgical autograft remains the clinical gold-standard therapy for gap repair following peripheral nerve injury, however, challenges remain with achieving full recovery and reducing donor-site morbidity. Engineered Neural Tissue (EngNT) manufactured using differentiated CTX0E03 human stem cells (EngNT-CTX) has been developed as a potential 'off the shelf' allogeneic autograft replacement. Ensheathed within a collagen membrane developed to facilitate biomechanical integration, EngNT-CTX was used to bridge a critical-length (15 mm) sciatic nerve gap injury in athymic nude rats. The effectiveness of EngNT-CTX was compared to an autograft using outcome measures that assessed neuronal regeneration and functional recovery at 8 and 16 weeks. At both time points EngNT-CTX restored electrophysiological nerve conduction and functional reinnervation of downstream muscles to the same extent as the autograft. Histological analysis confirmed that more motor neurons had successfully regenerated through the repair in EngNT-CTX in comparison to the autograft at 8 weeks, which was consistent with the electrophysiology, with the number of motor neurons similar in both groups by 16 weeks. The total number of neurons (motor + sensory) was greater in autografts than EngNT-CTX at 8 weeks, indicating that more sensory fibres may have sprouted in those animals at this time point. In conclusion, this study provides evidence to support the effectiveness of EngNT-CTX as a replacement for the nerve autograft, as the functional regeneration assessed through histological and electrophysiological outcome measures demonstrated equivalent performance. STATEMENT OF SIGNIFICANCE: Following injury a peripheral nerve has the capacity to regenerate naturally, however, in the case of severe damage where there is a gap the current gold-standard microsurgical intervention is an autograft. This is associated with serious limitations including tissue availability and donor-site morbidity. Tissue engineering aims to overcome these limitations by building a construct from therapeutic cells and biomaterials as a means to mimic and replace the autograft. In this study engineered neural tissue (EngNT) was manufactured using human stem cells (CTX) to bridge a critical-length gap injury. When compared to the autograft in an animal model the EngNT-CTX construct restored function to an equivalent or greater extent.
Collapse
|
23
|
Zafar S, Rasul A, Iqbal J, Anwar H, Imran A, Jabeen F, Shabbir A, Akram R, Maqbool J, Sajid F, Arshad MU, Hussain G, Islam S. Calotropis procera (leaves) supplementation exerts curative effects on promoting functional recovery in a mouse model of peripheral nerve injury. Food Sci Nutr 2021; 9:5016-5027. [PMID: 34532013 PMCID: PMC8441272 DOI: 10.1002/fsn3.2455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
Peripheral nerve injuries are among those complicated medical conditions, which are still waiting for their highly effective first-line therapies. In this study, the role of Calotropis procera crude leaves was evaluated at different doses for their effectiveness in improving functional recovery following sciatic nerve injury-induced in the mouse model. Thirty-two healthy albino mice were divided into four groups as Normal chow group (control, n = 8) and C. procera chow groups (50 mg/kg (n = 8), 100 mg/kg (n = 8) and 200 mg/kg (n = 8)). Behavioral analyses were performed to assess and compare improved functional recovery along with skeletal muscle mass measurement in all groups. Serum samples were analyzed for oxidative stress markers. Results showed that C. procera leaves at dose-dependent manner showed statistically prominent (p < .05) increase in sensorimotor functions reclamation as confirmed by behavioral analyses along with muscle mass restoration and prominent decline in TOS and momentous increase in TAC along with the augmented activity of antioxidative enzymes.
Collapse
Affiliation(s)
- Shamaila Zafar
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Azhar Rasul
- Department of ZoologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Javed Iqbal
- Department of NeurologyAllied HospitalFaisalabad Medical UniversityFaisalabadPakistan
| | - Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Ali Imran
- Institute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Farhat Jabeen
- Department of ZoologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Asghar Shabbir
- Department of BiosciencesCOMSATS Institute of Information TechnologyIslamabadPakistan
| | - Rabia Akram
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Javeria Maqbool
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Faiqa Sajid
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | | | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Saiful Islam
- Institute of Nutrition and Food ScienceUniversity of DhakaDhakaBangladesh
| |
Collapse
|
24
|
MacKay BJ, Cox CT, Valerio IL, Greenberg JA, Buncke GM, Evans PJ, Mercer DM, McKee DM, Ducic I. Evidence-Based Approach to Timing of Nerve Surgery: A Review. Ann Plast Surg 2021; 87:e1-e21. [PMID: 33833177 PMCID: PMC8560160 DOI: 10.1097/sap.0000000000002767] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 01/08/2023]
Abstract
ABSTRACT Events causing acute stress to the health care system, such as the COVID-19 pandemic, place clinical decisions under increased scrutiny. The priority and timing of surgical procedures are critically evaluated under these conditions, yet the optimal timing of procedures is a key consideration in any clinical setting. There is currently no single article consolidating a large body of current evidence on timing of nerve surgery. MEDLINE and EMBASE databases were systematically reviewed for clinical data on nerve repair and reconstruction to define the current understanding of timing and other factors affecting outcomes. Special attention was given to sensory, mixed/motor, nerve compression syndromes, and nerve pain. The data presented in this review may assist surgeons in making sound, evidence-based clinical decisions regarding timing of nerve surgery.
Collapse
Affiliation(s)
- Brendan J. MacKay
- From the Texas Tech University Health Sciences Center
- University Medical Center, Lubbock, TX
| | | | - Ian L. Valerio
- Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA
| | | | | | - Peter J. Evans
- Orthopaedic Surgery, Cleveland Clinic of Florida, Weston, FL
| | - Deana M. Mercer
- Department of Orthopaedics and Rehabilitation, The University of New Mexico, Albuquerque, NM
| | - Desirae M. McKee
- From the Texas Tech University Health Sciences Center
- University Medical Center, Lubbock, TX
| | | |
Collapse
|
25
|
Gupta R, Chan JP, Uong J, Palispis WA, Wright DJ, Shah SB, Ward SR, Lee TQ, Steward O. Human motor endplate remodeling after traumatic nerve injury. J Neurosurg 2021; 135:220-227. [PMID: 32947259 DOI: 10.3171/2020.8.jns201461] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/17/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Current management of traumatic peripheral nerve injuries is variable with operative decisions based on assumptions that irreversible degeneration of the human motor endplate (MEP) follows prolonged denervation and precludes reinnervation. However, the mechanism and time course of MEP changes after human peripheral nerve injury have not been investigated. Consequently, there are no objective measures by which to determine the probability of spontaneous recovery and the optimal timing of surgical intervention. To improve guidance for such decisions, the aim of this study was to characterize morphological changes at the human MEP following traumatic nerve injury. METHODS A prospective cohort (here analyzed retrospectively) of 18 patients with traumatic brachial plexus and axillary nerve injuries underwent biopsy of denervated muscles from the upper extremity from 3 days to 6 years after injury. Muscle specimens were processed for H & E staining and immunohistochemistry, with visualization via confocal and two-photon excitation microscopy. RESULTS Immunohistochemical analysis demonstrated varying degrees of fragmentation and acetylcholine receptor dispersion in denervated muscles. Comparison of denervated muscles at different times postinjury revealed progressively increasing degeneration. Linear regression analysis of 3D reconstructions revealed significant linear decreases in MEP volume (R = -0.92, R2 = 0.85, p = 0.001) and surface area (R = -0.75, R2 = 0.56, p = 0.032) as deltoid muscle denervation time increased. Surprisingly, innervated and structurally intact MEPs persisted in denervated muscle specimens from multiple patients 6 or more months after nerve injury, including 2 patients who had presented > 3 years after nerve injury. CONCLUSIONS This study details novel and critically important data about the morphology and temporal sequence of events involved in human MEP degradation after traumatic nerve injuries. Surprisingly, human MEPs not only persisted, but also retained their structures beyond the assumed 6-month window for therapeutic surgical intervention based on previous clinical studies. Preoperative muscle biopsy in patients being considered for nerve transfer may be a useful prognostic tool to determine MEP viability in denervated muscle, with surviving MEPs also being targets for adjuvant therapy.
Collapse
Affiliation(s)
- Ranjan Gupta
- 1Peripheral Nerve Research Lab, Department of Orthopaedic Surgery, University of California, Irvine
| | - Justin P Chan
- 1Peripheral Nerve Research Lab, Department of Orthopaedic Surgery, University of California, Irvine
| | - Jennifer Uong
- 1Peripheral Nerve Research Lab, Department of Orthopaedic Surgery, University of California, Irvine
| | - Winnie A Palispis
- 1Peripheral Nerve Research Lab, Department of Orthopaedic Surgery, University of California, Irvine
| | - David J Wright
- 1Peripheral Nerve Research Lab, Department of Orthopaedic Surgery, University of California, Irvine
| | - Sameer B Shah
- 2Department of Orthopaedic Surgery, University of California, San Diego
| | - Samuel R Ward
- 2Department of Orthopaedic Surgery, University of California, San Diego
| | - Thay Q Lee
- 3Congress Medical Foundation, Pasadena; and
| | - Oswald Steward
- 4Reeve-Irvine Research Center, University of California, Irvine, California
| |
Collapse
|
26
|
Cox CT, Suryavanshi JR, Osemwengie BO, Rosqvist S, Blue M, McKee D, MacKay BJ. Evaluation of postoperative outcomes in patients following multi-level surgical reconstructions with the use Avive ™ soft tissue membrane on nerve after traumatic injury of the upper extremity and lower extremity. SAGE Open Med 2021; 9:20503121211023356. [PMID: 34164128 PMCID: PMC8188973 DOI: 10.1177/20503121211023356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
Background Treatment of patients with traumatic axonotmesis presents challenges. Processed human umbilical cord membrane has been recently developed with improved handling and resorption time compared to other amniotic membrane wraps, and may be beneficial in nerve reconstruction. This study evaluates postoperative outcomes after traumatic peripheral nerve injury after placement of commercially available processed human umbilical cord membrane. Methods We performed a prospective, single-center pilot study of patients undergoing multi-level surgical reconstruction for exposed, non-transected peripheral nerve. Functional outcomes including pain, range of motion, pinch and grip strength, and the QuickDASH and SF-36 patient-reported outcome measures were recorded, when possible, at the 1-week and 3, 6, and 9 months postop visit. One-tailed paired t-tests were performed to evaluate outcome improvement at final follow-up. Results Twenty patients had processed human umbilical cord membrane placement without surgical complications. Mean follow-up was 7.5 months (range: 3-10 months) and mean age was 39 years (range: 15-65). Twelve (67%) patients were male, and the majority of placement sites were in the upper extremity (85%). Mean preoperative visual analog scale pain score was significantly reduced at most recent follow-up, as were QuickDASH scores. All patients had improved functional outcomes at the 9-month follow-up, and SF-36 outcomes at 9 months showed improvement across all dimensions. Conclusion This study indicates that processed human umbilical cord membrane may be a useful adjunct in nerve surgery with noted improvements in postoperative function, pain, and patient-reported outcome measures. Future studies are needed to assess long-term outcomes after traumatic nerve injury treated with processed human umbilical cord membrane.
Collapse
Affiliation(s)
- Cameron T Cox
- Department of Orthopaedic Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Joash R Suryavanshi
- Department of Orthopaedic Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Bradley O Osemwengie
- Department of Orthopaedic Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Sterling Rosqvist
- Department of Orthopaedic Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Matthew Blue
- Department of Orthopaedic Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Desirae McKee
- Department of Orthopaedic Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,University Medical Center, Lubbock, TX, USA
| | - Brendan J MacKay
- Department of Orthopaedic Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,University Medical Center, Lubbock, TX, USA
| |
Collapse
|
27
|
Pinto CG, Leite APS, Sartori AA, Tibúrcio FC, Barraviera B, Junior RSF, Filadelpho AL, de Carvalho SC, Matheus SMM. Heterologous fibrin biopolymer associated to a single suture stitch enables the return of neuromuscular junction to its mature pattern after peripheral nerve injury. Injury 2021; 52:731-737. [PMID: 33902866 DOI: 10.1016/j.injury.2020.10.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/26/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023]
Abstract
Denervation leads to severe atrophy of neuromuscular junction (NMJ) structure including decrease of the expression of fundamental proteins. Up to now, conventional suture has been the gold standard method used to correct this injury. Fibrin sealant is one of the alternatives proposed to optimize this method. This study verified if the association of fibrin sealant - Heterologous Fibrin Biopolymer (HFB) and a single suture stitch promotes return of morphology and NMJ structure to mature pattern after peripheral nerve injury. Forty Wistar rats were distributed into 4 groups: Sham-Control (SC), Denervated-Control (DC), Suture-Lesion (SL) and Suture-Lesion + HFB (SFS). In SC group only the right sciatic nerve identification was done. In DC, SL and SFS groups fixation of nerve stumps on musculature immediately after neurotmesis was performed. After seven days, stump reconnection with 3 stitches in SL and a single stitch associated with HFB in SFS were done. After sixty days right soleus muscles were prepared for nicotinic acetylcholine receptors (nAChRs) and nerve terminal confocal analyses, and for nAChRs (α1, ε e γ), S100, Agrin, LRP-4, MMP-3, Rapsyn western blotting analyses. SC group presented normal morphology. In DC group it was observed flattening of NMJ, fragmentation of nAChRs and tangled nerve terminals. The majority of the parameters of SL and SFS groups presented values in between SC and DC groups. There was an increase of relative planar area in these groups (SL and SFS) highlighting that there was less nAChRs fragmentation and the values of protein expression showed return of nAChRs to mature pattern. Use of HFB associated with a single suture stitch decreased surgical time, minimized suture injuries, did not alter nerve regeneration and presented potential to reestablish the NMJ apparatus. These consolidated results encourage surgeons to develop future clinical trials to install definitively this new approach both for reconstructive surgery and neurosurgery.
Collapse
Affiliation(s)
- Carina Guidi Pinto
- Graduate Program in Surgery and Translational Medicine, Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil; Department of Structural and Functional Biology (Anatomy Sector), Institute of Biosciences, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
| | - Ana Paula Silveira Leite
- Graduate Program in Surgery and Translational Medicine, Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil; Department of Structural and Functional Biology (Anatomy Sector), Institute of Biosciences, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
| | - Arthur Alves Sartori
- Department of Structural and Functional Biology (Anatomy Sector), Institute of Biosciences, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
| | - Felipe Cantore Tibúrcio
- Graduate Program in Surgery and Translational Medicine, Medical School, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil; Department of Structural and Functional Biology (Anatomy Sector), Institute of Biosciences, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
| | - Benedito Barraviera
- Center for the Studies of Venoms and Venomous Animals (CEVAP), São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
| | - Rui Seabra Ferreira Junior
- Center for the Studies of Venoms and Venomous Animals (CEVAP), São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
| | - André Luis Filadelpho
- Department of Structural and Functional Biology (Anatomy Sector), Institute of Biosciences, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil
| | | | - Selma Maria Michelin Matheus
- Department of Structural and Functional Biology (Anatomy Sector), Institute of Biosciences, São Paulo State University (Unesp), Botucatu, São Paulo, Brazil.
| |
Collapse
|
28
|
Antonova OY, Kochetkova OY, Shlyapnikov YM. ECM-Mimetic Nylon Nanofiber Scaffolds for Neurite Growth Guidance. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:516. [PMID: 33670540 PMCID: PMC7922859 DOI: 10.3390/nano11020516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/19/2022]
Abstract
Numerous nanostructured synthetic scaffolds mimicking the architecture of the natural extracellular matrix (ECM) have been described, but the polymeric nanofibers comprising the scaffold were substantially thicker than the natural collagen nanofibers of neural ECM. Here, we report neuron growth on electrospun scaffolds of nylon-4,6 fibers with an average diameter of 60 nm, which closely matches the diameter of collagen nanofibers of neural ECM, and compare their properties with the scaffolds of thicker 300 nm nanofibers. Previously unmodified nylon was not regarded as an independent nanostructured matrix for guided growth of neural cells; however, it is particularly useful for ultrathin nanofiber production. We demonstrate that, while both types of fibers stimulate directed growth of neuronal processes, ultrathin fibers are more efficient in promoting and accelerating neurite elongation. Both types of scaffolds also improved synaptogenesis and the formation of connections between hippocampal neurons; however, the mechanisms of interaction of neurites with the scaffolds were substantially different. While ultrathin fibers formed numerous weak immature β1-integrin-positive focal contacts localized over the entire cell surface, scaffolds of submicron fibers formed β1-integrin focal adhesions only on the cell soma. This indicates that the scaffold nanotopology can influence focal adhesion assembly involving various integrin subunits. The fabricated nanostructured scaffolds demonstrated high stability and resistance to biodegradation, as well as absence of toxic compound release after 1 month of incubation with live cells in vitro. Our results demonstrate the high potential of this novel type of nanofibers for clinical application as substrates facilitating regeneration of nervous tissue.
Collapse
Affiliation(s)
- Olga Y. Antonova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia; (O.Y.K.); (Y.M.S.)
| | | | | |
Collapse
|
29
|
Spijkers XM, Pasteuning-Vuhman S, Dorleijn JC, Vulto P, Wevers NR, Pasterkamp RJ. A directional 3D neurite outgrowth model for studying motor axon biology and disease. Sci Rep 2021; 11:2080. [PMID: 33483540 PMCID: PMC7822896 DOI: 10.1038/s41598-021-81335-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
We report a method to generate a 3D motor neuron model with segregated and directed axonal outgrowth. iPSC-derived motor neurons are cultured in extracellular matrix gel in a microfluidic platform. Neurons extend their axons into an adjacent layer of gel, whereas dendrites and soma remain predominantly in the somal compartment, as verified by immunofluorescent staining. Axonal outgrowth could be precisely quantified and was shown to respond to the chemotherapeutic drug vincristine in a highly reproducible dose-dependent manner. The model was shown susceptible to excitotoxicity upon exposure with excess glutamate and showed formation of stress granules upon excess glutamate or sodium arsenite exposure, mimicking processes common in motor neuron diseases. Importantly, outgrowing axons could be attracted and repelled through a gradient of axonal guidance cues, such as semaphorins. The platform comprises 40 chips arranged underneath a microtiter plate providing both throughput and compatibility to standard laboratory equipment. The model will thus prove ideal for studying axonal biology and disease, drug discovery and regenerative medicine.
Collapse
Affiliation(s)
- Xandor M. Spijkers
- grid.474144.6MIMETAS BV, Organ-On-a-Chip Company, 2333 CH Leiden, The Netherlands ,grid.5477.10000000120346234Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Svetlana Pasteuning-Vuhman
- grid.5477.10000000120346234Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Jennifa C. Dorleijn
- grid.474144.6MIMETAS BV, Organ-On-a-Chip Company, 2333 CH Leiden, The Netherlands
| | - Paul Vulto
- grid.474144.6MIMETAS BV, Organ-On-a-Chip Company, 2333 CH Leiden, The Netherlands
| | - Nienke R. Wevers
- grid.474144.6MIMETAS BV, Organ-On-a-Chip Company, 2333 CH Leiden, The Netherlands ,grid.10419.3d0000000089452978Department of Cell and Chemical Biology, Leiden University Medical Centre, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - R. Jeroen Pasterkamp
- grid.5477.10000000120346234Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
30
|
Asthana P, Zhang G, Sheikh KA, Him Eddie Ma C. Heat shock protein is a key therapeutic target for nerve repair in autoimmune peripheral neuropathy and severe peripheral nerve injury. Brain Behav Immun 2021; 91:48-64. [PMID: 32858161 DOI: 10.1016/j.bbi.2020.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
Guillain-Barré syndrome (GBS) is an autoimmune peripheral neuropathy and a common cause of neuromuscular paralysis. Preceding infection induces the production of anti-ganglioside (GD) antibodies attacking its own peripheral nerves. In severe proximal peripheral nerve injuries that require long-distance axon regeneration, motor functional recovery is virtually nonexistent. Damaged axons fail to regrow and reinnervate target muscles. In mice, regenerating axons must reach the target muscle within 35 days (critical period) to reform functional neuromuscular junctions and regain motor function. Successful functional recovery depends on the rate of axon regeneration and debris removal (Wallerian degeneration) after nerve injury. The innate-immune response of the peripheral nervous system to nerve injury such as timing and magnitude of cytokine production is crucial for Wallerian degeneration. In the current study, forced expression of human heat shock protein (hHsp) 27 completely reversed anti-GD-induced inhibitory effects on nerve repair assessed by animal behavioral assays, electrophysiology and histology studies, and the beneficial effect was validated in a second mouse line of hHsp27. The protective effect of hHsp27 on prolonged muscle denervation was examined by performing repeated sciatic nerve crushes to delay regenerating axons from reaching distal muscle from 37 days up to 55 days. Strikingly, hHsp27 was able to extend the critical period of motor functional recovery for up to 55 days and preserve the integrity of axons and mitochondria in distal nerves. Cytokine array analysis demonstrated that a number of key cytokines which are heavily involved in the early phase of innate-immune response of Wallerian degeneration, were found to be upregulated in the sciatic nerve lysates of hHsp27 Tg mice at 1 day postinjury. However, persistent hyperinflammatory mediator changes were found after chronic denervation in sciatic nerves of littermate mice, but remained unchanged in hHsp27 Tg mice. Taken together, the current study provides insight into the development of therapeutic strategies to enhance muscle receptiveness (reinnervation) by accelerating axon regeneration and Wallerian degeneration.
Collapse
Affiliation(s)
- Pallavi Asthana
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Hong Kong Special Administrative Region
| | - Gang Zhang
- Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston TX 77030, USA
| | - Kazim A Sheikh
- Department of Neurology, University of Texas Medical School at Houston, 6431 Fannin Street, Houston TX 77030, USA
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Hong Kong Special Administrative Region; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
31
|
Marshall KL, Farah MH. Axonal regeneration and sprouting as a potential therapeutic target for nervous system disorders. Neural Regen Res 2021; 16:1901-1910. [PMID: 33642358 PMCID: PMC8343323 DOI: 10.4103/1673-5374.308077] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Nervous system disorders are prevalent health issues that will only continue to increase in frequency as the population ages. Dying-back axonopathy is a hallmark of many neurologic diseases and leads to axonal disconnection from their targets, which in turn leads to functional impairment. During the course of many of neurologic diseases, axons can regenerate or sprout in an attempt to reconnect with the target and restore synapse function. In amyotrophic lateral sclerosis (ALS), distal motor axons retract from neuromuscular junctions early in the disease-course before significant motor neuron death. There is evidence of compensatory motor axon sprouting and reinnervation of neuromuscular junctions in ALS that is usually quickly overtaken by the disease course. Potential drugs that enhance compensatory sprouting and encourage reinnervation may slow symptom progression and retain muscle function for a longer period of time in ALS and in other diseases that exhibit dying-back axonopathy. There remain many outstanding questions as to the impact of distinct disease-causing mutations on axonal outgrowth and regeneration, especially in regards to motor neurons derived from patient induced pluripotent stem cells. Compartmentalized microfluidic chambers are powerful tools for studying the distal axons of human induced pluripotent stem cells-derived motor neurons, and have recently been used to demonstrate striking regeneration defects in human motor neurons harboring ALS disease-causing mutations. Modeling the human neuromuscular circuit with human induced pluripotent stem cells-derived motor neurons will be critical for developing drugs that enhance axonal regeneration, sprouting, and reinnervation of neuromuscular junctions. In this review we will discuss compensatory axonal sprouting as a potential therapeutic target for ALS, and the use of compartmentalized microfluidic devices to find drugs that enhance regeneration and axonal sprouting of motor axons.
Collapse
Affiliation(s)
| | - Mohamed H Farah
- Department of Neurology at Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
32
|
Berg M, Coy R, Phillips J, Shipley R. Modelling regenerative angiogenesis in peripheral nerve injuries. Comput Methods Biomech Biomed Engin 2020. [DOI: 10.1080/10255842.2020.1811503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- M. Berg
- Department of Mechanical engineering, University College London, London, UK
- Center for Nerve Engineering, University College London, London, UK
| | - R. Coy
- Department of Mechanical engineering, University College London, London, UK
- Center for Nerve Engineering, University College London, London, UK
| | - J. Phillips
- Center for Nerve Engineering, University College London, London, UK
- School of Pharmacy, University College London, London, UK
| | - R. Shipley
- Department of Mechanical engineering, University College London, London, UK
- Center for Nerve Engineering, University College London, London, UK
| |
Collapse
|
33
|
Extracellular Vesicles as Innovative Tool for Diagnosis, Regeneration and Protection against Neurological Damage. Int J Mol Sci 2020; 21:ijms21186859. [PMID: 32962107 PMCID: PMC7555813 DOI: 10.3390/ijms21186859] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) have recently attracted a great deal of interest as they may represent a new biosignaling paradigm. According to the mode of biogenesis, size and composition, two broad categories of EVs have been described, exosomes and microvesicles. EVs have been shown to carry cargoes of signaling proteins, RNA species, DNA and lipids. Once released, their content is selectively taken up by near or distant target cells, influencing their behavior. Exosomes are involved in cell–cell communication in a wide range of embryonic developmental processes and in fetal–maternal communication. In the present review, an outline of the role of EVs in neural development, regeneration and diseases is presented. EVs can act as regulators of normal homeostasis, but they can also promote either neuroinflammation/degeneration or tissue repair in pathological conditions, depending on their content. Since EV molecular cargo constitutes a representation of the origin cell status, EVs can be exploited in the diagnosis of several diseases. Due to their capability to cross the blood–brain barrier (BBB), EVs not only have been suggested for the diagnosis of central nervous system disorders by means of minimally invasive procedures, i.e., “liquid biopsies”, but they are also considered attractive tools for targeted drug delivery across the BBB. From the therapeutic perspective, mesenchymal stem cells (MSCs) represent one of the most promising sources of EVs. In particular, the neuroprotective properties of MSCs derived from the dental pulp are here discussed.
Collapse
|
34
|
Warner WS, Yeoh S, Light A, Zhang J, Mahan MA. Rapid-Stretch Injury to Peripheral Nerves: Histologic Results. Neurosurgery 2020; 86:437-445. [PMID: 31140562 DOI: 10.1093/neuros/nyz194] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/11/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Although most severe peripheral nerve injuries result from high-speed mechanisms, there is no laboratory model to replicate this clinical condition. OBJECTIVE To qualitatively and quantitatively describe microanatomical injury of rapid stretch. METHODS The sciatic nerves of 36 Sprague-Dawley rats were subjected to rapid-stretch nerve injury, using fixed-direction strain produced via constrained weight drop applied to an intact nerve. Nerve injury severity was categorized by biomechanical parameters. Injury to nerve microarchitecture was quantified with serial longitudinal sectioning, with specific focus on the endoneurium, perineurium, and epineurium. RESULTS Four grades of stretch injury severity were determined by mathematical cluster analysis: sham, elastic stretch, inelastic stretch, and stretch rupture. Two patterns of injury to endoneurial architecture were quantified: loss of fiber undulation (straightened fibers) and rupturing of individual fibers ("microruptures"). Straightening of nerve fibers was the earliest accommodation to stretch injury and accounted for elongation during elastic stretch. Microruptures were distributed along the length of the nerve and were more severe and involved greater volume of the nerve at higher biomechanical severity. Epineurium and perineurium disruption increased in frequency with progressive injury severity, yet did not predict transition from one injury grade to another (P = .3), nor was it a hallmark of severe injury. Conversely, accumulation of microruptures provided strong correlation to nerve injury severity (Pearson's R = .9897) and progression to mechanical failure. CONCLUSION Nerve architecture is injured in a graded fashion during stretch injury, which likely reflects tissue biomechanics. This study suggests new considerations in the theoretical framework of nerve stretch trauma.
Collapse
Affiliation(s)
- Wesley S Warner
- Department of Neurosurgery, Clinical Neurosciences Center, The University of Utah, Salt Lake City, Utah
| | - Stewart Yeoh
- Department of Neurosurgery, Clinical Neurosciences Center, The University of Utah, Salt Lake City, Utah
| | - Alan Light
- Department of Anesthesiology, The University of Utah, Salt Lake City, Utah
| | - Jie Zhang
- Department of Anesthesiology, The University of Utah, Salt Lake City, Utah
| | - Mark A Mahan
- Department of Neurosurgery, Clinical Neurosciences Center, The University of Utah, Salt Lake City, Utah
| |
Collapse
|
35
|
Muangsanit P, Day A, Dimiou S, Ataç AF, Kayal C, Park H, Nazhat SN, Phillips JB. Rapidly formed stable and aligned dense collagen gels seeded with Schwann cells support peripheral nerve regeneration. J Neural Eng 2020; 17:046036. [DOI: 10.1088/1741-2552/abaa9c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Physical understanding of axonal growth patterns on grooved substrates: groove ridge crossing versus longitudinal alignment. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00089-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Elsayed H, Faroni A, Ashraf MR, Osuji J, Wunderley L, Zhang L, Elsobky H, Mansour M, Zidan AS, Reid AJ. Development and Characterisation of an in vitro Model of Wallerian Degeneration. Front Bioeng Biotechnol 2020; 8:784. [PMID: 32754584 PMCID: PMC7365951 DOI: 10.3389/fbioe.2020.00784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/22/2020] [Indexed: 02/03/2023] Open
Abstract
Following peripheral nerve injury, a sequence of events termed Wallerian degeneration (WD) takes place at the distal stump in order to allow the regenerating axons to grow back toward the target organs. Schwann cells (SCs) play a lead role in this by initiating the inflammatory response attracting macrophages and immune cells, as well as producing neurotrophic signals that are essential for nerve regeneration. The majority of existing research has focused on tools to improve regeneration, overlooking the critical degeneration phase. This is also due to the lack of in vitro models recapitulating the features of in vivo WD. In particular, to understand the initial SC response following injury, and to investigate potential interventions, a model that isolates the nerve from other systemic influences is required. Stem cell intervention has been extensively studied as a potential therapeutic intervention to augment regeneration; however, data regarding their role in WD is lacking. Thus, in this study we describe an in vitro model using rat sciatic nerve explants degenerating up to 14 days. Characterisation of this model was performed by gene and protein expression for key markers of WD, in addition to immunohistochemical analysis and electron microscopy. We found changes in keeping with WD in vivo: upregulation of repair program protein CJUN, downregulation of myelin protein genes and subsequent disorganisation and breakdown of myelin structure. As a means of testing the effects of stem cell intervention on WD we established indirect co-cultures of human adipose-derived mesenchymal stem cells (AD-MSC) with the degenerating nerve explants. The stem cell intervention potentiated neurotrophic factors and Cjun expression. We conclude that our in vitro model shares the main features of in vivo WD, and we provide proof of principle on its effectiveness to study experimental approaches for nerve regeneration focused on the events happening during WD.
Collapse
Affiliation(s)
- Heba Elsayed
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Department of Neurosurgery, Mansoura University Hospitals, Mansoura, Egypt
| | - Alessandro Faroni
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Mohammad R Ashraf
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Judith Osuji
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Lydia Wunderley
- Division of Cellular and Molecular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ling Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Hesham Elsobky
- Department of Neurosurgery, Mansoura University Hospitals, Mansoura, Egypt
| | - Mohamed Mansour
- Department of Neurosurgery, Mansoura University Hospitals, Mansoura, Egypt
| | - Ashraf S Zidan
- Department of Neurosurgery, Mansoura University Hospitals, Mansoura, Egypt.,Mansoura University Hospital, Mansoura, Egypt
| | - Adam J Reid
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom.,Department of Plastic Surgery & Burns, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
38
|
Tallon C, Marshall KL, Kennedy ME, Hyde LA, Farah MH. Pharmacological BACE Inhibition Improves Axonal Regeneration in Nerve Injury and Disease Models. Neurotherapeutics 2020; 17:973-988. [PMID: 32236823 PMCID: PMC7609814 DOI: 10.1007/s13311-020-00852-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
While the peripheral nervous system is able to repair itself following injury and disease, recovery is often slow and incomplete, with no available treatments to enhance the effectiveness of regeneration. Using knock-out and transgenic overexpressor mice, we previously reported that BACE1, an aspartyl protease, as reported by Hemming et al. (PLoS One 4:12, 2009), negatively regulates peripheral nerve regeneration. Here, we investigated whether pharmacological inhibition of BACE may enhance peripheral nerve repair following traumatic nerve injury or neurodegenerative disease. BACE inhibitor-treated mice had increased numbers of regenerating axons and enhanced functional recovery after a sciatic nerve crush while inhibition increased axonal sprouting following a partial nerve injury. In the SOD1G93A ALS mouse model, BACE inhibition increased axonal regeneration with improved muscle re-innervation. CHL1, a BACE1 substrate, was elevated in treated mice and may mediate enhanced regeneration. Our data demonstrates that pharmacological BACE inhibition accelerates peripheral axon regeneration after varied nerve injuries and could be used as a potential therapy.
Collapse
Affiliation(s)
- Carolyn Tallon
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | - Katherine L Marshall
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA
| | | | | | - Mohamed H Farah
- Department of Neurology, Neuromuscular Division, Johns Hopkins University School of Medicine, The John G. Rangos Sr. Building, Room 239, 855 N. Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
39
|
A Nanofiber Sheet Incorporating Vitamin B12 Promotes Nerve Regeneration in a Rat Neurorrhaphy Model. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2020; 7:e2538. [PMID: 32537295 PMCID: PMC7288885 DOI: 10.1097/gox.0000000000002538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 11/26/2022]
Abstract
Outcomes of peripheral nerve repair after injury are often suboptimal. Therefore, developing biological approaches to augment nerve regeneration is important. In this in vivo study, we tested the hypothesis that augmentation with an electrospun nanofiber sheet incorporating methylcobalamin (MeCbl) would be effective for regeneration after peripheral nerve transection and repair. Methods Rats were divided into 3 groups that either underwent sciatic nerve repair with or without the MeCbl sheet, or a sham operation. At 4 and/or 8 weeks after the operation, sensory and motor functional recovery, along with histological findings, were compared among the groups using the toe-spreading test, mechanical and thermal algesimetry tests, tibialis anterior muscle weight measurements, electrophysiological analyses, which included nerve conduction velocity (NCV), compound muscle action potential (CMAP), and terminal latency (TL), and histological analyses involving the myelinated axon ratio, axon diameter, and total axon number. Results Compared with the repair group without the MeCbl sheet, the repair group with the MeCbl sheet showed significant recovery in terms of tibialis anterior muscle weight, NCV and CMAP, and also tended to improve in the toe-spreading test, mechanical and thermal algesimetry tests, and TL. Histological analyses also demonstrated that the myelinated axon ratios and axon diameters were significantly higher. Among these findings, the repair group with the MeCbl sheet demonstrated the same recovery in NCV as the sham group. Conclusion This study demonstrated that electrospun nanofiber MeCbl sheets promoted nerve regeneration and functional recovery, indicating that this treatment strategy may be viable for human peripheral nerve injuries.
Collapse
|
40
|
Meyer Zu Reckendorf S, Brand C, Pedro MT, Hegler J, Schilling CS, Lerner R, Bindila L, Antoniadis G, Knöll B. Lipid metabolism adaptations are reduced in human compared to murine Schwann cells following injury. Nat Commun 2020; 11:2123. [PMID: 32358558 PMCID: PMC7195462 DOI: 10.1038/s41467-020-15915-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/03/2020] [Indexed: 11/10/2022] Open
Abstract
Mammals differ in their regeneration potential after traumatic injury, which might be caused by species-specific regeneration programs. Here, we compared murine and human Schwann cell (SC) response to injury and developed an ex vivo injury model employing surgery-derived human sural nerves. Transcriptomic and lipid metabolism analysis of murine SCs following injury of sural nerves revealed down-regulation of lipogenic genes and regulator of lipid metabolism, including Pparg (peroxisome proliferator-activated receptor gamma) and S1P (sphingosine-1-phosphate). Human SCs failed to induce similar adaptations following ex vivo nerve injury. Pharmacological PPARg and S1P stimulation in mice resulted in up-regulation of lipid gene expression, suggesting a role in SCs switching towards a myelinating state. Altogether, our results suggest that murine SC switching towards a repair state is accompanied by transcriptome and lipidome adaptations, which are reduced in humans.
Collapse
Affiliation(s)
| | - Christine Brand
- Department of Neurosurgery, Hospital Bogenhausen, 81925, Munich, Germany
| | - Maria T Pedro
- Peripheral Nerve Surgery Unit, Department of Neurosurgery, Ulm University, District Hospital, 89312, Günzburg, Germany
| | - Jutta Hegler
- Institute of Physiological Chemistry, Ulm University, 89081, Ulm, Germany
| | | | - Raissa Lerner
- Institute of Physiological Chemistry, University Medical Centre of the Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Centre of the Johannes Gutenberg University Mainz, 55128, Mainz, Germany
| | - Gregor Antoniadis
- Peripheral Nerve Surgery Unit, Department of Neurosurgery, Ulm University, District Hospital, 89312, Günzburg, Germany
| | - Bernd Knöll
- Institute of Physiological Chemistry, Ulm University, 89081, Ulm, Germany.
| |
Collapse
|
41
|
Heinen C, Dömer P, Schmidt T, Kewitz B, Janssen-Bienhold U, Kretschmer T. Fascicular Ratio Pilot Study: High-Resolution Neurosonography-A Possible Tool for Quantitative Assessment of Traumatic Peripheral Nerve Lesions Before and After Nerve Surgery. Neurosurgery 2020; 85:415-422. [PMID: 30107513 DOI: 10.1093/neuros/nyy355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/11/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Clinical and electrophysiological assessments prevail in evaluation of traumatic nerve lesions and their regeneration following nerve surgery in humans. Recently, high-resolution neurosonography (HRNS) and magnetic resonance neurography have gained significant importance in peripheral nerve imaging. The use of the grey-scale-based "fascicular ratio" (FR) was established using both modalities allowing for quantitative assessment. OBJECTIVE To find out whether FR using HRNS can assess nerve trauma and structural reorganization in correlation to postoperative clinical development. METHODS Retrospectively, 16 patients with operated traumatic peripheral nerve lesions were included. The control group consisted of 6 healthy volunteers. All imaging was performed with a 15 to 6 MHz ultrasound probe (SonoSite X-Porte; Fujifilm, Tokyo, Japan). FR was calculated using Fiji () on 8-bit-images ("MaxEntropy" using "Auto-Threshold" plug-in). RESULTS Thirteen of 16 patients required autologous nerve grafting and 3 of 16 extra-intraneural neurolysis. There was no statistical difference between the FR of nonaffected patients' nerve portion with 43.48% and controls with FR 48.12%. The neuromatous nerve portion in grafted patients differed significantly with 85.05%. Postoperatively, FR values returned to normal with a mean of 39.33%. In the neurolyzed patients, FR in the affected portion was 78.54%. After neurolysis, FR returned to healthy values (50.79%). Ten of 16 patients showed clinical reinnervation. CONCLUSION To our best knowledge, this is the first description of FR using HRNS for quantitative assessment of nerve damage and postoperative structural reorganization. Our results show a significant difference in healthy vs lesioned nerves and a change in recovering nerve portions towards a more "physiological" ratio. Further evaluation in larger patient groups is required.
Collapse
Affiliation(s)
- Christian Heinen
- Department of Neurosurgery, Evangelisches Krankenhaus, Campus Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany
| | - Patrick Dömer
- Department of Neurosciences, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany
| | - Thomas Schmidt
- Department of Neurosurgery, Evangelisches Krankenhaus, Campus Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany
| | - Bettina Kewitz
- Department of Neurosciences, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany
| | - Ulrike Janssen-Bienhold
- Department of Neurosciences, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl-von-Ossietzky University Oldenburg, Oldenburg, Germany
| | - Thomas Kretschmer
- Department of Neurosurgery, Klinikum Klagenfurt am Wörthersee, Klagenfurt, Austria
| |
Collapse
|
42
|
Mahan MA, Yeoh S, Monson K, Light A. Rapid Stretch Injury to Peripheral Nerves: Biomechanical Results. Neurosurgery 2020; 85:E137-E144. [PMID: 30383240 DOI: 10.1093/neuros/nyy423] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 08/08/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Although most adult brachial plexus injuries result from high-speed mechanisms, no laboratory model has been created to mimic rapid-stretch nerve injuries. Understanding the biomechanical response of nerves to rapid stretch is essential to understanding clinical injury patterns and developing models that mimic the clinical scenario. OBJECTIVE To assess the influence of rate, loading direction, and excursion of stretch injuries on the biomechanical properties of peripheral nerves. METHODS The sciatic nerves of 138 Sprague-Dawley rats were dissected and subjected to rapid- and slow-stretch methods. Maximal nerve strain, persistent deformation, regional strain variation, and location of nerve failure were recorded. RESULTS Nerve rupture was primarily determined by weight-drop momentum >1 N/sec (odds ratio = 27.8, P < .0001), suggesting a threshold condition. Loading direction strongly determined maximal strain at rupture (P = .028); pull along the nerve axis resulted in nerve rupture at lower strain than orthogonal loading. Regional variations in nerve compliance and rupture location correlated with anatomic zones. Nerve branch anatomy was the largest contributing factor on maximum strain and rupture location. Rapidly stretched nerves are characterized by a zone of elastic recovery, followed by inelastic response at increasing strain, and finally rupture. CONCLUSION The large variation in previous results for nerve strain at rupture can be attributed to different testing conditions and is largely due to loading direction or segment of nerve tested, which has significant clinical implications. Nerve stretch injuries do not reflect a continuous variability to applied force but instead fall into biomechanical patterns of elastic, inelastic, and rupture injuries.
Collapse
Affiliation(s)
- Mark A Mahan
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah
| | - Stewart Yeoh
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah
| | - Ken Monson
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah.,Department of Bioengineering, University of Utah, Salt Lake City, Utah
| | - Alan Light
- Department of Anesthesiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
43
|
Chan JP, Clune J, Shah SB, Ward SR, Kocsis JD, Mozaffar T, Steward O, Gupta R. Examination of the human motor endplate after brachial plexus injury with two-photon microscopy. Muscle Nerve 2019; 61:390-395. [PMID: 31820462 DOI: 10.1002/mus.26778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION After traumatic nerve injury, neuromuscular junction remodeling plays a key role in determining functional outcomes. Immunohistochemical analyses of denervated muscle biopsies may provide valuable prognostic data regarding clinical outcomes to supplement electrodiagnostic studies. METHODS We performed biopsies on nonfunctioning deltoid muscles in two patients after gunshot wounds and visualized the neuromuscular junctions using two-photon microscopy with immunohistochemistry. RESULTS Although the nerves in both patients showed evidence of acute Wallerian degeneration, some of the motor endplates were intact but exhibited significantly decreased surface area and volume. Both patients exhibited substantial recovery of motor function over several weeks postinjury. DISCUSSION Two-photon microscopic assessment of neuromuscular junction integrity and motor endplate morphometry in muscle biopsies provided evidence of partial sparing of muscle innervation. This finding supported the clinical judgment that eventual recovery would occur. With further study, this technique may help to guide operative decisionmaking after traumatic nerve injuries.
Collapse
Affiliation(s)
- Justin P Chan
- Department of Orthopaedic Surgery, University of California, Irvine, California
| | - James Clune
- Section of Plastic and Reconstructive Surgery, Yale University School of Medicine, New Haven, Connecticut
| | - Sameer B Shah
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California.,Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Samuel R Ward
- Department of Orthopaedic Surgery, University of California, San Diego, La Jolla, California.,Department of Bioengineering, University of California, San Diego, La Jolla, California
| | - Jeffery D Kocsis
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Tahseen Mozaffar
- Department of Neurology, University of California, Irvine, Irvine, California
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California, Irvine, Irvine, California
| | - Ranjan Gupta
- Department of Orthopaedic Surgery, University of California, Irvine, California
| |
Collapse
|
44
|
Doostmohammadi M, Forootanfar H, Ramakrishna S. Regenerative medicine and drug delivery: Progress via electrospun biomaterials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110521. [PMID: 32228899 DOI: 10.1016/j.msec.2019.110521] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
Abstract
Worldwide research on electrospinning enabled it as a versatile technique for producing nanofibers with specified physio-chemical characteristics suitable for diverse biomedical applications. In the case of tissue engineering and regenerative medicine, the nanofiber scaffolds' characteristics are custom designed based on the cells and tissues specific needs. This fabrication technique is also innovated for the production of nanofibers with special micro-structure and secondary structure characteristics such as porous fibers, hollow structure, and core- sheath structure. This review attempts to critically and succinctly capture the vast number of developments reported in the literature over the past two decades. We then discuss their applications as scaffolds for induction of cells growth and differentiation or as architecture for being used as graft for tissue engineering. The special nanofibers designed for improving regeneration of several tissues including heart, bone, central nerve system, spinal cord, skin and ocular tissue are introduced. We also discuss the potential of the electrospinning in drug delivery applications, which is a critical factor for cell culture, tissue formation and wound healing applications.
Collapse
Affiliation(s)
- Mohsen Doostmohammadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran; Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore.
| |
Collapse
|
45
|
Uckermann O, Hirsch J, Galli R, Bendig J, Later R, Koch E, Schackert G, Steiner G, Tanaka E, Kirsch M. Label-free Imaging of Tissue Architecture during Axolotl Peripheral Nerve Regeneration in Comparison to Functional Recovery. Sci Rep 2019; 9:12641. [PMID: 31477751 PMCID: PMC6718386 DOI: 10.1038/s41598-019-49067-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
Human peripheral nerves hold the potential to regenerate after injuries; however, whether a successful axonal regrowth was achieved can be elucidated only months after injury by assessing function. The axolotl salamander is a regenerative model where nerves always regenerate quickly and fully after all types of injury. Here, de- and regeneration of the axolotl sciatic nerve were investigated in a single and double injury model by label-free multiphoton imaging in comparison to functional recovery. We used coherent anti-Stokes Raman scattering to visualize myelin fragmentation and axonal regeneration. The presence of axons at the lesion site corresponded to onset of functional recovery in both lesion models. In addition, we detected axonal regrowth later in the double injury model in agreement with a higher severity of injury. Moreover, endogenous two-photon excited fluorescence visualized macrophages and revealed a similar timecourse of inflammation in both injury models, which did not correlate with functional recovery. Finally, using the same techniques, axonal structure and status of myelin were visualized in vivo after sciatic nerve injury. Label-free imaging is a new experimental approach that provides mechanistic insights in animal models, with the potential to be used in the future for investigation of regeneration after nerve injuries in humans.
Collapse
Affiliation(s)
- Ortrud Uckermann
- Neurosurgery, Carl Gustav Carus University Hospital, TU Dresden, Dresden, Germany.
| | - Joana Hirsch
- Neurosurgery, Carl Gustav Carus University Hospital, TU Dresden, Dresden, Germany
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Jonas Bendig
- Neurosurgery, Carl Gustav Carus University Hospital, TU Dresden, Dresden, Germany
| | - Robert Later
- Neurosurgery, Carl Gustav Carus University Hospital, TU Dresden, Dresden, Germany
- CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Dresden, Germany
| | - Edmund Koch
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, Dresden, Germany
- CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Dresden, Germany
| | - Gabriele Schackert
- Neurosurgery, Carl Gustav Carus University Hospital, TU Dresden, Dresden, Germany
| | - Gerald Steiner
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Elly Tanaka
- CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Dresden, Germany
| | - Matthias Kirsch
- Neurosurgery, Carl Gustav Carus University Hospital, TU Dresden, Dresden, Germany
- CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Dresden, Germany
| |
Collapse
|
46
|
Carvalho CR, Silva-Correia J, Oliveira JM, Reis RL. Nanotechnology in peripheral nerve repair and reconstruction. Adv Drug Deliv Rev 2019; 148:308-343. [PMID: 30639255 DOI: 10.1016/j.addr.2019.01.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/20/2018] [Accepted: 01/05/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Cristiana R Carvalho
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
47
|
Roballo KCS, da Silveira JC, Bressan FF, de Souza AF, Pereira VM, Porras JEP, Rós FA, Pulz LH, Strefezzi RDF, Martins DDS, Meirelles FV, Ambrósio CE. Neurons-derived extracellular vesicles promote neural differentiation of ADSCs: a model to prevent peripheral nerve degeneration. Sci Rep 2019; 9:11213. [PMID: 31371742 PMCID: PMC6671995 DOI: 10.1038/s41598-019-47229-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022] Open
Abstract
Potential mechanisms involved in neural differentiation of adipocyte derived stem cells (ADSCs) are still unclear. In the present study, extracellular vesicles (EVs) were tested as a potential mechanism involved in the neuronal differentiation of stem cells. In order to address this, ADSCs and neurons (BRC) were established in primary culture and co-culture at three timepoints. Furthermore, we evaluated protein and transcript levels of differentiated ADSCs from the same timepoints, to confirm phenotype change to neuronal linage. Importantly, neuron-derived EVs cargo and EVs originated from co-culture were analyzed and tested in terms of function, such as gene expression and microRNA levels related to the adult neurogenesis process. Ideal neuron-like cells were identified and, therefore, we speculated the in vivo function of these cells in acute sciatic nerve injury. Overall, our data demonstrated that ADSCs in indirect contact with neurons differentiated into neuron-like cells. Neuron-derived EVs appear to play an important role in this process carrying SNAP25, miR-132 and miR-9. Additionally, in vivo neuron-like cells helped in microenvironment modulation probably preventing peripheral nerve injury degeneration. Consequently, our findings provide new insight of future methods of ADSC induction into neuronal linage to be applied in peripheral nerve (PN) injury.
Collapse
Affiliation(s)
- Kelly Cristine Santos Roballo
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil
| | - Juliano Coelho da Silveira
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil.
| | - Fabiana Fernandes Bressan
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil
| | - Aline Fernanda de Souza
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil
| | - Vitoria Mattos Pereira
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil
| | - Jorge Eliecer Pinzon Porras
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil.,Faculty of Veterinary Medicine and Animal Science, Department of Posgraduation, University National of Columbia, Bogota, Colombia
| | - Felipe Augusto Rós
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil
| | - Lidia Hildebrand Pulz
- Experimental and Comparative Pathology Department, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Av. Prof. Orlando Marques de Paiva, 87 - Butantã, 05508-010, São Paulo, SP, Brazil
| | - Ricardo de Francisco Strefezzi
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil.,Experimental and Comparative Pathology Department, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Av. Prof. Orlando Marques de Paiva, 87 - Butantã, 05508-010, São Paulo, SP, Brazil
| | - Daniele Dos Santos Martins
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil
| | - Flavio Vieira Meirelles
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil
| | - Carlos Eduardo Ambrósio
- Veterinary Medicine Department, Faculty of Animal Sciences and Food Engineering, University of Sao Paulo, Av. Duque de Caxias Norte 225, 13635-900, Pirassununga, SP, Brazil
| |
Collapse
|
48
|
Wang G, Wu W, Yang H, Zhang P, Wang J. Intact polyaniline coating as a conductive guidance is beneficial to repairing sciatic nerve injury. J Biomed Mater Res B Appl Biomater 2019; 108:128-142. [DOI: 10.1002/jbm.b.34372] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/13/2018] [Accepted: 03/05/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Guowu Wang
- School of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Weifeng Wu
- School of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Hui Yang
- School of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Ping Zhang
- School of Life Sciences and BiotechnologyShanghai Jiao Tong University Shanghai 200240 China
| | - Jin‐Ye Wang
- School of Biomedical EngineeringShanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
49
|
Paskal AM, Paskal W, Pietruski P, Wlodarski PK. Polyethylene Glycol: The Future of Posttraumatic Nerve Repair? Systemic Review. Int J Mol Sci 2019; 20:E1478. [PMID: 30909624 PMCID: PMC6471459 DOI: 10.3390/ijms20061478] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injury is a common posttraumatic complication. The precise surgical repair of nerve lesion does not always guarantee satisfactory motor and sensory function recovery. Therefore, enhancement of the regeneration process is a subject of many research strategies. It is believed that polyethylene glycol (PEG) mediates axolemmal fusion, thus enabling the direct restoration of axon continuity. It also inhibits Wallerian degeneration and recovers nerve conduction. This systemic review, performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, describes and summarizes published studies on PEG treatment efficiency in various nerve injury types and repair techniques. Sixteen original experimental studies in animal models and one in humans were analyzed. PEG treatment superiority was reported in almost all experiments (based on favorable electrophysiological, histological, or behavioral results). To date, only one study attempted to transfer the procedure into the clinical phase. However, some technical aspects, e.g., the maximal delay between trauma and successful treatment, await determination. PEG therapy is a promising prospect that may improve the surgical treatment of peripheral nerve injuries in the clinical practice.
Collapse
Affiliation(s)
- Adriana M Paskal
- Laboratory of Centre for Preclinical Research, Department of Research Methodology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland.
| | - Wiktor Paskal
- Laboratory of Centre for Preclinical Research, Department of Research Methodology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland.
| | - Piotr Pietruski
- Timeless Plastic Surgery Clinic, gen. Romana Abrahama 18/322, 03-982 Warsaw, Poland.
| | - Pawel K Wlodarski
- Laboratory of Centre for Preclinical Research, Department of Research Methodology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland.
| |
Collapse
|
50
|
Belanger K, Schlatter G, Hébraud A, Marin F, Testelin S, Dakpé S, Devauchelle B, Egles C. A multi-layered nerve guidance conduit design adapted to facilitate surgical implantation. Health Sci Rep 2018; 1:e86. [PMID: 30623049 PMCID: PMC6295612 DOI: 10.1002/hsr2.86] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND AIMS The gold standard procedure after a severe nerve injury is the nerve autograft, yet this technique has drawbacks. In recent years, progress has been made in the development of artificial nerve guides to replace the autograft, but no device has been able to demonstrate superiority. The present study introduces an adaptable foundation design for peripheral nerve regeneration. METHODS Silk fibroin was electrospun, creating a tri-layered material with aligned fiber surfaces and a randomly deposited fiber interior. This material was rolled into a micro-channeled conduit, which was then enveloped by a jacket layer of the same tri-layered material. RESULTS The proposed implant design succeeds in incorporating various desirable aspects of synthetic nerve guides, while facilitating the surgical implantation process for medical application. The aligned fiber surfaces of the conduit support axon guidance, while the tri-layered architecture improves its structural integrity compared with a fully aligned fiber material. Moreover, the jacket layer creates a small niche on each end which facilitates surgical implantation. An in vivo study in rats showed that nerve regeneration using this device was comparable to results after direct suture. CONCLUSION This proof-of-principle study, therefore, advances the development of tissue engineered nerve grafts by creating an optimized guidance conduit design capable of successful nerve regeneration.
Collapse
Affiliation(s)
- Kayla Belanger
- UMR 7338, Biomécanique et Bioingénierie, Centre de recherches de RoyallieuSorbonne Universités, Université de Technologie de Compiègne, CNRSCompiègne cedexFrance
| | - Guy Schlatter
- ICPEES Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, UMR 7515, CNRSUniversité de StrasbourgStrasbourg cedexFrance
| | - Anne Hébraud
- ICPEES Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé, UMR 7515, CNRSUniversité de StrasbourgStrasbourg cedexFrance
| | - Frédéric Marin
- UMR 7338, Biomécanique et Bioingénierie, Centre de recherches de RoyallieuSorbonne Universités, Université de Technologie de Compiègne, CNRSCompiègne cedexFrance
| | - Sylvie Testelin
- Facing Faces Institute, Amiens University Hospital CenterAmiens Cedex 1France
| | - Stéphanie Dakpé
- Facing Faces Institute, Amiens University Hospital CenterAmiens Cedex 1France
| | - Bernard Devauchelle
- Facing Faces Institute, Amiens University Hospital CenterAmiens Cedex 1France
| | - Christophe Egles
- UMR 7338, Biomécanique et Bioingénierie, Centre de recherches de RoyallieuSorbonne Universités, Université de Technologie de Compiègne, CNRSCompiègne cedexFrance
- Tufts University, School of Dental MedicineBostonMAUSA
| |
Collapse
|