1
|
Goerlich N, Cravedi P. "LIPSTIC" Traces to Track Immune Cell Interaction. Transplantation 2024:00007890-990000000-00823. [PMID: 39044331 DOI: 10.1097/tp.0000000000005147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Affiliation(s)
- Nina Goerlich
- Renal Division, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin, Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Paolo Cravedi
- Renal Division, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
2
|
Pietrobon V, Cesano A, Marincola F, Kather JN. Next Generation Imaging Techniques to Define Immune Topographies in Solid Tumors. Front Immunol 2021; 11:604967. [PMID: 33584676 PMCID: PMC7873485 DOI: 10.3389/fimmu.2020.604967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, cancer immunotherapy experienced remarkable developments and it is nowadays considered a promising therapeutic frontier against many types of cancer, especially hematological malignancies. However, in most types of solid tumors, immunotherapy efficacy is modest, partly because of the limited accessibility of lymphocytes to the tumor core. This immune exclusion is mediated by a variety of physical, functional and dynamic barriers, which play a role in shaping the immune infiltrate in the tumor microenvironment. At present there is no unified and integrated understanding about the role played by different postulated models of immune exclusion in human solid tumors. Systematically mapping immune landscapes or "topographies" in cancers of different histology is of pivotal importance to characterize spatial and temporal distribution of lymphocytes in the tumor microenvironment, providing insights into mechanisms of immune exclusion. Spatially mapping immune cells also provides quantitative information, which could be informative in clinical settings, for example for the discovery of new biomarkers that could guide the design of patient-specific immunotherapies. In this review, we aim to summarize current standard and next generation approaches to define Cancer Immune Topographies based on published studies and propose future perspectives.
Collapse
Affiliation(s)
| | | | | | - Jakob Nikolas Kather
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
3
|
Rajaee A, Geisen ME, Sellers AK, Stirling DP. Repeat intravital imaging of the murine spinal cord reveals degenerative and reparative responses of spinal axons in real-time following a contusive SCI. Exp Neurol 2020; 327:113258. [PMID: 32105708 DOI: 10.1016/j.expneurol.2020.113258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/06/2020] [Accepted: 02/22/2020] [Indexed: 12/18/2022]
Abstract
Spinal cord injury (SCI) induces a secondary degenerative response that causes the loss of spared axons and worsens neurological outcome. The complex molecular mechanisms that mediate secondary axonal degeneration remain poorly understood. To further our understanding of secondary axonal degeneration following SCI, we assessed the spatiotemporal dynamics of axonal spheroid and terminal bulb formation following a contusive SCI in real-time in vivo. Adult 6-8 week old Thy1YFP transgenic mice underwent a T12 laminectomy for acute imaging sessions or were implanted with a custom spinal cord imaging chamber for chronic imaging of the spinal cord. Two-photon excitation time-lapse microscopy was performed prior to a mild contusion SCI (30 kilodyne, IH Impactor) and at 1-4 h and 1-14 days post-SCI. We quantified the number of axonal spheroids, their size and distribution, the number of endbulbs, and axonal survival from 1 h to 14 days post-SCI. Our data reveal that the majority of axons underwent swelling and axonal spheroid formation acutely after SCI resulting in the loss of ~70% of axons by 1 day after injury. In agreement, the number of axonal spheroids rapidly increased at 1 h after SCI and remained significantly elevated up to 14 days after SCI. Furthermore, the distribution of axonal spheroids spread mediolaterally over time indicative of delayed secondary degenerative processes. In contrast, axonal endbulbs were relatively sparse and their numbers peaked at 1 day after injury. Intriguingly, axonal survival significantly increased at 7 and 14 days compared to 3 days after SCI revealing a potential endogenous axonal repair process that mirrors the known spontaneous functional recovery after SCI. In support, ~43% of tracked axonal spheroids resolved over the course of observation revealing their dynamic nature. Furthermore, axonal spheroids and endbulbs accumulated mitochondria and excessive tubulin polyglutamylation suggestive of disrupted axonal transport as a shared mechanism. Collectively, this study provides important insight into both degenerative and recoverable responses of axons following contusive SCI in real-time. Understanding how axons spontaneously recover after SCI will be an important avenue for future SCI research and may help guide future clinical trials.
Collapse
Affiliation(s)
- Arezoo Rajaee
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Mariah E Geisen
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - Alexandra K Sellers
- Department of Bioengineering, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| | - David P Stirling
- Kentucky Spinal Cord Injury Research Center, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Department of Neurological Surgery, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, KY 40202, USA; Department of Microbiology and Immunology, University of Louisville, School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
4
|
Borjini N, Paouri E, Tognatta R, Akassoglou K, Davalos D. Imaging the dynamic interactions between immune cells and the neurovascular interface in the spinal cord. Exp Neurol 2019; 322:113046. [PMID: 31472115 DOI: 10.1016/j.expneurol.2019.113046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/16/2019] [Accepted: 08/27/2019] [Indexed: 12/19/2022]
Abstract
Imaging the dynamic interactions between immune cells, glia, neurons and the vasculature in living rodents has revolutionized our understanding of physiological and pathological mechanisms of the CNS. Emerging microscopy and imaging technologies have enabled longitudinal tracking of structural and functional changes in a plethora of different cell types in the brain. The development of novel methods also allowed stable and longitudinal optical access to the spinal cord with minimum tissue perturbation. These important advances facilitated the application of in vivo imaging using two-photon microscopy for studies of the healthy, diseased, or injured spinal cord. Indeed, decoding the interactions between peripheral and resident cells with the spinal cord vasculature has shed new light on neuroimmune and vascular mechanisms regulating the onset and progression of neurological diseases. This review focuses on imaging studies of the interactions between the vasculature and peripheral immune cells or microglia, with emphasis on their contribution to neuroinflammation. We also discuss in vivo imaging studies highlighting the importance of neurovascular changes following spinal cord injury. Real-time imaging of blood-brain barrier (BBB) permeability and other vascular changes, perivascular glial responses, and immune cell entry has revealed unanticipated cellular mechanisms and novel molecular pathways that can be targeted to protect the injured or diseased CNS. Imaging the cell-cell interactions between the vasculature, immune cells, and neurons as they occur in real time, is a powerful tool both for testing the efficacy of existing therapeutic approaches, and for identifying new targets for limiting damage or enhancing the potential for repair of the affected spinal cord tissue.
Collapse
Affiliation(s)
- Nozha Borjini
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Evi Paouri
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Katerina Akassoglou
- Gladstone Institutes, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Dimitrios Davalos
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|