Li WH, Gan LH, Ma FF, Feng RL, Wang J, Li YH, Sun YY, Wang YJ, Diao X, Qian FY, Wen TQ. Deletion of Dcf1 Reduces Amyloid-β Aggregation and Mitigates Memory Deficits.
J Alzheimers Dis 2021;
81:1181-1194. [PMID:
33896839 DOI:
10.3233/jad-200619]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND
Alzheimer's disease (AD) is a progressive neurodegenerative disease. One of the pathologies of AD is the accumulation of amyloid-β (Aβ) to form senile plaques, leading to a decline in cognitive ability and a lack of learning and memory. However, the cause leading to Aβ aggregation is not well understood. Dendritic cell factor 1 (Dcf1) shows a high expression in the entorhinal cortex neurons and neurofibrillary tangles in AD patients.
OBJECTIVE
Our goal is to investigate the effect of Dcf1 on Aβ aggregation and memory deficits in AD development.
METHODS
The mouse and Drosophila AD model were used to test the expression and aggregation of Aβ, senile plaque formation, and pathological changes in cognitive behavior during dcf1 knockout and expression. We finally explored possible drug target effects through intracerebroventricular delivery of Dcf1 antibodies.
RESULTS
Deletion of Dcf1 resulted in decreased Aβ42 level and deposition, and rescued AMPA Receptor (GluA2) levels in the hippocampus of APP-PS1-AD mice. In Aβ42 AD Drosophila, the expression of Dcf1 in Aβ42 AD flies aggravated the formation and accumulation of senile plaques, significantly reduced its climbing ability and learning-memory. Data analysis from all 20 donors with and without AD patients aged between 80 and 90 indicated a high-level expression of Dcf1 in the temporal neocortex. Dcf1 contributed to Aβ aggregation by UV spectroscopy assay. Intracerebroventricular delivery of Dcf1 antibodies in the hippocampus reduced the area of senile plaques and reversed learning and memory deficits in APP-PS1-AD mice.
CONCLUSION
Dcf1 causes Aβ-plaque accumulation, inhibiting dcf1 expression could potentially offer therapeutic avenues.
Collapse