1
|
Balbinot G, Milosevic M, Morshead CM, Iwasa SN, Zariffa J, Milosevic L, Valiante TA, Hoffer JA, Popovic MR. The mechanisms of electrical neuromodulation. J Physiol 2024. [PMID: 39740777 DOI: 10.1113/jp286205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
The central and peripheral nervous systems are specialized to conduct electrical currents that underlie behaviour. When this multidimensional electrical system is disrupted by degeneration, damage, or disuse, externally applied electrical currents may act to modulate neural structures and provide therapeutic benefit. The administration of electrical stimulation can exert precise and multi-faceted effects at cellular, circuit and systems levels to restore or enhance the functionality of the central nervous system by providing an access route to target specific cells, fibres of passage, neurotransmitter systems, and/or afferent/efferent communication to enable positive changes in behaviour. Here we examine the neural mechanisms that are thought to underlie the therapeutic effects seen with current neuromodulation technologies. To gain further insights into the mechanisms associated with electrical stimulation, we summarize recent findings from genetic dissection studies conducted in animal models. KEY POINTS: Electricity is everywhere around us and is essential for how our nerves communicate within our bodies. When nerves are damaged or not working properly, using exogenous electricity can help improve their function at distinct levels - inside individual cells, within neural circuits, and across entire systems. This method can be tailored to target specific types of cells, nerve fibres, neurotransmitters and communication pathways, offering significant therapeutic potential. This overview explains how exogenous electricity affects nerve function and its potential benefits, based on research in animal studies. Understanding these effects is important because electrical neuromodulation plays a key role in medical treatments for neurological conditions.
Collapse
Affiliation(s)
- Gustavo Balbinot
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
| | - Matija Milosevic
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Cindi M Morshead
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Stephanie N Iwasa
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
| | - Jose Zariffa
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Luka Milosevic
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Taufik A Valiante
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Joaquín Andrés Hoffer
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Milos R Popovic
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Mondello SE, Young L, Dang V, Fischedick AE, Tolley NM, Wang T, Bravo MA, Lee D, Tucker B, Knoernschild M, Pedigo BD, Horner PJ, Moritz CT. Optogenetic spinal stimulation promotes new axonal growth and skilled forelimb recovery in rats with sub-chronic cervical spinal cord injury. J Neural Eng 2023; 20:056005. [PMID: 37524080 PMCID: PMC10496592 DOI: 10.1088/1741-2552/acec13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
Objective.Spinal cord injury (SCI) leads to debilitating sensorimotor deficits that greatly limit quality of life. This work aims to develop a mechanistic understanding of how to best promote functional recovery following SCI. Electrical spinal stimulation is one promising approach that is effective in both animal models and humans with SCI. Optogenetic stimulation is an alternative method of stimulating the spinal cord that allows for cell-type-specific stimulation. The present work investigates the effects of preferentially stimulating neurons within the spinal cord and not glial cells, termed 'neuron-specific' optogenetic spinal stimulation. We examined forelimb recovery, axonal growth, and vasculature after optogenetic or sham stimulation in rats with cervical SCI.Approach.Adult female rats received a moderate cervical hemicontusion followed by the injection of a neuron-specific optogenetic viral vector ipsilateral and caudal to the lesion site. Animals then began rehabilitation on the skilled forelimb reaching task. At four weeks post-injury, rats received a micro-light emitting diode (µLED) implant to optogenetically stimulate the caudal spinal cord. Stimulation began at six weeks post-injury and occurred in conjunction with activities to promote use of the forelimbs. Following six weeks of stimulation, rats were perfused, and tissue stained for GAP-43, laminin, Nissl bodies and myelin. Location of viral transduction and transduced cell types were also assessed.Main Results.Our results demonstrate that neuron-specific optogenetic spinal stimulation significantly enhances recovery of skilled forelimb reaching. We also found significantly more GAP-43 and laminin labeling in the optogenetically stimulated groups indicating stimulation promotes axonal growth and angiogenesis.Significance.These findings indicate that optogenetic stimulation is a robust neuromodulator that could enable future therapies and investigations into the role of specific cell types, pathways, and neuronal populations in supporting recovery after SCI.
Collapse
Affiliation(s)
- Sarah E Mondello
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Lisa Young
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Viet Dang
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Amanda E Fischedick
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Nicholas M Tolley
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Tian Wang
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Madison A Bravo
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Dalton Lee
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Belinda Tucker
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Megan Knoernschild
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
| | - Benjamin D Pedigo
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
| | - Philip J Horner
- Center for Neuroregeneration, Department of Neurological Surgery, Houston Methodist Research Institute, Houston, TX 77030, United States of America
| | - Chet T Moritz
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98195, United States of America
- Center for Neurotechnology, Seattle, WA 98195, United States of America
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, United States of America
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, United States of America
| |
Collapse
|
3
|
Kumar V, Kymissis I. MicroLED/LED electro-optical integration techniques for non-display applications. APPLIED PHYSICS REVIEWS 2023; 10:021306. [PMID: 37265477 PMCID: PMC10155219 DOI: 10.1063/5.0125103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/20/2023] [Indexed: 06/03/2023]
Abstract
MicroLEDs offer an extraordinary combination of high luminance, high energy efficiency, low cost, and long lifetime. These characteristics are highly desirable in various applications, but their usage has, to date, been primarily focused toward next-generation display technologies. Applications of microLEDs in other technologies, such as projector systems, computational imaging, communication systems, or neural stimulation, have been limited. In non-display applications which use microLEDs as light sources, modifications in key electrical and optical characteristics such as external efficiency, output beam shape, modulation bandwidth, light output power, and emission wavelengths are often needed for optimum performance. A number of advanced fabrication and processing techniques have been used to achieve these electro-optical characteristics in microLEDs. In this article, we review the non-display application areas of the microLEDs, the distinct opto-electrical characteristics required for these applications, and techniques that integrate the optical and electrical components on the microLEDs to improve system-level efficacy and performance.
Collapse
Affiliation(s)
- V. Kumar
- Department of Electrical Engineering, Columbia University, New York, New York 10027, USA
| | - I. Kymissis
- Department of Electrical Engineering, Columbia University, New York, New York 10027, USA
| |
Collapse
|
4
|
Merlin S, Vidyasagar T. Optogenetics in primate cortical networks. Front Neuroanat 2023; 17:1193949. [PMID: 37284061 PMCID: PMC10239886 DOI: 10.3389/fnana.2023.1193949] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
The implementation of optogenetics in studies on non-human primates has generally proven quite difficult, but recent successes have paved the way for its rapid increase. Limitations in the genetic tractability in primates, have been somewhat overcome by implementing tailored vectors and promoters to maximize expression and specificity in primates. More recently, implantable devices, including microLED arrays, have made it possible to deliver light deeper into brain tissue, allowing targeting of deeper structures. However, the greatest limitation in applying optogenetics to the primate brain is the complex connections that exist within many neural circuits. In the past, relatively cruder methods such as cooling or pharmacological blockade have been used to examine neural circuit functions, though their limitations were well recognized. In some ways, similar shortcomings remain for optogenetics, with the ability to target a single component of complex neural circuits being the greatest challenge in applying optogenetics to systems neuroscience in primate brains. Despite this, some recent approaches combining Cre-expressing and Cre-dependent vectors have overcome some of these limitations. Here we suggest that optogenetics provides its greatest advantage to systems neuroscientists when applied as a specific tool to complement the techniques of the past, rather than necessarily replacing them.
Collapse
Affiliation(s)
- Sam Merlin
- Medical Science, School of Science, Western Sydney University, Campbelltown, NSW, Australia
| | - Trichur Vidyasagar
- Department of Optometry and Vision Sciences, School of Health Science, The University of Melbourne, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
5
|
Kim HJ, Sritandi W, Xiong Z, Ho JS. Bioelectronic devices for light-based diagnostics and therapies. BIOPHYSICS REVIEWS 2023; 4:011304. [PMID: 38505817 PMCID: PMC10903427 DOI: 10.1063/5.0102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/28/2022] [Indexed: 03/21/2024]
Abstract
Light has broad applications in medicine as a tool for diagnosis and therapy. Recent advances in optical technology and bioelectronics have opened opportunities for wearable, ingestible, and implantable devices that use light to continuously monitor health and precisely treat diseases. In this review, we discuss recent progress in the development and application of light-based bioelectronic devices. We summarize the key features of the technologies underlying these devices, including light sources, light detectors, energy storage and harvesting, and wireless power and communications. We investigate the current state of bioelectronic devices for the continuous measurement of health and on-demand delivery of therapy. Finally, we highlight major challenges and opportunities associated with light-based bioelectronic devices and discuss their promise for enabling digital forms of health care.
Collapse
Affiliation(s)
| | - Weni Sritandi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | | | - John S. Ho
- Author to whom correspondence should be addressed:
| |
Collapse
|
6
|
Geng Y, Li Z, Zhu J, Du C, Yuan F, Cai X, Ali A, Yang J, Tang C, Cong Z, Ma C. Advances in Optogenetics Applications for Central Nervous System Injuries. J Neurotrauma 2023. [PMID: 36305381 DOI: 10.1089/neu.2022.0290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Injuries to the central nervous system (CNS) often lead to severe neurological dysfunction and even death. However, there are still no effective measures to improve functional recovery following CNS injuries. Optogenetics, an ideal method to modulate neural activity, has shown various advantages in controlling neural circuits, promoting neural remapping, and improving cell survival. In particular, the emerging technique of optogenetics has exhibited promising therapeutic methods for CNS injuries. In this review, we introduce the light-sensitive proteins and light stimulation system that are important components of optogenetic technology in detail and summarize the development trends. In addition, we construct a comprehensive picture of the current application of optogenetics in CNS injuries and highlight recent advances for the treatment and functional recovery of neurological deficits. Finally, we discuss the therapeutic challenges and prospective uses of optogenetics therapy by photostimulation/photoinhibition modalities that would be suitable for clinical applications.
Collapse
Affiliation(s)
- Yuanming Geng
- Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China
| | - Zhenxing Li
- Department of Neurosurgery, Jinling Hospital, Nanjing, China.,Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Junhao Zhu
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chaonan Du
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Yuan
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiangming Cai
- School of Medicine, Southeast University, Nanjing, China
| | - Alleyar Ali
- Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Yang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Chao Tang
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Zixiang Cong
- Department of Neurosurgery, Jinling Hospital, Nanjing, China
| | - Chiyuan Ma
- Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, Jinling Hospital, Nanjing, China.,Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,School of Medicine, Southeast University, Nanjing, China.,Department of Neurosurgery, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, China
| |
Collapse
|
7
|
Entenberg D, Oktay MH, Condeelis JS. Intravital imaging to study cancer progression and metastasis. Nat Rev Cancer 2023; 23:25-42. [PMID: 36385560 PMCID: PMC9912378 DOI: 10.1038/s41568-022-00527-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Navigation through the bulk tumour, entry into the blood vasculature, survival in the circulation, exit at distant sites and resumption of proliferation are all steps necessary for tumour cells to successfully metastasize. The ability of tumour cells to complete these steps is highly dependent on the timing and sequence of the interactions that these cells have with the tumour microenvironment (TME), including stromal cells, the extracellular matrix and soluble factors. The TME thus plays a major role in determining the overall metastatic phenotype of tumours. The complexity and cause-and-effect dynamics of the TME cannot currently be recapitulated in vitro or inferred from studies of fixed tissue, and are best studied in vivo, in real time and at single-cell resolution. Intravital imaging (IVI) offers these capabilities, and recent years have been a time of immense growth and innovation in the field. Here we review some of the recent advances in IVI of mammalian models of cancer and describe how IVI is being used to understand cancer progression and metastasis, and to develop novel treatments and therapies. We describe new techniques that allow access to a range of tissue and cancer types, novel fluorescent reporters and biosensors that allow fate mapping and the probing of functional and phenotypic states, and the clinical applications that have arisen from applying these techniques, reporters and biosensors to study cancer. We finish by presenting some of the challenges that remain in the field, how to address them and future perspectives.
Collapse
Affiliation(s)
- David Entenberg
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| | - Maja H Oktay
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| | - John S Condeelis
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
8
|
Wu MC, Chung MC, Wu CY. 3200 ppi Matrix-Addressable Blue MicroLED Display. MICROMACHINES 2022; 13:1350. [PMID: 36014272 PMCID: PMC9416192 DOI: 10.3390/mi13081350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
In this article, an active matrix (AM) micro light-emitting diode (MicroLED) display with a resolution of 1920 × 1080 and a high pixel density of 3200 pixels per inch (ppi) is reported. The single pixel with a diameter of 5 μm on the MicroLED array exhibits excellent characteristics, including a forward voltage of 2.8 V at 4.4 μA, an ideality factor of 1.7 in the forward bias of 2-3 V, an extremely low leakage current of 131 fA at -10 V, an external quantum efficiency of 6.5%, and a wall-plug efficiency of 6.6% at 10.2 A/cm2, a light output power of 28.3 μW and brightness of 1.6 × 105 cd/m2 (nits) at 1 mA. The observed blue shift in the electroluminent peak wavelength is only 6.6 nm from 441.2 nm to 434.6 nm with increasing the current from 5 μA to 1 mA (from 10 to 5 × 103 A/cm2). Through flip-chip bonding technology, the 1920 × 1080 bottom-emitting MicroLED display through the backside of a sapphire substrate can demonstrate high-resolution graphic images.
Collapse
Affiliation(s)
- Meng-Chyi Wu
- Institute of Electronics Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ming-Che Chung
- Institute of Electronics Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cheng-Yeu Wu
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Veterans General Hospital, Taichung 40705, Taiwan
| |
Collapse
|
9
|
Benevides ES, Sunshine MD, Rana S, Fuller DD. Optogenetic activation of the diaphragm. Sci Rep 2022; 12:6503. [PMID: 35444167 PMCID: PMC9021282 DOI: 10.1038/s41598-022-10240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
Impaired diaphragm activation is common in many neuromuscular diseases. We hypothesized that expressing photoreceptors in diaphragm myofibers would enable light stimulation to evoke functional diaphragm activity, similar to endogenous bursts. In a mouse model, adeno-associated virus (AAV) encoding channelrhodopsin-2 (AAV9-CAG-ChR2-mVenus, 6.12 × 1011 vg dose) was delivered to the diaphragm using a minimally invasive method of microinjection to the intrapleural space. At 8-18 weeks following AAV injection, mice were anesthetized and studied during spontaneous breathing. We first showed that diaphragm electromyographic (EMG) potentials could be evoked with brief presentations of light, using a 473 nm high intensity LED. Evoked potential amplitude increased with intensity or duration of the light pulse. We next showed that in a paralyzed diaphragm, trains of light pulses evoked diaphragm EMG activity which resembled endogenous bursting, and this was sufficient to generate respiratory airflow. Light-evoked diaphragm EMG bursts showed no diminution after up to one hour of stimulation. Histological evaluation confirmed transgene expression in diaphragm myofibers. We conclude that intrapleural delivery of AAV9 can drive expression of ChR2 in the diaphragm and subsequent photostimulation can evoke graded compound diaphragm EMG activity similar to endogenous inspiratory bursting.
Collapse
Affiliation(s)
- Ethan S Benevides
- Rehabilitation Science PhD Program, University of Florida, Gainesville, Florida, USA.,Department of Physical Therapy, University of Florida, Gainesville, Florida, USA.,Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, USA.,McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Michael D Sunshine
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA.,Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, USA.,McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Sabhya Rana
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA.,Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, USA.,McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - David D Fuller
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA. .,Breathing Research and Therapeutics Center, University of Florida, Gainesville, Florida, USA. .,McKnight Brain Institute, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
10
|
Wu Y, Luo Z, Hu Z, Lv K, Liu Y, Wang D. Optical Activation of the Dorsal Horn of the Thoracic Spinal Cord Prevents Ventricular Arrhythmias in Acute Myocardial Ischemia-Reperfusion Rats. Front Cardiovasc Med 2022; 9:753959. [PMID: 35198610 PMCID: PMC8858961 DOI: 10.3389/fcvm.2022.753959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background and ObjectivesSpinal cord stimulation can prevent myocardial ischemia and reperfusion arrhythmias, but the relevant neurons and mechanisms remain unknown. Thus, this study applied optogenetic techniques to selectively activate glutamatergic neurons at the thoracic spinal cord (T1 segment) for examining the anti-arrhythmia effects during acute myocardial ischemic-reperfusion.MethodsAdeno-associated viruses (AAVs) carrying channelrhodopsin-2 (ChR2, a blue-light sensitive ion channel) CaMKIIα-hChR2(H134R) or empty vector were injected into the dorsal horn of the T1 spinal cord. Four weeks later, optogenetic stimulation with a 473-nm blue laser was applied for 30 min. Then, the myocardial ischemia-reperfusion model was created by occlusion of the anterior descending coronary artery for ischemia (15 min) and reperfusion (30 min). Cardiac electrical activity and sympathetic nerve activity were assessed continuously.ResultsCaMKIIα-hChR2 viral transfection is primarily expressed in glutamatergic neurons in the spinal cord. Selective optical stimulation of the T1 dorsal horn in the ChR2 rat reduced the ventricular arrhythmia and arrhythmia score during myocardial ischemia-reperfusion, preventing the over-activation of cardiac sympathetic nerve activity. Additionally, optical stimulation also reduced the action potential duration at the 90% level (APD90) and APD dispersion.ConclusionSelective optical stimulation T1 glutamatergic neurons of dorsal horn prevent ischemia-reperfusion arrhythmias. The mechanism may be associated with inhibiting sympathetic nervous system overexcitation and increasing APD dispersion during myocardial ischemia-reperfusion.
Collapse
Affiliation(s)
- Yong Wu
- Department of Gerontology, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Zhongxu Luo
- Department of Gerontology, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Zhengtao Hu
- Department of Gerontology, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Kun Lv
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, China
| | - Yinhua Liu
- Department of Pathology, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Deguo Wang
- Department of Gerontology, First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, China
- *Correspondence: Deguo Wang
| |
Collapse
|
11
|
Zhang H, Liu Y, Zhou K, Wei W, Liu Y. Restoring Sensorimotor Function Through Neuromodulation After Spinal Cord Injury: Progress and Remaining Challenges. Front Neurosci 2021; 15:749465. [PMID: 34720867 PMCID: PMC8551759 DOI: 10.3389/fnins.2021.749465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/13/2021] [Indexed: 12/27/2022] Open
Abstract
Spinal cord injury (SCI) is a major disability that results in motor and sensory impairment and extensive complications for the affected individuals which not only affect the quality of life of the patients but also result in a heavy burden for their families and the health care system. Although there are few clinically effective treatments for SCI, research over the past few decades has resulted in several novel treatment strategies which are related to neuromodulation. Neuromodulation-the use of neuromodulators, electrical stimulation or optogenetics to modulate neuronal activity-can substantially promote the recovery of sensorimotor function after SCI. Recent studies have shown that neuromodulation, in combination with other technologies, can allow paralyzed patients to carry out intentional, controlled movement, and promote sensory recovery. Although such treatments hold promise for completely overcoming SCI, the mechanisms by which neuromodulation has this effect have been difficult to determine. Here we review recent progress relative to electrical neuromodulation and optogenetics neuromodulation. We also examine potential mechanisms by which these methods may restore sensorimotor function. We then highlight the strengths of these approaches and remaining challenges with respect to its application.
Collapse
Affiliation(s)
- Hui Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yaping Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Kai Zhou
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Wei Wei
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yaobo Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|