1
|
Yang C, He T, Ma J, Wang Q, Wang S, Wang G, Yang J, Chen Z, Li Q, Zhan F, Jian C, Feng D, Quan Z. Duraplasty promotes functional recovery by alleviating intraspinal pressure and edema following severe spinal cord compression injury in rabbits: Experimental studies. Spine J 2024:S1529-9430(24)01197-5. [PMID: 39681280 DOI: 10.1016/j.spinee.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUND After acute traumatic spinal cord injury (tSCI), various surgical strategies have been developed to alleviate elevated intraspinal pressure (ISP) and secondary injury. PURPOSE Our study aimed to investigate the impacts of duraplasty and laminectomy on edema progression, perfusion and functional outcomes after severe balloon compression SCI. STUDY DESIGN In vivo animal study. METHODS Closed balloon compression injuries were induced at the T7 level in rabbits using an inflated volume of 50 μl. Laminectomy (1-level laminectomy: 1-laminectomy; 3-level laminectomy: 3-laminectomy) and duraplasty were performed immediately after model generation. ISP was monitored using a SOPHYSA probe at the epicenter within 7 days post-SCI. Edema progression, perfusion and damage severity were evaluated by serial multisequence MRI scans, behavioral and bladder scores within 8 weeks post-SCI. Blood-spinal cord barrier (BSCB) permeability and histopathology were subsequently analyzed. RESULTS After SCI, ISP was steeply elevated in the control and 1-laminectomy groups, peaking at 33.14±4.91 and 31.71±4.50 mmHg at 48 h post-SCI; whereas in the 3-laminectomy and duraplasty groups, ISP peaked at 29.43±4.04 and 12.14±1.86 mmHg (p<0.0001) at 72 h post-SCI. MRI and function scores showed that duraplasty significantly reduced the intramedullary lesion length (IMLL) and blood flow reduction ratio, and promoted fiber tract sparing and spinal cord functional recovery (p<0.01). Histopathology revealed that duraplasty significantly reduced BSCB permeability, tissue loss and inflammation and promoted axon preservation (p<0.01), while it did not increase early scar formation. CONCLUSIONS Duraplasty may alleviate secondary SCI and promote functional recovery. This neuroprotective mechanism may be related to reduced ISP and increased perfusion, resulting in reduced edema, BSCB permeability and inflammation and increased nerve fiber tract preservation. CLINICAL SIGNIFICANCE Duraplasty may promote functional recovery following severe tSCI patients, but further investigations are needed.
Collapse
Affiliation(s)
- Chaohua Yang
- Department of orthopaedics, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Jiangyang District, Sichuan 646000, China;; Department of orthopedic surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China;; Orthopedic laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China.
| | - Tao He
- Department of orthopaedic trauma, Chongqing General Hospital, Chongqing University, No.118 Xingguang Avenue, Liangjiang New District, Chongqing 401120, China.
| | - Jingjin Ma
- Department of orthopedic surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China;.
| | - Qing Wang
- Department of orthopaedics, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Jiangyang District, Sichuan 646000, China;.
| | - Song Wang
- Department of orthopaedics, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Jiangyang District, Sichuan 646000, China;.
| | - Gaoju Wang
- Department of orthopaedics, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Jiangyang District, Sichuan 646000, China;.
| | - Jin Yang
- Department of orthopaedics, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Jiangyang District, Sichuan 646000, China;.
| | - Zhiyu Chen
- Department of orthopedic surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China;.
| | - Qiaochu Li
- Department of orthopedic surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China;.
| | - Fangbiao Zhan
- Department of orthopaedics, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing 404100, China.
| | - Changchun Jian
- Department of orthopedic surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China;.
| | - Daxiong Feng
- Department of orthopaedics, The Affiliated Hospital of Southwest Medical University, No.25 Taiping Street, Jiangyang District, Sichuan 646000, China;.
| | - Zhengxue Quan
- Department of orthopedic surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China;; Orthopedic laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing 400016, China.
| |
Collapse
|
2
|
Zhu YK, Lu FT, Zhang GD, Liu ZP. A Review of Strategies Associated with Surgical Decompression in Traumatic Spinal Cord Injury. J Neurol Surg A Cent Eur Neurosurg 2023; 84:570-577. [PMID: 35354217 DOI: 10.1055/a-1811-8201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Traumatic spinal cord injury (TSCI) is frequent. Timely diagnosis and treatment have reduced the mortality, but the long-term recovery of neurologic functions remains ominous. After TSCI, tissue bleeding, edema, and adhesions lead to an increase in the intraspinal pressure, further causing the pathophysiologic processes of ischemia and hypoxia and eventually accelerating the cascade of secondary spinal cord injury. Timely surgery with appropriate decompression strategies can reduce that secondary injury. However, disagreement about the safety and effectiveness of decompression surgery and the timing of surgery still exists. The level and severity of spinal cord injury do have an impact on the timing of surgery; therefore, TSCI subpopulations may benefit from early surgery. Early surgery perhaps has little effect on recovery from complete TSCI but might be of benefit in patients with incomplete injury. Early decompression should be considered in patients with incomplete cervical TSCI. Patient age should not be used as an exclusion criterion for early surgery. The best time point for early surgery is although influenced by the shortest duration to thoroughly examine the patient's condition and stabilize the patient's state. After the patient's condition is fully evaluated, we can perform the surgical modality of emergency myelotomy and decompression. Therefore, a number of conditions should be considered, such as standardized decompression methods, indications and operation timing to ensure the effectiveness and safety of early surgical intervention, and promotion of the functional recovery of residual nerve tissue.
Collapse
Affiliation(s)
- Ying-Kang Zhu
- Department of Orthopedics, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Fa-Tai Lu
- Department of Orthopedics, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Guo-Dong Zhang
- Department of Orthopedics, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Zun-Peng Liu
- Department of Orthopedics, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Hu X, Xu W, Ren Y, Wang Z, He X, Huang R, Ma B, Zhao J, Zhu R, Cheng L. Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:245. [PMID: 37357239 DOI: 10.1038/s41392-023-01477-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 06/27/2023] Open
Abstract
Spinal cord injury (SCI) remains a severe condition with an extremely high disability rate. The challenges of SCI repair include its complex pathological mechanisms and the difficulties of neural regeneration in the central nervous system. In the past few decades, researchers have attempted to completely elucidate the pathological mechanism of SCI and identify effective strategies to promote axon regeneration and neural circuit remodeling, but the results have not been ideal. Recently, new pathological mechanisms of SCI, especially the interactions between immune and neural cell responses, have been revealed by single-cell sequencing and spatial transcriptome analysis. With the development of bioactive materials and stem cells, more attention has been focused on forming intermediate neural networks to promote neural regeneration and neural circuit reconstruction than on promoting axonal regeneration in the corticospinal tract. Furthermore, technologies to control physical parameters such as electricity, magnetism and ultrasound have been constantly innovated and applied in neural cell fate regulation. Among these advanced novel strategies and technologies, stem cell therapy, biomaterial transplantation, and electromagnetic stimulation have entered into the stage of clinical trials, and some of them have already been applied in clinical treatment. In this review, we outline the overall epidemiology and pathophysiology of SCI, expound on the latest research progress related to neural regeneration and circuit reconstruction in detail, and propose future directions for SCI repair and clinical applications.
Collapse
Affiliation(s)
- Xiao Hu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Wei Xu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Yilong Ren
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Zhaojie Wang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Xiaolie He
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Runzhi Huang
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Bei Ma
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Jingwei Zhao
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China
| | - Rongrong Zhu
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| | - Liming Cheng
- Division of Spine, Department of Orthopaedics, Tongji Hospital, Tongji University School of Medicine, 200065, Shanghai, China.
- Key Laboratory of Spine and Spinal cord Injury Repair and Regeneration (Tongji University), Ministry of Education, 200065, Shanghai, China.
- Clinical Center For Brain And Spinal Cord Research, Tongji University, 200065, Shanghai, China.
| |
Collapse
|
4
|
Alshorman J, Wang Y, Zhu F, Zeng L, Chen K, Yao S, Jing X, Qu Y, Sun T, Guo X. Medical Communication Services after Traumatic Spinal Cord Injury. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:4798927. [PMID: 34512936 PMCID: PMC8424255 DOI: 10.1155/2021/4798927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
It is difficult to assess and monitor the spinal cord injury (SCI) because of its pathophysiology after injury, with different degrees of prognosis and various treatment methods, including laminectomy, durotomy, and myelotomy. Medical communication services with different factors such as time of surgical intervention, procedure choice, spinal cord perfusion pressure (SCPP), and intraspinal pressure (ISP) contribute a significant role in improving neurological outcomes. This review aims to show the benefits of communication services and factors such as ISP, SCPP, and surgical intervention time in order to achieve positive long-term outcomes after an appropriate treatment method in SCI patients. The SCPP was found between 90 and 100 mmHg for the best outcome, MAP was found between 110 and 130 mmHg, and mean ISP is ≤20 mmHg after injury. Laminectomy alone cannot reduce the pressure between the dura and swollen cord. Durotomy and duroplasty considered as treatment choices after severe traumatic spinal cord injury (TSCI).
Collapse
Affiliation(s)
- Jamal Alshorman
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yulong Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fengzhao Zhu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lian Zeng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaifang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sheng Yao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xirui Jing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanzhen Qu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tingfang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaodong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
5
|
Rink S, Manthou ME, Arnold J, Grigo M, Dicken P, Abdulla DSY, Bendella H, Nohroudi K, Angelov DN. Motor, sensitive, and vegetative recovery in rats with compressive spinal-cord injury after combined treatment with erythropoietin and whole-body vibration. Restor Neurol Neurosci 2021; 39:85-100. [PMID: 33612500 DOI: 10.3233/rnn-201120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Physical therapy with whole body vibration (WBV) following compressive spinal cord injury (SCI) in rats restores density of perisomatic synapses, improves body weight support and leads to a better bladder function. The purpose of the study was to determine whether the combined treatment with WBV plus erythropoietin (EPO) would further improve motor, sensory and vegetative functions after SCI in rats. METHODS Severe compressive SCI at low thoracic level was followed by a single i.p. injection of 2,5μg (250 IU) human recombinant EPO. Physical therapy with WBV started on 14th day after injury and continued over a 12-week post injury period. Locomotor recovery, sensitivity tests and urinary bladder scores were analysed at 1, 3, 6, 9, and 12 weeks after SCI. The closing morphological measurements included lesion volume and numbers of axons in the preserved perilesional neural tissue bridges (PNTB). RESULTS Assessment of motor performance sensitivity and bladder function revealed no significant effects of EPO when compared to the control treatments. EPO treatment neither reduced the lesion volume, nor increased the number of axons in PNTB. CONCLUSIONS The combination of WBV + EPO exerts no positive effects on hind limbs motor performance and bladder function after compressive SCI in rats.
Collapse
Affiliation(s)
- Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, Cologne, Germany
| | - Maria Eleni Manthou
- Department of Histology and Embryology, School of Medicine, Faculty of Health Sciences, Aristotle University Thessaloniki, Thessaloniki, Greece
| | - Julia Arnold
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - Merle Grigo
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - Paulina Dicken
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | - Diana Saad Yousif Abdulla
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Network Genomic Medicine, Lung Cancer Group Cologne, University of Cologne, Cologne, Germany
| | - Habib Bendella
- Department of Neurosurgery, University of Witten/Herdecke, Cologne Merheim Medical Center (CMMC), Cologne, Germany
| | - Klaus Nohroudi
- Department of Anatomy I, University of Cologne, Cologne, Germany
| | | |
Collapse
|
6
|
Rink S, Pavlov S, Wöhler A, Bendella H, Manthou M, Papamitsou T, Dunlop SA, Angelov DN. Numbers of Axons in Spared Neural Tissue Bridges But Not Their Widths or Areas Correlate With Functional Recovery in Spinal Cord-Injured Rats. J Neuropathol Exp Neurol 2021; 79:1203-1217. [PMID: 32594136 DOI: 10.1093/jnen/nlaa050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/11/2020] [Accepted: 05/08/2020] [Indexed: 11/14/2022] Open
Abstract
The relationships between various parameters of tissue damage and subsequent functional recovery after spinal cord injury (SCI) are not well understood. Patients may regain micturition control and walking despite large postinjury medullar cavities. The objective of this study was to establish possible correlations between morphological findings and degree of functional recovery after spinal cord compression at vertebra Th8 in rats. Recovery of motor (Basso, Beattie, Bresnahan, foot-stepping angle, rump-height index, and ladder climbing), sensory (withdrawal latency), and bladder functions was analyzed at 1, 3, 6, 9, and 12 weeks post-SCI. Following perfusion fixation, spinal cord tissue encompassing the injury site was cut in longitudinal frontal sections. Lesion lengths, lesion volumes, and areas of perilesional neural tissue bridges were determined after staining with cresyl violet. The numbers of axons in these bridges were quantified after staining for class III β-tubulin. We found that it was not the area of the spared tissue bridges, which is routinely determined by magnetic resonance imaging (MRI), but the numbers of axons in them that correlated with functional recovery after SCI (Spearman's ρ > 0.8; p < 0.001). We conclude that prognostic statements based only on MRI measurements should be considered with caution.
Collapse
Affiliation(s)
- Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, Germany
| | - Stoyan Pavlov
- Department of Anatomy, Histology and Embryology, Medical University, Varna, Bulgaria
| | | | - Habib Bendella
- Department of Neurosurgery, University of Witten/Herdecke, Cologne Merheim Medical Center (CMMC), Cologne, Germany
| | - Marilena Manthou
- Department of Histology and Embryology, Aristotle University Thessaloniki, Greece
| | - Theodora Papamitsou
- Department of Histology and Embryology, Aristotle University Thessaloniki, Greece
| | - Sarah A Dunlop
- School of Biological Sciences, The University of Western Australia, Australia
| | | |
Collapse
|
7
|
Khaing ZZ, Cates LN, Dewees DM, Hyde JE, Gaing A, Birjandian Z, Hofstetter CP. Effect of Durotomy versus Myelotomy on Tissue Sparing and Functional Outcome after Spinal Cord Injury. J Neurotrauma 2020; 38:746-755. [PMID: 33121382 DOI: 10.1089/neu.2020.7297] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Various surgical strategies have been developed to alleviate elevated intraspinal pressure (ISP) following acute traumatic spinal cord injury (tSCI). Surgical decompression of either the dural (durotomy) or the dural and pial (myelotomy) lining of the spinal cord has been proposed. However, a direct comparison of these two strategies is lacking. Here, we compare the histological and functional effects of durotomy alone and durotomy plus myelotomy in a rodent model of acute thoracic tSCI. Our results indicate that tSCI causes local tissue edema and significantly elevates ISP (7.4 ± 0.3 mmHg) compared with physiological ISP (1.7 ± 0.4 mmHg; p < 0.001). Both durotomy alone and durotomy plus myelotomy effectively mitigate elevated local ISP (p < 0.001). Histological examination at 10 weeks after tSCI revealed that durotomy plus myelotomy promoted spinal tissue sparing by 13.7% compared with durotomy alone, and by 25.9% compared with tSCI-only (p < 0.0001). Both types of decompression surgeries elicited a significant beneficial impact on gray matter sparing (p < 0.01). Impressively, durotomy plus myelotomy surgery increased preservation of motor neurons by 174.3% compared with tSCI-only (p < 0.05). Durotomy plus myelotomy surgery also significantly promoted recovery of hindlimb locomotor function in an open-field test (p < 0.001). Interestingly, only durotomy alone resulted in favorable recovery of bladder and Ladder Walk performance. Combined, our data suggest that durotomy plus myelotomy following acute tSCI facilitates tissue sparing and recovery of locomotor function. In the future, biomarkers identifying spinal cord injuries that can benefit from either durotomy alone or durotomy plus myelotomy need to be developed.
Collapse
Affiliation(s)
- Zin Z Khaing
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Lindsay N Cates
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Dane M Dewees
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Jeffrey E Hyde
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Ashley Gaing
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Zeinab Birjandian
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| | - Christoph P Hofstetter
- Department of Neurological Surgery, The University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Telemacque D, Zhu FZ, Ren ZW, Chen KF, Drepaul D, Yao S, Yang F, Qu YZ, Sun TF, Guo XD. Effects of durotomy versus myelotomy in the repair of spinal cord injury. Neural Regen Res 2020; 15:1814-1820. [PMID: 32246622 PMCID: PMC7513969 DOI: 10.4103/1673-5374.280304] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/08/2019] [Accepted: 09/03/2019] [Indexed: 11/04/2022] Open
Abstract
Current management for spinal cord injury aims to reduce secondary damage and recover sensation and movement. Acute spinal cord injury is often accompanied by spinal cord compartment syndrome. Decompression by durotomy and/or myelotomy attempts to relieve secondary damage by completelyrelieving the compression of the spinal cord, removing the necrotic tissue, decreasing edema, reducing hemorrhage, and improving blood circulation in the spinal cord. However, it is controversial whether durotomy and/or myelotomy after spinal cord injury are beneficial to neurological recovery. This review compares the clinical effects of durotomy with those of myelotomy in the treatment of spinal cord injury. We found that durotomy has been performed more than myelotomy in the clinic, and that durotomy may be safer and more effective than myelotomy. Durotomy performed in humans had positive effects on neurological function in 92.3% of studies in this review, while durotomy in animals had positive effects on neurological function in 83.3% of studies. Myelotomy procedures were effective in 80% of animal studies, but only one clinical study of myelotomy has reported positive results, of motor and sensory improvement, in humans. However, a number of new animal studies have reported that durotomy and myelotomy are ineffective for spinal cord injury. More clinical data, in the form of a randomized controlled study, are needed to understand the effectiveness of durotomy and myelotomy.
Collapse
Affiliation(s)
- Dionne Telemacque
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Feng-Zhao Zhu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Zheng-Wei Ren
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Kai-Fang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Deepak Drepaul
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Sheng Yao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Fan Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Yan-Zheng Qu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Ting-Fang Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| | - Xiao-Dong Guo
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, China
| |
Collapse
|
9
|
Guest JD, Moore SW, Aimetti AA, Kutikov AB, Santamaria AJ, Hofstetter CP, Ropper AE, Theodore N, Ulich TR, Layer RT. Internal decompression of the acutely contused spinal cord: Differential effects of irrigation only versus biodegradable scaffold implantation. Biomaterials 2018; 185:284-300. [DOI: 10.1016/j.biomaterials.2018.09.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/04/2018] [Accepted: 09/16/2018] [Indexed: 12/13/2022]
|
10
|
Rink S, Arnold D, Wöhler A, Bendella H, Meyer C, Manthou M, Papamitsou T, Sarikcioglu L, Angelov DN. Recovery after spinal cord injury by modulation of the proteoglycan receptor PTPσ. Exp Neurol 2018; 309:148-159. [PMID: 30118740 DOI: 10.1016/j.expneurol.2018.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/04/2018] [Accepted: 08/09/2018] [Indexed: 11/29/2022]
Abstract
SCI is followed by dramatic upregulation of chondroitin sulfate proteoglycans (CSPGs) which limit axonal regeneration, oligodendrocyte replacement and remyelination. The recent discovery of the specific CSPGs signaling receptor protein tyrosine phosphatase sigma (RPTPσ) provided an opportunity to refine the therapeutic approach to overcome CSPGs inhibitory actions. In previously published work, subcutaneous (s.c.) delivery of 44 μg/day of a peptide mimetic of PTPσ called intracellular sigma peptide (ISP), which binds to PTPσ and blocks CSPG-mediated inhibition, facilitated recovery after contusive SCI. Since this result could be of great interest for clinical trials, we independently repeated this study, but modified the method of injury as well as peptide application and the dosage. Following SCI at the Th10-segment, 40 rats were distributed in 3 groups. Animals in group 1 (20 rats) were subjected to SCI, but received no treatment. Rats in group 2 were treated with intraperitoneal (i.p.) injections of 44 μg/day ISP (SCI + ISP44) and animals of group 3 with s.c. injections of 500 μg/day ISP (SCI + ISP500) for 7 weeks after lesioning. Recovery was analyzed at 1, 3, 6, 9 and 12 weeks after SCI by determining (i) BBB-score, (ii) foot-stepping angle, (iii) rump-height index, (iv) number of correct ladder steps, (v) bladder score and (vi) sensitivity (withdrawal latency after thermal stimulus). Finally, we determined the amount of serotonergic fibers in the preserved neural tissue bridges (PNTB) around the lesion site. Our results show that, systemic therapy with ISP improved locomotor, sensory and vegetative recovery which correlated with more spared serotonergic fibers in PNTB.
Collapse
Affiliation(s)
- Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, Cologne, Germany
| | | | | | - Habib Bendella
- Department of Neurosurgery, University of Witten/Herdecke, Cologne Merheim Medical Center (CMMC), Cologne, Germany.
| | - Carolin Meyer
- Department of Orthopedics and Trauma Surgery, University of Cologne, Germany.
| | - Marilena Manthou
- Department of Histology and Embryology, Aristotle University Thessaloniki, Greece
| | - Theodora Papamitsou
- Department of Histology and Embryology, Aristotle University Thessaloniki, Greece.
| | - Levent Sarikcioglu
- Department of Anatomy, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| | | |
Collapse
|