Jiang Q, Ding Y, Li F, Fayyaz AI, Duan H, Geng X. Modulation of NLRP3 inflammasome-related-inflammation via RIPK1/RIPK3-DRP1 or HIF-1α signaling by phenothiazine in hypothermic and normothermic neuroprotection after acute ischemic stroke.
Redox Biol 2024;
73:103169. [PMID:
38692093 PMCID:
PMC11070764 DOI:
10.1016/j.redox.2024.103169]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND
Inflammation and subsequent mitochondrial dysfunction and cell death worsen outcomes after revascularization in ischemic stroke. Receptor-interacting protein kinase 1 (RIPK1) activated dynamin-related protein 1 (DRP1) in a NLRPyrin domain containing 3 (NLRP3) inflammasome-dependent fashion and Hypoxia-Inducible Factor (HIF)-1α play key roles in the process. This study determined how phenothiazine drugs (chlorpromazine and promethazine (C + P)) with the hypothermic and normothermic modality impacts the RIPK1/RIPK3-DRP1 and HIF-1α pathways in providing neuroprotection.
METHODS
A total of 150 adult male Sprague-Dawley rats were subjected to 2 h middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion. 8 mg/kg of C + P was administered at onset of reperfusion. Infarct volumes, mRNA and protein expressions of HIF-1α, RIPK1, RIPK3, DRP-1, NLRP3-inflammation and cytochrome c-apoptosis were assessed. Apoptotic cell death, infiltration of neutrophils and macrophages, and mitochondrial function were evaluated. Interaction between RIPK1/RIPK3 and HIF-1α/NLRP3 were determined. In SH-SY5Y cells subjected to oxygen/glucose deprivation (OGD), the normothermic effect of C + P on inflammation and apoptosis were examined.
RESULTS
C + P significantly reduced infarct volumes, mitochondrial dysfunction (ATP and ROS concentration, citrate synthase and ATPase activity), inflammation and apoptosis with and without induced hypothermia. Overexpression of RIPK1, RIPK3, DRP-1, NLRP3-inflammasome and cytochrome c-apoptosis were all significantly reduced by C + P at 33 °C and the RIPK1 inhibitor (Nec1s), suggesting hypothermic effect of C + P via RIPK1/RIPK3-DRP1pathway. When body temperature was maintained at 37 °C, C + P and HIF-1α inhibitor (YC-1) reduced HIF-1α expression, leading to reduction in mitochondrial dysfunction, NLRP3 inflammasome and cytochrome c-apoptosis, as well as the interaction of HIF-1α and NLRP3. These were also evidenced in vitro, indicating a normothermic effect of C + P via HIF-1α.
CONCLUSION
Hypothermic and normothermic neuroprotection of C + P involve different pathways. The normothermic effect was mediated by HIF-1α, while hypothermic effect was via RIPK1/RIPK3-DRP1 signaling. This provides a theoretical basis for future precise exploration of hypothermic and normothermic neuroprotection.
Collapse