1
|
Li L, Guan YC, Bai SY, Jin QW, Tao JP, Zhu GD, Huang SY. Mineralization Reduces the Toxicity and Improves Stability and Protective Immune Response Induced by Toxoplasma gondii. Vaccines (Basel) 2023; 12:35. [PMID: 38250848 PMCID: PMC10819335 DOI: 10.3390/vaccines12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Vaccination is an ideal strategy for the control and prevention of toxoplasmosis. However, the thermostability and effectiveness of vaccines limit their application. Here, calcium mineralization was used to fabricate Toxoplasma gondii tachyzoites as immunogenic core-shell particles with improved immune response and thermostability. In the current study, T. gondii RH particles coated with mineralized shells were fabricated by calcium mineralization. The mineralized shells could maintain the T. gondii tachyzoites structural integrity for at least 12 months and weaken the virulence. Immunization of mice with mineralized tachyzoites induced high levels of T. gondii-specific antibodies and cytokines. The immunized mice were protected with a 100% survival rate in acute and chronic infection, and brain cyst burdens were significantly reduced. This study reported for the first time the strategy of calcium mineralization on T. gondii and proved that mineralized tachyzoites could play an immune protective role, thus expanding the application of biomineralization in T. gondii vaccine delivery.
Collapse
Affiliation(s)
- Ling Li
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China; (L.L.); (Y.-C.G.); (S.-Y.B.); (Q.-W.J.); (J.-P.T.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yong-Chao Guan
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China; (L.L.); (Y.-C.G.); (S.-Y.B.); (Q.-W.J.); (J.-P.T.)
| | - Shao-Yuan Bai
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China; (L.L.); (Y.-C.G.); (S.-Y.B.); (Q.-W.J.); (J.-P.T.)
| | - Qi-Wang Jin
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China; (L.L.); (Y.-C.G.); (S.-Y.B.); (Q.-W.J.); (J.-P.T.)
| | - Jian-Ping Tao
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China; (L.L.); (Y.-C.G.); (S.-Y.B.); (Q.-W.J.); (J.-P.T.)
| | - Guo-Ding Zhu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Provincial Medical Key Laboratory, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China;
| | - Si-Yang Huang
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, China; (L.L.); (Y.-C.G.); (S.-Y.B.); (Q.-W.J.); (J.-P.T.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Arafa FM, Osman DH, Tolba MM, Rezki N, Aouad MR, Hagar M, Osman M, Said H. Sulfadiazine analogs: anti-Toxoplasma in vitro study of sulfonamide triazoles. Parasitol Res 2023; 122:2353-2365. [PMID: 37610452 PMCID: PMC10495491 DOI: 10.1007/s00436-023-07936-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/03/2023] [Indexed: 08/24/2023]
Abstract
Toxoplasmosis is an infection that prevails all over the world and is caused by the obligate intracellular protozoan parasite Toxoplasma gondii (T. gondii). Promising novel compounds for the treatment of T. gondii are introduced in the current investigation. In order to test their in vitro potency against T. gondii tachyzoites, six 1,2,3-triazoles-based sulfonamide scaffolds with terminal NH2 or OH group were prepared and investigated as sulfadiazine equivalents. When compared to sulfadiazine, which served as a positive control, hybrid molecules showed much more anti-Toxoplasma activity. The results showed that the IC50 of the examined compounds 3(a-f) were recoded as 0.07492 μM, 0.07455 μM, 0.0392 μM, 0.03124 μM, 0.0533 μM, and 0.01835 μM, respectively, while the sulfadiazine exhibited 0.1852 μM. The studied 1,2,3-triazole-sulfadrug molecular conjugates 3(a-f) revealed selectivity index of 10.4, 8.9, 25.4, 21, 8.3, and 29; respectively. The current study focused on the newly synthesized amino derivatives 3(d-f), as they contain the more potent amino groups which are recognized to be essential elements and promote better biological activity. Extracellular tachyzoites underwent striking morphological alterations after 2 h of treatment as seen by scanning electron microscopy (SEM). Additionally, the intracellular tachyzoite exposed to the newly synthesized amino derivatives 3(d-f) for a 24-h period of treatment revealed damaged and altered morphology by transmission electron microscopic (TEM) indicating cytopathic effects. Moreover, compound 3f underwent the most pronounced changes, indicating that it had the strongest activity against T. gondii.
Collapse
Affiliation(s)
- Fadwa M Arafa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, 21577, Egypt.
| | - Doaa Hassan Osman
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Mona Mohamed Tolba
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Nadjet Rezki
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, 30002, Saudi Arabia
| | - Mohamed R Aouad
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah, 30002, Saudi Arabia
| | - Mohamed Hagar
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21321, Egypt
| | - Mervat Osman
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Heba Said
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| |
Collapse
|
3
|
Arafa FM, Said H, Osman D, Rezki N, Aouad MR, Hagar M, Osman M, Elwakil BH, Jaremko M, Tolba MM. Nanoformulation-Based 1,2,3-Triazole Sulfonamides for Anti- Toxoplasma In Vitro Study. Trop Med Infect Dis 2023; 8:401. [PMID: 37624339 PMCID: PMC10460005 DOI: 10.3390/tropicalmed8080401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 08/26/2023] Open
Abstract
Toxoplasma gondii is deemed a successful parasite worldwide with a wide range of hosts. Currently, a combination of pyrimethamine and sulfadiazine serves as the first-line treatment; however, these drugs have serious adverse effects. Therefore, it is imperative to focus on new therapies that produce the desired effect with the lowest possible dose. The designation and synthesis of sulfonamide-1,2,3-triazole hybrids (3a-c) were performed to create hybrid frameworks. The newly synthesized compounds were loaded on chitosan nanoparticles (CNPs) to form nanoformulations (3a.CNP, 3b.CNP, 3c.CNP) for further in vitro investigation as an anti-Toxoplasma treatment. The current study demonstrated that all examined compounds were active against T. gondii in vitro relative to the control drug, sulfadiazine. 3c.CNP showed the best impact against T. gondii with the lowest IC50 value of 3.64 µg/mL. Using light microscopy, it was found that Vero cells treated with the three nanoformulae showed remarkable morphological improvement, and tachyzoites were rarely seen in the treated cells. Moreover, scanning and transmission electron microscopic studies confirmed the efficacy of the prepared nanoformulae on the parasites. All of them caused parasite ultrastructural damage and altered morphology, suggesting a cytopathic effect and hence confirming their promising anti-Toxoplasma activity.
Collapse
Affiliation(s)
- Fadwa M. Arafa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria 21577, Egypt
| | - Heba Said
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Doaa Osman
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Nadjet Rezki
- Department of Chemistry, College of Science, Taibah University, Al Madinah Al Munawarah 30002, Saudi Arabia
| | - Mohamed R. Aouad
- Department of Chemistry, College of Science, Taibah University, Al Madinah Al Munawarah 30002, Saudi Arabia
| | - Mohamed Hagar
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Mervat Osman
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| | - Bassma H. Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria 21526, Egypt
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Mona Mohamed Tolba
- Department of Parasitology, Medical Research Institute, Alexandria University, Alexandria 21561, Egypt
| |
Collapse
|
4
|
Nguyen TT, Kamyingkird K, Phimpraphai W, Inpankaew T. Viability of Toxoplasma gondii tachyzoites in different conditions for parasite transportation. Vet World 2022; 15:198-204. [PMID: 35369589 PMCID: PMC8924386 DOI: 10.14202/vetworld.2022.198-204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/31/2021] [Indexed: 11/20/2022] Open
Abstract
Background and Aim Toxoplasma gondii tachyzoite is the infective stage that causes acute infection, leading to severe toxoplasmosis. The tachyzoite stage has been extensively used for several inoculation purposes, including antigen production, immunological studies, nutrition mechanisms, and in vitro drug trials. The use of fresh tachyzoites is required for inoculation in either in vitro or in vivo studies. However, there is a lack of information on preserving live tachyzoites during transportation from laboratories to inoculation sites. Therefore, this study aimed to validate suitable preservative conditions for maintaining live parasites by determining the survival and viability of T. gondii tachyzoites on the basis of different media, temperatures, and incubation times. Materials and Methods The free live T. gondii tachyzoites were evaluated on their viability when maintained in different media without 5% Carbon dioxide (CO2). The purified tachyzoites of the RH and PLK strains were individually suspended in normal saline (NS), phosphate-buffered saline (PBS), minimum essential medium (MEM), and MEM with 10% fetal bovine serum (MEM-FBS) and incubated for 6 h at ice-cold (IC; 3-9°C) and room temperature (RT; 25°C). Parasite survival was measured at the 0, 1st, 2nd, 3rd, 4th, 5th, and 6th h post-incubation using the trypan blue exclusion test. Results The viability was in the range of 85.0%-91.0% for IC using NS and 81.0%-85.1% (IC) and 75.3%-77.5% (RT) using PBS. The viability was approximately 75.0%-83.0% (IC) and 70.0%-79.0% (RT) using MEM and MEM-FBS. There was a significant difference in the viability between the seven periods on the basis of one-way repeated Analysis of variance and Friedman analyses. Parasite survival slightly reduced (20.0%-30.0%) in NS and MEM-FBS at both temperatures during incubation. Notably, PBS could not support tachyzoite viability after 3 h post-incubation. Conclusion NS was a suitable preservative for maintaining purified T. gondii tachyzoites during transportation at IC and RT without 5% CO2 supplementation. This could be a valuable medium for parasite transportation, especially when there is a large distance between the laboratory and inoculation site.
Collapse
Affiliation(s)
- Thi Thuy Nguyen
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
- Department of Veterinary Medicine, Faculty of Animal Science and Veterinary Medicine, University of Agriculture and Forestry, Hue University, Hue, Vietnam
| | - Ketsarin Kamyingkird
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Waraphon Phimpraphai
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Tawin Inpankaew
- Department of Parasitology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
5
|
Elkerdany ED, Elnassery SM, Arafa FM, Zaki SAF, Mady RF. In vitro effect of a novel protease inhibitor cocktail on Toxoplasma gondii tachyzoites. Exp Parasitol 2020; 219:108010. [PMID: 33007297 DOI: 10.1016/j.exppara.2020.108010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/31/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022]
Abstract
Toxoplasmosis is a zoonotic disease and a global food and water-borne infection. The disease is caused by the parasite Toxoplasma gondii, which is a highly successful and remarkable pathogen because of its ability to infect almost any nucleated cell in warm-blooded animals. The present study was done to demonstrate the effect of protease inhibitors cocktail (PIC), which inhibit both cysteine and serine proteases, on in vitro cultured T. gondii tachyzoites on HepG2 cell line. This was achieved by assessing its effect on the invasion of the host cells and the intracellular development of T.gondii tachyzoites through measuring their number and viability after their incubation with PIC. Based on the results of the study, it was evident that the inhibitory action of the PIC was effective when applied to tachyzoites before their cultivation on HepG2 cells. Pre-treatment of T.gondii tachyzoites with PIC resulted in failure of the invasion of most of the tachyzoites and decreased the intracellular multiplication and viability of the tachyzoites that succeeded in the initial invasion process. Ultrastructural studies showed morphological alteration in tachyzoites and disruption in their organelles. This effect was irreversible till the complete lysis of cell monolayer in cultures. It can be concluded that PIC, at in vitro levels, could prevent invasion and intracellular multiplication of Toxoplasma tachyzoites. In addition, it is cost effective compared to individual protease inhibitors. It also had the benefit of combined therapy as it lowered the concentration of each protease inhibitor used in the cocktail. Other in vivo experiments are required to validate the cocktail efficacy against toxoplasmosis. Further studies may be needed to establish the exact mechanism by which the PIC exerts its effect on Toxoplasma tachyzoites behavior and its secretory pathway.
Collapse
Affiliation(s)
- Eman D Elkerdany
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt.
| | - Suzanne M Elnassery
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt.
| | - Fadwa M Arafa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt.
| | - Sahar Abdel-Fattah Zaki
- Department of Environmental Biotechnology, Genetic Engineering Biotechnology Institute, City of Scientific Research and Technological Applications, Egypt.
| | - Rasha F Mady
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Egypt.
| |
Collapse
|
6
|
El-Bahy MM, Khalifa MM, Méabed EM. Toxoplasma gondii: Prolonged in-vitro maintenance of virulent tachyzoites in fluid media at low temperatures. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2018.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Mohamed M. El-Bahy
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, El-Giza, Egypt
| | - Marwa M. Khalifa
- Department of Parasitology, Faculty of Veterinary Medicine, Cairo University, El-Giza, Egypt
| | - Eman M.H. Méabed
- Department of Parasitology, Faculty of Medicine, Fayoum University, Egypt
| |
Collapse
|
7
|
Sağlam Metiner P, Can H, Ayyıldız Tamiş D, Karakavuk M, Kımız Geboloğlu I, Gülçe İz S, Atalay Şahar E, Değirmenci Döşkaya A, Gürüz Y, Deliloğlu Gürhan Sİ, Döşkaya M. The use of Toxoplasma gondii tachyzoites produced in HeLa cells adhered to Cytodex 1 microcarriers as antigen in serological assays: an application of microcarrier technology. Cytotechnology 2019; 71:91-105. [PMID: 30607647 DOI: 10.1007/s10616-018-0269-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/13/2018] [Indexed: 01/01/2023] Open
Abstract
Toxoplasma gondii can infect nearly all warm-blooded animals, including humans. In the laboratory diagnosis of toxoplasmosis, serological tests have importance in detecting antibody response. Traditionally T. gondii tachyzoites grown in vivo are being used as an antigen source in serological assays. Currently, tachyzoites produced in vitro are being tested as an antigen source in order to decrease animal use. Microcarrier technology allowed us to grow anchorage-dependent host cells on microcarrier suspension in short time and approximately 10 times more than traditional flask technique. The ability of T. gondii tachyzoites to grow in host cells adhered to microcarriers has not been analyzed yet. In this study, we aimed to develop a novel in vitro culture method to produce T. gondii tachyzoites abundantly using HeLa cells adhered to Cytodex 1 microcarriers. Initially, the growth of HeLa cells adhered to Cytodex 1 was analyzed using RPMI 1640, DMEM, and EMEM. Next, HeLa cells with a concentration of 1 × 105 cells/ml and 2 × 105 cells/ml were adhered to Cytodex 1 and grown in spinner flasks. Then, T. gondii tachyzoites were inoculated with 1:1 and 2:1 cell:tachyzoite ratios to HeLa cells adhered to microcarriers in spinner flaks. During continuous production in spinner flasks, tachyzoites were harvested at the 2nd, 4th, and 7th day of culture and the quality of antigens produced from these tachyzoites were tested in ELISA and Western Blotting using sera of patients with toxoplasmosis. The optimization studies showed that finest HeLa inoculation value was 2 × 105 cells/ml using RPMI 1640, and the cell:tachyzoite ratio to obtain the highest tachyzoite yield (17.1 × 107) was 1:1 at the 4th day of inoculation. According to the results of ELISA comparing HeLa cell and mouse derived antigens, the highest correlation with mouse antigen was achieved at the 4th day of HeLa cell culture with 1:1 HeLa:tachyzoite ratio (P < 0.0001). The sensitivity and specificity ratios of ELISA were 100%. In addition, Western blotting banding patterns of the antigen derived at the 4th day of HeLa cell culture with 1:1 HeLa:tachyzoite ratio was comparable with mouse derived antigen. Overall, this novel methodology can be an alternative source of antigen in diagnostic assays, decrease animal use for antigen production, and contribute to the solution of ethical and economic problems.
Collapse
Affiliation(s)
- Pelin Sağlam Metiner
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, İzmir, Turkey
| | - Hüseyin Can
- Department of Biology, Molecular Biology Section, Faculty of Science, Ege University, Bornova, İzmir, Turkey.
| | - Duygu Ayyıldız Tamiş
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, İzmir, Turkey
| | - Muhammet Karakavuk
- Department of Parasitology, Faculty of Medicine, Ege University, Bornova, İzmir, Turkey
| | - Ilgın Kımız Geboloğlu
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, İzmir, Turkey
| | - Sultan Gülçe İz
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, İzmir, Turkey
| | - Esra Atalay Şahar
- Department of Parasitology, Faculty of Medicine, Ege University, Bornova, İzmir, Turkey
| | | | - Yüksel Gürüz
- Department of Parasitology, Faculty of Medicine, Ege University, Bornova, İzmir, Turkey
| | | | - Mert Döşkaya
- Department of Parasitology, Faculty of Medicine, Ege University, Bornova, İzmir, Turkey
| |
Collapse
|
8
|
Cadore GC, Camillo G, Sangioni LA, Vogel FS. Virulência e multiplicação de isolados de Toxoplasma gondii da região central do Rio Grande do Sul. PESQUISA VETERINARIA BRASILEIRA 2018. [DOI: 10.1590/1678-5150-pvb-5472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RESUMO: O protozoário Toxoplasma gondii possui a capacidade de infectar diversas espécies animais, geralmente causando distúrbios reprodutivos. Quatro diferentes isolados de T. gondii - Pains #1 (P1), Pains #2 (P2), Santa Flora #1 (SF1) e Santa Flora #306 (SF306) - foram avaliados, após prévia genotipagem. A capacidade de multiplicação e virulência destes isolados foi analisada in vitro (células Vero) e in vivo (camundongos), sendo realizadas 3 passagens para cada isolado em cada modo avaliado, sendo sempre inoculada a dose de 1x104 taquizoítos em todas as passagens. Os camundongos eram observados diariamente, quanto à presença de sinais clínicos e ocorrência de mortalidade após inoculação dos taquizoítos. Os isolados SF1 e SF306, foram os que apresentaram maior multiplicação média do número total de taquizoítos em cada uma das 3 diferentes passagens realizadas para cada um dos isolados tanto in vitro quanto in vivo. Os primeiros sinais clínicos observados nos camundongos ocorreram entre os dias 5 a 11, após inoculação, com mortalidade acontecendo entre os dias 6 a 15, após inoculação. Assim, a multiplicação parasitária in vitro é semelhante à multiplicação in vivo destes isolados de T. gondii; diferentes isolados com o mesmo genótipo apresentam comportamento de virulência semelhante, caracterizando o isolado SF1 como mais virulento para camundongos.
Collapse
|
9
|
Cao L, Cheng R, Yao L, Yuan S, Yao X. Establishment and application of a loop-mediated isothermal amplification method for simple, specific, sensitive and rapid detection of Toxoplasma gondii. J Vet Med Sci 2013; 76:9-14. [PMID: 23965849 PMCID: PMC3979957 DOI: 10.1292/jvms.13-0275] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The Loop-mediated isothermal amplification (LAMP) method amplifies DNA with
high simply, specificity, sensitivity and rapidity. In this study, A LAMP assay with 6
primers targeting a highly conserved region of the GRA1 gene was developed to diagnose
Toxoplasma gondii. The reaction time of the LAMP assay was shortened to
30 min after optimizing the reaction system. The LAMP assay was found to be highly
specific and stable. The detection limit of the LAMP assay was 10 copies, the same as that
of the conventional PCR. We used the LAMP assay to develop a real-time fluorogenic
protocol to quantitate T. gondii DNA and generated a log-linear
regression plot by plotting the time-to-threshold values against genomic equivalent
copies. Furthermore, the LAMP assay was applied to detect T. gondii DNA
in 423 blood samples and 380 lymph node samples from 10 pig farms, and positive results
were obtained for 7.8% and 8.2% of samples, respectively. The results showed that the LAMP
method is slightly more sensitive than conventional PCR (6.1% and 7.6%). Positive samples
obtained from 6 pig farms. The LAMP assay established in this study resulted in simple,
specific, sensitive and rapid detection of T. gondii DNA and is expected
to play an important role in clinical detection of T. gondii.
Collapse
Affiliation(s)
- Lili Cao
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, Jilin 130062, China
| | | | | | | | | |
Collapse
|
10
|
Malkwitz I, Berndt A, Daugschies A, Bangoura B. Long-term investigations on Toxoplasma gondii-infected primary chicken macrophages. Parasitol Res 2013; 112:3115-22. [PMID: 23749093 DOI: 10.1007/s00436-013-3486-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 05/29/2013] [Indexed: 12/14/2022]
Abstract
Toxoplasma (T.) gondii is known to infect various cell types including macrophages. In the present study, we generated monocyte-derived macrophage cultures from chicken blood. By flow cytometrical analysis, 84.5% of the cultivated cells showed typical macrophage properties. Macrophage cultures were cultivated at either 37 °C or 40 °C, respectively, and were infected 72 to 96 h post isolationem with tachyzoites of the T. gondii type II strain ME49 at a rate of 7.5 tachyzoites per host cell. Light microscopical investigations revealed incorporation of tachyzoites into the macrophages and gradual destruction of the infected macrophage culture. Parasite multiplication was observed by a quantitative real time PCR (qPCR) based on the 529-bp fragment specific for T. gondii. Samples were drawn 1 h post infectionem (p.i.), as well as 12, 24, 36, 48, and 72 h p.i. The parasite replication curve showed a transient decrease of parasite stages 12 h p.i. followed by a tachyzoite multiplication. The comparison of different culture conditions showed a significantly higher replication rate of T. gondii at 37 °C (median value 48 h p.i., 289.2% of the initial tachyzoite number) compared to cultures incubated at 40 °C (median value 48 h p.i., 73.1% of the initial tachyzoite number) throughout the observation period (P < 0.05). In general, replication rates were significantly lower than in a standard VERO cell cultures at 37 °C (P < 0.05). The observed differences were attributed to the physiological chicken macrophage reaction at 40 °C probably approximating the situation in vivo.
Collapse
Affiliation(s)
- Irene Malkwitz
- Institute of Parasitology, Centre for Infectious Diseases, Faculty of Veterinary Medicine, University Leipzig, An den Tierkliniken 35, 04103, Leipzig, Germany
| | | | | | | |
Collapse
|
11
|
Galizi R, Spano F, Giubilei MA, Capuccini B, Magini A, Urbanelli L, Ogawa T, Dubey JP, Spaccapelo R, Emiliani C, Di Cristina M. Evidence of tRNA cleavage in apicomplexan parasites: Half-tRNAs as new potential regulatory molecules of Toxoplasma gondii and Plasmodium berghei. Mol Biochem Parasitol 2013; 188:99-108. [DOI: 10.1016/j.molbiopara.2013.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/12/2013] [Accepted: 03/24/2013] [Indexed: 12/11/2022]
|
12
|
Bilgin M, Yıldırım T, Hökelek M. In Vitro Effects of Ivermectin and Sulphadiazine on Toxoplasma gondii. Balkan Med J 2013; 30:19-22. [PMID: 25207063 DOI: 10.5152/balkanmedj.2012.098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/04/2012] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Ivermectin and sulphadiazine were tested individually to determine their in vitro effects on Toxoplasma gondii grown in human epidermoid larynx carcinoma (Hep-2) cell culture. STUDY DESIGN In-vitro study. MATERIAL AND METHODS Toxoplasma growth was quantities by an enzyme immunoassay performed directly on the fixed cultures, using a rabbit anti-T. gondii immunoglobulin G as the first antibody and a phosphatase-labeled anti-rabbit immunoglobulin G as the second antibody. For each drug, regression models were used to quantify the relationship between optical density values and antimicrobial agent concentrations in the cultures. RESULTS The 50% inhibitory concentrations (IC50) of ivermectin and sulphadiazine were found to be 0.2 μg/mL and 7.3 μg/mL after 48 h of exposure, respectively. None of the concentrations tested for each drugs demonstrated toxicity to Hep-2 cells after 72 h of incubation. CONCLUSION These results indicate that ivermectin significantly inhibited replication of the tachyzoites of T. gondii RH strain.
Collapse
Affiliation(s)
- Melek Bilgin
- Microbiology Laboratory, Samsun Education and Research Hospital, Samsun, Turkey
| | - Tuba Yıldırım
- Department of Biology, Faculty of Arts and Sciences, Amasya University, Amasya, Turkey
| | - Murat Hökelek
- Department of Medical Microbiology, Cerrahpaşa Faculty of Medicine, İstanbul University, İstanbul, Turkey
| |
Collapse
|
13
|
da Costa-Silva TA, da Silva Meira C, Frazzatti-Gallina N, Pereira-Chioccola VL. Toxoplasma gondii antigens: recovery analysis of tachyzoites cultivated in Vero cell maintained in serum free medium. Exp Parasitol 2012; 130:463-9. [PMID: 22306070 DOI: 10.1016/j.exppara.2012.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 10/24/2011] [Accepted: 01/10/2012] [Indexed: 01/18/2023]
Abstract
Vero cells have been used successfully in Toxoplasma gondii maintenance. Medium supplementation for culture cells with fetal bovine serum is necessary for cellular growth. However, serum in these cultures presents disadvantages, such as the potential to induce hypersensitivity, variability of serum batches, possible presence of contaminants, and the high cost of good quality serum. Culture media formulated without any animal derived components, designed for serum-free growth of cell lines have been used successfully for different virus replication. The advantages of protozoan parasite growth in cell line cultures using serum-free medium remain poorly studied. Thus, this study was designed to determine whether T. gondii tachyzoites grown in Vero cell cultures in serum-free medium, after many passages, are able to maintain the same antigenic proprieties as those maintained in experimental mice. The standardization of Vero cell culture in serum-free medium for in vitro T. gondii tachyzoite production was performed establishing the optimal initial cell concentration for the confluent monolayer formation, which was 1×10(6) Vero cell culture as initial inoculum. The total confluent monolayer formatted after 96 h and the best amount of harvested tachyzoites was 2.1×10(7) using parasite inoculum of 1.5×10(6) after 7 days post-infection. The infectivity of tachyzoites released from Vero cells maintained in serum-free medium was evaluated using groups of Swiss mice infected with cell-culture tachyzoites. The parasite concentrations were similar to those for mice infected with tachyzoites collected from other infected mice. The data from both in vivo and in vitro experiments showed that in at least 30 culture cell passages, the parasites maintained the same infectivity as maintained in vivo. Another question was to know whether in the several continued passages, immunogenic progressive loss could occur. The nucleotide sequences studied were the same between the different passages, which could mean no change in their viability in the lysate antigen. Thus, the antigen production by cell culture has clear ethical and cost-saving advantages. Moreover, the use of culture media formulated without any human or animal derived components, designed for serum-free growth of cell lines, successfully produced tachyzoites especially for antigen production.
Collapse
|
14
|
Regidor-Cerrillo J, Gómez-Bautista M, Sodupe I, Aduriz G, Álvarez-García G, Del Pozo I, Ortega-Mora LM. In vitro invasion efficiency and intracellular proliferation rate comprise virulence-related phenotypic traits of Neospora caninum. Vet Res 2011; 42:41. [PMID: 21345202 PMCID: PMC3052184 DOI: 10.1186/1297-9716-42-41] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 02/23/2011] [Indexed: 11/26/2022] Open
Abstract
In this study, we examined the in vitro invasion and proliferation capacities of the Nc-Liv and ten Spanish Neospora caninum isolates (Nc-Spain 1 H - Nc-Spain 10). The invasion rate was determined as the number of tachyzoites that completed their internalisation into MARC-145 cells at 2, 4, and 6 h post-inoculation (pi). The proliferation rate was evaluated by determining the doubling time during the exponential proliferation period. Significant differences in the invasion rates of these isolates were detected at 2 and 4 h pi (P < 0.0001, Kruskal-Wallis test). At 4 h pi, the Nc-Spain 4 H and Nc-Liv isolates displayed the highest, while the Nc-Spain 3 H and Nc-Spain 1 H isolates had the lowest invasion rates (by Dunn's test). Variations in the proliferation kinetics of these isolates were also observed. Between different isolates, the lag phase, which occurs before the exponential growth phase, ranged from 8 to 44 h, and the doubling time ranged from 9.8 to 14.1 h (P = 0.0016, ANOVA test). Tachyzoite yield, which combines invasion and proliferation data, was also assessed and confirmed marked differences between the highly and less prolific isolates. Interestingly, a direct correlation between the invasion rates and tachyzoite yields, and the severity of the disease that was exhibited by infected pregnant mice in previous works could be established for the isolates in this study (Spearman's coefficient > 0.62, P < 0.05). The results of this study may help us to explain the differences in the pathogenicity that are displayed by different isolates.
Collapse
Affiliation(s)
- Javier Regidor-Cerrillo
- SALUVET, Animal Health Department, Complutense University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
15
|
Fang R, Feng H, Nie H, Wang L, Tu P, Song Q, Zhou Y, Zhao J. Construction and immunogenicity of pseudotype baculovirus expressing Toxoplasma gondii SAG1 protein in BALB/c mice model. Vaccine 2009; 28:1803-7. [PMID: 20018269 DOI: 10.1016/j.vaccine.2009.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 11/20/2009] [Accepted: 12/01/2009] [Indexed: 01/02/2023]
Abstract
Toxoplasma gondii is a protozoan parasite causing toxoplasmosis to almost one-third of population all over the world. One of the most efficient ways to control this disease is immunization. However, so far, there is no effective vaccine available against this pathogen. Recently, a baculovirus pseudotype with vesicular stomatitis virus G protein (Bac-VSV-G) was found to efficiently transduce and express transgenes on mammalian cells, so it was considered as an excellent expressing vector. In this study, the value of Bac-VSV-G in delivering T. gondii antigen was investigated. T. gondii SAG1 gene was cloned into Bac-VSV-G, and recombinant baculovirus BV-G-SAG1 was obtained. Indirect immunofluorescence test showed BV-G-SAG1 was efficiently transduced and expressed in pig kidney cells. Then BALB/c mice were immunized with BV-G-SAG1 at different doses (1 x 10(8), 1 x 10(9), and 1 x 10(10)PFU/mouse) and challenged with T. gondii RH strain tachyzoites after immunization. The levels of specific T. gondii antibody, interferon (IFN)-gamma, IL-4, IL-10 expression and release, and the survival rate of treated mice were evaluated. Compared with the mice immunized with DNA vaccine (pcDNA/SAG1) encoding the same gene, BV-G-SAG1 induced higher levels of specific T. gondii antibody and (IFN)-gamma expression with dose-dependent manner and the survival rate of mice with BV-G-SAG1 was significantly improved. These results indicated that pseudotype baculovirus-mediated gene delivery can be utilized as an alternative strategy to develop new generation of vaccines against T. gondii infection.
Collapse
Affiliation(s)
- Rui Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Fang R, Nie H, Wang Z, Tu P, Zhou D, Wang L, He L, Zhou Y, Zhao J. Protective immune response in BALB/c mice induced by a suicidal DNA vaccine of the MIC3 gene of Toxoplasma gondii. Vet Parasitol 2009; 164:134-40. [PMID: 19592172 DOI: 10.1016/j.vetpar.2009.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 06/03/2009] [Accepted: 06/11/2009] [Indexed: 11/18/2022]
Abstract
To evaluate the protective efficiency of a suicidal DNA vaccine against protozoal parasite Toxoplasma gondii, the microneme protein 3 (MIC3) gene was cloned into suicidal vector pSCA1 and conventional DNA vaccine vector pcDNA3.1+ respectively, their protection against T. gondii challenge were assessed in this study. The recombinant plasmids named pSCA/MIC3 and pcDNA/MIC3 were transfected into BHK-21 cells. The expression of MIC3 in BHK-21 cells was confirmed by RT-PCR and indirect immunofluorescence test. Then BALB/c mice were immunized with pSCA/MIC3 or pcDNA/MIC3. Anti-Tg-MIC3 antibodies were detected by indirect ELISA and the cell immune response were examined by lymphocyte proliferation assay and real time RT-PCR. The results showed that the titre of anti-Tg-MIC3 antibodies, stimulation index (SI) of lymphocyte proliferation response and IFN-gamma expression level induced by pSCA/MIC3 and pcDNA/MIC3 were significantly higher than controls (P<0.05), whereas IL-4 expression level in BALB/c mice immunized with either pSCA/MIC3 or pcDNA/MIC3 was lower than that in control group. After a lethal challenge against T. gondii, survival time of the mice immunized with this suicidal DNA vaccine pSCA/MIC3 and conventional DNA vaccine pcDNA/MIC3 were significantly prolonged in comparison with the control groups (P<0.05), but the difference of protective immune response in BALB/c mice between pSCA/MIC3 and pcDNA/MIC3 was not statistically significant (P>0.05). The findings demonstrated that like conventional DNA vaccine pcDNA/MIC3, suicidal DNA vaccine pSCA/MIC3 also provided favourable efficacy, but it could improve the biosafety of conventional vaccines. This result suggested that suicidal DNA vaccine pSCA/MIC3 is a potential candidate vaccine against toxoplasmosis.
Collapse
Affiliation(s)
- Rui Fang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Shin EH, Kim DH, Lin A, Lee JWY, Kim HJ, Ahn MH, Chai JY. Evaluation of the Korean isolate-1 tachyzoite antigen for serodiagnosis of toxoplasmosis. THE KOREAN JOURNAL OF PARASITOLOGY 2008; 46:45-8. [PMID: 18344678 DOI: 10.3347/kjp.2008.46.1.45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To evaluate the usefulness of the Korean Isolate-1 (KI-1) antigen for serodiagnosis of toxoplasmosis, antigen profiles of KI-1 tachyzoites were analyzed in comparison with RH tachyzoites by SDS-PAGE and immunoblotting. ELISA was performed on latex agglutination (LA)-positive and negative serum samples using KI-1 and RH antigens. Immunoblotting of the KI-1 antigen showed multiple antigen bands with molecular sizes of 22-105 kDa. Among them, 1 and 6 common bands were noted against a KI-1-infected and a RH-infected human serum, respectively, which represented differences in antigenic profiles between KI-1 and RH tachyzoites. However, all 9 LA-positive human sera were found positive by ELISA, and all 12 LA-negative sera were negative by ELISA; the correlation between the ELISA titers and LA titers was high (r = 0.749). Our results suggest that tachyzoites of KI-1 may be useful for serodiagnosis of human toxoplasmosis.
Collapse
Affiliation(s)
- Eun-Hee Shin
- Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine, and Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|