1
|
Solís C, Thompson WC, Peña JR, McDermott-Roe C, Langa P, Warren CM, Chrzanowska M, Wolska BM, Solaro RJ, Pieter Detombe, Goldspink PH. Mechano-growth factor E-domain modulates cardiac contractile function through 14-3-3 protein interactomes. Front Physiol 2022; 13:1028345. [PMID: 36467694 PMCID: PMC9709209 DOI: 10.3389/fphys.2022.1028345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022] Open
Abstract
In the heart, alternative splicing of the igf-I gene produces two isoforms: IGF-IEa and IGF-IEc, (Mechano-growth factor, MGF). The sequence divergence between their E-domain regions suggests differential isoform function. To define the biological actions of MGF's E-domain, we performed in silico analysis of the unique C-terminal sequence and identified a phosphorylation consensus site residing within a putative 14-3-3 binding motif. To test the functional significance of Ser 18 phosphorylation, phospho-mimetic (S/E18) and phospho-null (S/A18) peptides were delivered to mice at different doses for 2 weeks. Cardiovascular function was measured using echocardiography and a pressure-volume catheter. At the lowest (2.25 mg/kg/day) and highest (9 mg/kg/day) doses, the peptides produced a depression in systolic and diastolic parameters. However, at 4.5 mg/kg/day the peptides produced opposing effects on cardiac function. Fractional shortening analysis also showed a similar trend, but with no significant change in cardiac geometry. Microarray analysis discovered 21 genes (FDR p < 0.01), that were expressed accordant with the opposing effects on contractile function at 4.5 mg/kg/day, with the nuclear receptor subfamily 4 group A member 2 (Nr4a2) identified as a potential target of peptide regulation. Testing the regulation of the Nr4a family, showed the E-domain peptides modulate Nr4a gene expression following membrane depolarization with KCl in vitro. To determine the potential role of 14-3-3 proteins, we examined 14-3-3 isoform expression and distribution. 14-3-3γ localized to the myofilaments in neonatal cardiac myocytes, the cardiac myocytes and myofilament extracts from the adult heart. Thermal shift analysis of recombinant 14-3-3γ protein showed the S/A18 peptide destabilized 14-3-3γ folding. Also, the S/A18 peptide significantly inhibited 14-3-3γ's ability to interact with myosin binding protein C (MYPC3) and phospholamban (PLN) in heart lysates from dobutamine injected mice. Conversely, the S/E18 peptide showed no effect on 14-3-3γ stability, did not inhibit 14-3-3γ's interaction with PLN but did inhibit the interaction with MYPC3. Replacing the glutamic acid with a phosphate group on Ser 18 (pSer18), significantly increased 14-3-3γ protein stability. We conclude that the state of Ser 18 phosphorylation within the 14-3-3 binding motif of MGF's E-domain, modulates protein-protein interactions within the 14-3-3γ interactome, which includes proteins involved in the regulation of contractile function.
Collapse
Affiliation(s)
- Christopher Solís
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
| | - Walter C. Thompson
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
| | - James R. Peña
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christopher McDermott-Roe
- Department of Medicine, and Department of Genetics, Perelman School of Medicine, Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, United States
| | - Paulina Langa
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Chad M. Warren
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Magdalena Chrzanowska
- Blood Research Institute, Versiti, Department of Pharmacology and Toxicology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Beata M. Wolska
- Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, IL, United States
| | - R. John Solaro
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Pieter Detombe
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
- Phymedexp, Université de Montpellier, Inserm, CNRS, Montpellier, France
| | - Paul H. Goldspink
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
2
|
Perše M. Cisplatin Mouse Models: Treatment, Toxicity and Translatability. Biomedicines 2021; 9:biomedicines9101406. [PMID: 34680523 PMCID: PMC8533586 DOI: 10.3390/biomedicines9101406] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Cisplatin is one of the most widely used chemotherapeutic drugs in the treatment of a wide range of pediatric and adult malignances. However, it has various side effects which limit its use. Cisplatin mouse models are widely used in studies investigating cisplatin therapeutic and toxic effects. However, despite numerous promising results, no significant improvement in treatment outcome has been achieved in humans. There are many drawbacks in the currently used cisplatin protocols in mice. In the paper, the most characterized cisplatin protocols are summarized together with weaknesses that need to be improved in future studies, including hydration and supportive care. As demonstrated, mice respond to cisplatin treatment in similar ways to humans. The paper thus aims to illustrate the complexity of cisplatin side effects (nephrotoxicity, gastrointestinal toxicity, neurotoxicity, ototoxicity and myelotoxicity) and the interconnectedness and interdependence of pathomechanisms among tissues and organs in a dose- and time-dependent manner. The paper offers knowledge that can help design future studies more efficiently and interpret study outcomes more critically. If we want to understand molecular mechanisms and find therapeutic agents that would have a potential benefit in clinics, we need to change our approach and start to treat animals as patients and not as tools.
Collapse
Affiliation(s)
- Martina Perše
- Medical Experimental Centre, Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Yegla B, Foster TC. Operationally defining cognitive reserve genes. Neurobiol Aging 2021; 110:96-105. [PMID: 34565615 DOI: 10.1016/j.neurobiolaging.2021.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/05/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023]
Abstract
Variability in cognitive decline is related to the environment, lifestyle factors, and individual differences in biological aging, including cognitive reserve, plastic properties of the brain, which account for better-than-expected cognition for a given level of brain aging or pathology. Cognitive reserve has not been thoroughly investigated in aged rodents. To address this gap, cognitive reserve was examined using Gene Expression Omnibus data for the CA1 region of the hippocampus of young and aged behaviorally characterized male rats. Statistical filtering identified brain aging and potential cognitive reserve genes, and multiple regression was employed to confirm cognitive reserve genes as genes that predicted better-than-expected cognition for a given level of brain aging. In general, cognitive reserve genes, in which increased expression was associated with better cognition, were not different with age or directly correlated with measures of cognition and appear to act as negative regulators of aging processes, including neuroinflammation and oxidative stress. The results suggest that, for some animals, resilience mechanisms are activated to counteract aging stressors that impair cognition. In contrast, cognitive reserve genes, in which decreased expression was associated with better cognition, were linked to nervous system development and cation transport, suggesting adaptive changes in the circuit to preserve cognition.
Collapse
Affiliation(s)
- Brittney Yegla
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Genetics and Genomics Program University of Florida, Gainesville, FL, USA.
| |
Collapse
|