1
|
Kotepui KU, Mahittikorn A, Wilairatana P, Masangkay FR, Kotepui M. Association between Plasmodium Infection and Nitric Oxide Levels: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2023; 12:1868. [PMID: 37891947 PMCID: PMC10604424 DOI: 10.3390/antiox12101868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Nitric oxide (NO) has been implicated in the pathology of malaria. This systematic review and meta-analysis describe the association between NO levels and malaria. Embase, Ovid, PubMed, Scopus, and Google Scholar were searched to identify studies evaluating NO levels in malaria patients and uninfected controls. Meta-regression and subgroup analyses were conducted to discern differences in NO levels between the groups. Of the 4517 records identified, 21 studies were included in the systematic review and meta-analysis. The findings illustrated significant disparities in NO levels based on geographic location and study time frames. Despite the fluctuations, such as higher NO levels in adults compared to children, no significant differences in mean NO levels between patients and uninfected controls (p = 0.25, Hedge's g: 0.35, 95% confidence interval (CI): -0.25-0.96, I2: 97.39%) or between severe and non-severe malaria cases (p = 0.09, Hedge's g: 0.71, 95% CI: -0.11-1.54, I2: 96.07%) were detected. The systematic review and meta-analysis highlighted inconsistencies in NO levels in malaria patients. Given the high heterogeneity of the results, further studies using standardized metrics for NO measurements and focusing on biochemical pathways dictating NO responses in malaria are imperative to understand the association between NO and malaria.
Collapse
Affiliation(s)
- Kwuntida Uthaisar Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand;
| | - Aongart Mahittikorn
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | | | - Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand;
| |
Collapse
|
2
|
Erhunse N, Omoregie ES, Sahal D. Antiplasmodial and antimalarial evaluation of a Nigerian hepta-herbal Agbo-iba decoction: Identification of magic bullets and possible facilitators of drug action. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115807. [PMID: 36223842 DOI: 10.1016/j.jep.2022.115807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Malaria remains one of the most important pathogenic infectious diseases. Although Africa suffers the greatest brunt, a sizeable proportion of her population still relies on herbal medicines for reasons of cost as well as the belief etched in the minds of consumers that herbal medicines are safer and more efficacious than Modern medicines. Agbo-iba; a concoction of two or more than two plants is commonly used for the management of malaria in Nigeria. AIM OF THE STUDY This study assessed the safety and efficacy of a hepta-herbal Agbo-iba (HHA) antimalarial decoction used for the management of malaria in Benin city, Nigeria. MATERIALS AND METHODS Assessment was done against malaria parasite in culture as well as in vivo in pre-clinical murine model of malaria. RESULTS HHA (IC50Pf3D7 50 μg/ml) was moderately potent and only one of its constituent plants Annickia affinis (IC50Pf3D7 1.49 μg/ml) was far more potent, while all others were moderately active to inactive against the parasite in vitro. HHA showed good selectivity in vitro and was safe at 2 g/kg in mice. However, at 100 mg/kg oral dose, while HHA suppressed parasite growth by 56.76%, the suppression caused by A.affinis was only 32.46% in mice malaria suggesting the existence of synergistic partner(s) in the herbal formula. LCMS revealed the presence of quaternary protoberberine alkaloids (QPAs) in A.affinis and HHA. CONCLUSIONS Although QPAs have strong in vitro antiplasmodial activity, their in vivo antimalarial activity is undermined by being substrates of Permeability glycoprotein (Pgp) efflux pump. Our study suggests that inhibitor(s) of Pgp in HHA could improve the bioavailability of QPAs in mice fed the herbal combo. Further, molecules from other HHA constituent plants may also contribute to the better potency observed for the polyherbal in vivo. These possibilities were validated by the curative antimalarial study at 100 mg/kg, where A.affinis was inactive but the HHA suppressed parasite growth by 44.45%.
Collapse
Affiliation(s)
- Nekpen Erhunse
- Malaria Drug Discovery Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India; Department of Biochemistry, Faculty of Life Sciences, University of Benin, P.M.B, 1154, Benin City, Nigeria.
| | - Ehimwenma Sheena Omoregie
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, P.M.B, 1154, Benin City, Nigeria.
| | - Dinkar Sahal
- Malaria Drug Discovery Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| |
Collapse
|
3
|
Lima-Junior JDC, Rodrigues-da-Silva RN, Pereira VA, Storer FL, Perce-da-Silva DDS, Fabrino DL, Santos F, Banic DM, Oliveira-Ferreira JD. Cells and mediators of inflammation (C-reactive protein, nitric oxide, platelets and neutrophils) in the acute and convalescent phases of uncomplicated Plasmodium vivax and Plasmodium falciparum infection. Mem Inst Oswaldo Cruz 2013; 107:1035-41. [PMID: 23295755 DOI: 10.1590/s0074-02762012000800012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/14/2012] [Indexed: 11/22/2022] Open
Abstract
The haematological changes and release of soluble mediators, particularly C-reactive protein (CRP) and nitric oxide (NO), during uncomplicated malaria have not been well studied, especially in Brazilian areas in which the disease is endemic. Therefore, the present study examined these factors in acute (day 0) and convalescent phase (day 15) patients infected with Plasmodium falciparum and Plasmodium vivax malaria in the Brazilian Amazon. Haematologic parameters were measured using automated cell counting, CRP levels were measured with ELISA and NO plasma levels were measured by the Griess reaction. Our data indicate that individuals with uncomplicated P. vivax and P. falciparum infection presented similar inflammatory profiles with respect to white blood cells, with high band cell production and a considerable degree of thrombocytopaenia during the acute phase of infection. Higher CRP levels were detected in acute P. vivax infection than in acute P. falciparum infection, while higher NO was detected in patients with acute and convalescent P. falciparum infections. Although changes in these mediators cannot predict malaria infection, the haematological aspects associated with malaria infection, especially the roles of platelets and band cells, need to be investigated further.
Collapse
|
4
|
Paesano R, Natalizi T, Berlutti F, Valenti P. Body iron delocalization: the serious drawback in iron disorders in both developing and developed countries. Pathog Glob Health 2013; 106:200-16. [PMID: 23265420 DOI: 10.1179/2047773212y.0000000043] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Over 2 billion people in both developing as well as developed countries - over 30% of the world's population - are anaemic. With the classical preconception that oral iron administration or the intake of foods rich in iron increase haemoglobin concentration and reduce the prevalence of anaemia, specific programs have been designed, but iron supplementations have been less effective than expected. Of note, this hazardous simplification on iron status neglects its distribution in the body. The correct balance of iron, defined iron homeostasis, involves a physiological ratio of iron between tissues/secretions and blood, thus avoiding its delocalization as iron accumulation in tissues/secretions and iron deficiency in blood. Changes in iron status can affect the inflammatory response in multiple ways, particularly in the context of infection, an idea that is worth remembering when considering the value of iron supplementation in areas of the world where infections are highly prevalent. The enhanced availability of free iron can increase susceptibility and severity of microbial and parasitic infections. The discovery of the hepcidin-ferroportin (Fpn) complex, which greatly clarified the enigmatic mechanism that supervises the iron homeostasis, should prompt to a critical review on iron supplementation, ineffective on the expression of the most important proteins of iron metabolism. Therefore, it is imperative to consider new safe and efficient therapeutic interventions to cure iron deficiency (ID) and ID anaemia (IDA) associated or not to the inflammation. In this respect, lactoferrin (Lf) is emerging as an important regulator of both iron and inflammatory homeostasis. Oral administration of Lf in subjects suffering of ID and IDA is safe and effective in significantly increasing haematological parameters and contemporary decreasing serum IL-6 levels, thus restoring iron localization through the direct or indirect modulation of hepcidin and ferroportin synthesis. Of note, the nuclear localization of Lf suggests that this molecule may be involved in the transcriptional regulation of some genes of host inflammatory response. We recently also reported that combined administration of oral and intravaginal Lf on ID and IDA pregnant women with preterm delivery threat, significantly increased haematological parameters, reduced IL-6 levels in both serum and cervicovaginal fluid, cervicovaginal prostaglandin PGF2α, and suppressed uterine contractility. Moreover, Lf combined administration blocked further the shortening of cervical length and the increase of foetal fibronectin, thus prolonging the length of pregnancy until the 37th-38th week of gestation. These new Lf functions effective in curing ID and IDA through the restoring of iron and inflammatory homeostasis and in preventing preterm delivery, could have a great relevance in developing countries, where ID and IDA and inflammation-associated anaemia represent the major risk factors of preterm delivery and maternal and neonatal death.
Collapse
Affiliation(s)
- R Paesano
- Department of Woman Health and Territorial Medicine, Sapienza University of Rome, Italy
| | | | | | | |
Collapse
|
5
|
Feng Y, Zhu X, Wang Q, Jiang Y, Shang H, Cui L, Cao Y. Allicin enhances host pro-inflammatory immune responses and protects against acute murine malaria infection. Malar J 2012; 11:268. [PMID: 22873687 PMCID: PMC3472178 DOI: 10.1186/1475-2875-11-268] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 07/22/2012] [Indexed: 12/19/2022] Open
Abstract
Background During malaria infection, multiple pro-inflammatory mediators including IFN-γ, TNF and nitric oxide (NO) play a crucial role in the protection against the parasites. Modulation of host immunity is an important strategy to improve the outcome of malaria infection. Allicin is the major biologically active component of garlic and shows anti-microbial activity. Allicin is also active against protozoan parasites including Plasmodium, which is thought to be mediated by inhibiting cysteine proteases. In this study, the immunomodulatory activities of allicin were assessed during acute malaria infection using a rodent malaria model Plasmodium yoelii 17XL. Methods To determine whether allicin modulates host immune responses against malaria infection, mice were treated with allicin after infection with P. yoelii 17XL. Mortality was checked daily and parasitaemia was determined every other day. Pro-inflammatory mediators and IL-4 were quantified by ELISA, while NO level was determined by the Griess method. The populations of dendritic cells (DCs), macrophages, CD4+ T and regulatory T cells (Treg) were assessed by FACS. Results Allicin reduced parasitaemia and prolonged survival of the host in a dose-dependent manner. This effect is at least partially due to improved host immune responses. Results showed that allicin treatment enhanced the production of pro-inflammatory mediators such as IFN-γ, TNF, IL-12p70 and NO. The absolute numbers of CD4+ T cells, DCs and macrophages were significantly higher in allicin-treated mice. In addition, allicin promoted the maturation of CD11c+ DCs, whereas it did not cause major changes in IL-4 and the level of anti-inflammatory cytokine IL-10. Conclusions Allicin could partially protect host against P. yoelii 17XL through enhancement of the host innate and adaptive immune responses.
Collapse
Affiliation(s)
- Yonghui Feng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | | | | | | | | | | | | |
Collapse
|
6
|
Wang QH, Liu YJ, Liu J, Chen G, Zheng W, Wang JC, Cao YM. Plasmodium yoelii: Assessment of production and role of nitric oxide during the early stages of infection in susceptible and resistant mice. Exp Parasitol 2009; 121:268-73. [DOI: 10.1016/j.exppara.2008.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 11/23/2008] [Accepted: 11/26/2008] [Indexed: 01/16/2023]
|
7
|
Nahrevanian H, Gholizadeh J, Farahmand M, Assmar M. Patterns of co-association of C-reactive protein and nitric oxide in malaria in endemic areas of Iran. Mem Inst Oswaldo Cruz 2008; 103:39-44. [PMID: 18368235 DOI: 10.1590/s0074-02762008000100006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 12/26/2007] [Indexed: 11/22/2022] Open
Abstract
In addition to numerous immune factors, C-reactive protein (CRP) and nitric oxide (NO) are believed to be molecules of malaria immunopathology. The objective of this study was to detect CRP and NO inductions by agglutination latex test and Griess microassay respectively in both control and malaria groups from endemic areas of Iran, including Southeastern (SE) (Sistan & Balouchestan, Hormozgan, Kerman) and Northwestern (NW) provinces (Ardabil). The results indicated that CRP and NO are produced in all malaria endemic areas of Iran. In addition, more CRP and NO positive cases were observed amongst malaria patients in comparison with those in control group. A variable co-association of CRP/NO production were detected between control and malaria groups, which depended upon the malaria endemic areas and the type of plasmodia infection. The percentage of CRP/NO positive cases was observed to be lower in NW compare to SE region, which may be due to the different type of plasmodium in the NW (Plasmodium vivax) with SE area (P. vivax, Plasmodium falciparum, mixed infection). The fluctuations in CRP/NO induction may be consistent with genetic background of patients. Although, CRP/NO may play important role in malaria, their actual function and interaction in clinical forms of disease remains unclear.
Collapse
|
8
|
Cui L, Miao J, Cui L. Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum: inhibition of histone acetylation and generation of reactive oxygen species. Antimicrob Agents Chemother 2006; 51:488-94. [PMID: 17145789 PMCID: PMC1797756 DOI: 10.1128/aac.01238-06] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The emergence of multidrug-resistant parasites is a major concern for malaria control, and development of novel drugs is a high priority. Curcumin, a natural polyphenolic compound, possesses diverse pharmacological properties. Among its antiprotozoan activities, curcumin was potent against both chloroquine-sensitive and -resistant Plasmodium falciparum strains. Consistent with findings in mammalian cell lines, curcumin's prooxidant activity promoted the production in P. falciparum of reactive oxygen species (ROS), whose cytotoxic effect could be antagonized by coincubation with antioxidants and ROS scavengers. Curcumin treatment also resulted in damage of both mitochondrial and nuclear DNA, probably due to the elevation of intracellular ROS. Furthermore, we have demonstrated that curcumin inhibited the histone acetyltransferase (HAT) activity of the recombinant P. falciparum general control nonderepressed 5 (PfGCN5) in vitro and reduced nuclear HAT activity of the parasite in culture. Curcumin-induced hypoacetylation of histone H3 at K9 and K14, but not H4 at K5, K8, K12, and K16, suggested that curcumin caused specific inhibition of the PfGCN5 HAT. Taken together, these results indicated that at least the generation of ROS and down-regulation of PfGCN5 HAT activity accounted for curcumin's cytotoxicity for malaria parasites.
Collapse
Affiliation(s)
- Long Cui
- Department of Entomology, The Pennsylvania State University, 501 ASI Building, University Park, PA 16802, USA
| | | | | |
Collapse
|
9
|
Bluth MH, Kandil E, Mueller CM, Shah V, Lin YY, Zhang H, Dresner L, Lempert L, Nowakowski M, Gross R, Schulze R, Zenilman ME. Sophorolipids block lethal effects of septic shock in rats in a cecal ligation and puncture model of experimental sepsis*. Crit Care Med 2006; 34:188-95. [PMID: 16374148 DOI: 10.1097/01.ccm.0000196212.56885.50] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Sophorolipids, a family of natural and easily chemoenzymatically modified microbial glycolipids, are promising modulators of the immune response. The potential of the therapeutic effect of sophorolipids was investigated in vivo in a rat model of sepsis and in vitro by analysis of nitric oxide and cytokine production. DESIGN Prospective, randomized animal study. SETTING Experimental laboratory. SUBJECTS Male Sprague-Dawley rats, 200-240 g. INTERVENTIONS Intra-abdominal sepsis was induced in vivo in 166 rats via cecal ligation and puncture (CLP); 60 rats were used to characterize the model. The remaining rats were treated with sophorolipids or vehicle (dimethylsulfoxide [DMSO]/physiologic saline) by intravenous (iv) tail vein or intraperitoneal (IP) injection immediately post-CLP (25/group). Survival rates were compared at 36 hrs after surgery. In vitro, macrophages were cultured in lipopolysaccharide (LPS) +/- sophorolipid and assayed for nitric oxide (NO) production and gene expression profiles of inflammatory cytokines. In addition, splenic lymphocytes isolated from CLP rats +/- sophorolipid treatment (three per group) were analyzed for cytokine production by RNase protection assay. MEASUREMENTS AND MAIN RESULTS CLP with 16-gauge needles optimized sepsis induction and resultant mortality. Sophorolipid treatment improved rat survival by 34% (iv) and 14% (IP) in comparison with vehicle controls (p < .05 for iv treatment). Sophorolipids decreased LPS-induced macrophage NO production by 28% (p < .05). mRNA expression of interleukin (IL)-1beta was downregulated by 42.5 +/- 4.7% (p < .05) and transforming growth factor (TGF)-beta1 was upregulated by 11.7 +/- 1.5% (p < .05) in splenocytes obtained 6 hrs postsophorolipid treatment. LPS-treated macrophages cultured 36 hrs with sophorolipids showed increases in mRNA expression of IL-1alpha (51.7%), IL-1beta (31.3%), and IL-6 (66.8%) (p < .05). CONCLUSIONS Administration of sophorolipids after induction of intra-abdominal sepsis significantly decreases mortality in this model. This may be mediated in part by decreased macrophage NO production and modulation of inflammatory responses.
Collapse
Affiliation(s)
- Martin H Bluth
- SUNY Downstate Medical Center, Department of Surgery, Brooklyn, NY 11203, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|