1
|
Romero AA, Cobb SA, Collins JNR, Kliewer SA, Mangelsdorf DJ, Collins JJ. The Schistosoma mansoni nuclear receptor FTZ-F1 maintains esophageal gland function via transcriptional regulation of meg-8.3. PLoS Pathog 2021; 17:e1010140. [PMID: 34910770 PMCID: PMC8673669 DOI: 10.1371/journal.ppat.1010140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/23/2021] [Indexed: 11/19/2022] Open
Abstract
Schistosomes infect over 200 million of the world's poorest people, but unfortunately treatment relies on a single drug. Nuclear hormone receptors are ligand-activated transcription factors that regulate diverse processes in metazoans, yet few have been functionally characterized in schistosomes. During a systematic analysis of nuclear receptor function, we found that an FTZ-F1-like receptor was essential for parasite survival. Using a combination of transcriptional profiling and chromatin immunoprecipitation (ChIP), we discovered that the micro-exon gene meg-8.3 is a transcriptional target of SmFTZ-F1. We found that both Smftz-f1 and meg-8.3 are required for esophageal gland maintenance as well as integrity of the worm's head. Together, these studies define a new role for micro-exon gene function in the parasite and suggest that factors associated with the esophageal gland could represent viable therapeutic targets.
Collapse
Affiliation(s)
- Aracely A. Romero
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Sarah A. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Julie N. R. Collins
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Steven A. Kliewer
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - David J. Mangelsdorf
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, Dallas, Texas, United States of America
| | - James J. Collins
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
2
|
Wu W, LoVerde PT. Nuclear hormone receptors in parasitic Platyhelminths. Mol Biochem Parasitol 2019; 233:111218. [PMID: 31470045 DOI: 10.1016/j.molbiopara.2019.111218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/21/2019] [Accepted: 08/24/2019] [Indexed: 11/16/2022]
Abstract
Nuclear receptors (NRs) belong to a large protein superfamily which includes intracellular receptors for secreted hydrophobic signal molecules, such as steroid hormones and thyroid hormones. They regulate development and reproduction in metazoans by binding to the promoter region of their target gene to activate or repress mRNA synthesis. Isolation and characterization of NRs in the parasitic trematode Schistosoma mansoni identified two homologues of mammalian thyroid receptor (TR). This was the first known protostome exhibiting TR homologues. Three novel NRs each possess a novel set of two DNA binding domains (DBD) in tandem with a ligand binding domain (LBD) (2DBD-NRs) isolated in Schistosoma mansoni revealed a novel NR modular structure: A/B-DBD-DBD-hinge-LBD. Full length cDNA of several NRs have been isolated and studied in the parasitic trematodes S. mansoni, S. japonicum and in the cestode Echinococcus multilocularis. The genome of the blood flukes S. mansoni, S. japonicum and S. haematobium, the liver fluke Clonorchis sinensis and the cestode Echinococcus multilocularis have been sequenced. Study of the NR complement in parasitic Platyhelminths will help us to understand the role of NRs in regulation of their development and understand the evolution of NR in animals.
Collapse
Affiliation(s)
- Wenjie Wu
- Departments of Biochemistry and Structural Biology and Pathology and Laboratory Medicine, University of Texas Health Sciences Center, San Antonio, TX, 78229-3800, USA
| | - Philip T LoVerde
- Departments of Biochemistry and Structural Biology and Pathology and Laboratory Medicine, University of Texas Health Sciences Center, San Antonio, TX, 78229-3800, USA.
| |
Collapse
|
3
|
Vogeler S, Galloway TS, Isupov M, Bean TP. Cloning retinoid and peroxisome proliferator-activated nuclear receptors of the Pacific oyster and in silico binding to environmental chemicals. PLoS One 2017; 12:e0176024. [PMID: 28426724 PMCID: PMC5398557 DOI: 10.1371/journal.pone.0176024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/04/2017] [Indexed: 01/15/2023] Open
Abstract
Disruption of nuclear receptors, a transcription factor superfamily regulating gene expression in animals, is one proposed mechanism through which pollution causes effects in aquatic invertebrates. Environmental pollutants have the ability to interfere with the receptor's functions through direct binding and inducing incorrect signals. Limited knowledge of invertebrate endocrinology and molecular regulatory mechanisms, however, impede the understanding of endocrine disruptive effects in many aquatic invertebrate species. Here, we isolated three nuclear receptors of the Pacific oyster, Crassostrea gigas: two isoforms of the retinoid X receptor, CgRXR-1 and CgRXR-2, a retinoic acid receptor ortholog CgRAR, and a peroxisome proliferator-activated receptor ortholog CgPPAR. Computer modelling of the receptors based on 3D crystal structures of human proteins was used to predict each receptor's ability to bind to different ligands in silico. CgRXR showed high potential to bind and be activated by 9-cis retinoic acid and the organotin tributyltin (TBT). Computer modelling of CgRAR revealed six residues in the ligand binding domain, which prevent the successful interaction with natural and synthetic retinoid ligands. This supports an existing theory of loss of retinoid binding in molluscan RARs. Modelling of CgPPAR was less reliable due to high discrepancies in sequence to its human ortholog. Yet, there are suggestions of binding to TBT, but not to rosiglitazone. The effect of potential receptor ligands on early oyster development was assessed after 24h of chemical exposure. TBT oxide (0.2μg/l), all-trans retinoic acid (ATRA) (0.06 mg/L) and perfluorooctanoic acid (20 mg/L) showed high effects on development (>74% abnormal developed D-shelled larvae), while rosiglitazone (40 mg/L) showed no effect. The results are discussed in relation to a putative direct (TBT) disruption effect on nuclear receptors. The inability of direct binding of ATRA to CgRAR suggests either a disruptive effect through a pathway excluding nuclear receptors or an indirect interaction. Our findings provide valuable information on potential mechanisms of molluscan nuclear receptors and the effects of environmental pollution on aquatic invertebrates.
Collapse
Affiliation(s)
- Susanne Vogeler
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Weymouth, United Kingdom
| | - Tamara S. Galloway
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Michail Isupov
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Tim P. Bean
- Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Weymouth, United Kingdom
| |
Collapse
|
4
|
Cai P, Liu S, Piao X, Hou N, You H, McManus DP, Chen Q. A next-generation microarray further reveals stage-enriched gene expression pattern in the blood fluke Schistosoma japonicum. Parasit Vectors 2017; 10:19. [PMID: 28069074 PMCID: PMC5223471 DOI: 10.1186/s13071-016-1947-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/21/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Schistosomiasis is caused by infection with blood flukes of the genus Schistosoma, and ranks, in terms of disability-adjusted life years (DALYs), as the third most important neglected tropical disease. Schistosomes have several discrete life stages involving dramatic morphological changes during their development, which require subtle gene expression modulations to complete the complex life-cycle. RESULTS In the current study, we employed a second generation schistosome DNA chip printed with the most comprehensive probe array for studying the Schistosoma japonicum transcriptome, to explore stage-associated gene expression in different developmental phases of S. japonicum. A total of 328, 95, 268 and 532 mRNA transcripts were enriched in cercariae, hepatic schistosomula, adult worms and eggs, respectively. In general, genes associated with transcriptional regulation, cell signalling and motor activity were readily expressed in cercariae; the expression of genes involved in neuronal activities, apoptosis and renewal was modestly upregulated in hepatic schistosomula; transcripts involved in egg production, nutrition metabolism and glycosylation were enriched in adult worms; while genes involved in cell division, microtubule-associated mobility, and host-parasite interplay were relatively highly expressed in eggs. CONCLUSIONS The study further highlights the expressional features of stage-associated genes in schistosomes with high accuracy. The results provide a better perspective of the biological characteristics among different developmental stages, which may open new avenues for identification of novel vaccine candidates and the development of novel control interventions against schistosomiasis.
Collapse
Affiliation(s)
- Pengfei Cai
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China. .,Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia.
| | - Shuai Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xianyu Piao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Nan Hou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Hong You
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia.
| | - Qijun Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China. .,Key Laboratory of Zoonosis, Shenyang Agriculture University, Shenyang, People's Republic of China.
| |
Collapse
|
5
|
Pearce EJ, Huang SCC. The metabolic control of schistosome egg production. Cell Microbiol 2015; 17:796-801. [PMID: 25850569 DOI: 10.1111/cmi.12444] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/27/2015] [Accepted: 04/02/2015] [Indexed: 01/06/2023]
Abstract
Schistosomiasis is a neglected tropical disease caused by infection with trematode parasites of the genus Schistosoma. Despite ongoing treatment programmes, the prevalence of schistosomiasis has failed to decline and the disease remains a cause of severe morbidity in millions of people. Understanding the biology of egg production by schistosomes is critical since eggs allow transmission of the infection, and when trapped in host tissues induce the immune responses that are responsible for the pathologic changes that underlie disease development. Unusually among trematodes, adult schistosomes exhibit sexual dimorphism and display a fascinating codependency in that the female is dependent on the male to grow and sexually mature. Thus, virgin females are developmentally stunted compared with females from mixed-sex infections and are unable to lay eggs. Moreover, fecund female schistosomes rapidly lose the ability to produce eggs when placed in tissue culture. Here we discuss the metabolic regulation of egg production in schistosomes, and in particular the critical role played by fatty acid oxidation in this process.
Collapse
Affiliation(s)
- Edward J Pearce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110-1093, USA
| | - Stanley Ching-Cheng Huang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110-1093, USA
| |
Collapse
|
6
|
Vogeler S, Galloway TS, Lyons BP, Bean TP. The nuclear receptor gene family in the Pacific oyster, Crassostrea gigas, contains a novel subfamily group. BMC Genomics 2014; 15:369. [PMID: 24885009 PMCID: PMC4070562 DOI: 10.1186/1471-2164-15-369] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 04/30/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Nuclear receptors are a superfamily of transcription factors important in key biological, developmental and reproductive processes. Several of these receptors are ligand- activated and through their ability to bind endogenous and exogenous ligands, are potentially vulnerable to xenobiotics. Molluscs are key ecological species in defining aquatic and terrestrial habitats and are sensitive to xenobiotic compounds in the environment. However, the understanding of nuclear receptor presence, function and xenobiotic disruption in the phylum Mollusca is limited. RESULTS Here, forty-three nuclear receptor sequences were mined from the genome of the Pacific oyster, Crassostrea gigas. They include members of NR0-NR5 subfamilies, notably lacking any NR6 members. Phylogenetic analyses of the oyster nuclear receptors have been conducted showing the presence of a large novel subfamily group not previously reported, which is named NR1P. Homologues to all previous identified nuclear receptors in other mollusc species have also been determined including the putative heterodimer partner retinoid X receptor, estrogen receptor and estrogen related receptor. CONCLUSION C. gigas contains a highly diverse set of nuclear receptors including a novel NR1 group, which provides important information on presence and evolution of this transcription factor superfamily in invertebrates. The Pacific oyster possesses two members of NR3, the sex steroid hormone receptor analogues, of which there are 9 in humans. This provides increasing evidence that steroid ligand specific expansion of this family is deuterostome specific. This new knowledge on divergence and emergence of nuclear receptors in C. gigas provides essential information for studying regulation of molluscan gene expression and the potential effects of xenobiotics.
Collapse
Affiliation(s)
- Susanne Vogeler
- />School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
- />Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Tamara S Galloway
- />School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| | - Brett P Lyons
- />Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Tim P Bean
- />Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| |
Collapse
|
7
|
Identification of a new Schistosoma mansoni SMYB1 partner: putative roles in RNA metabolism. Parasitology 2013; 140:1085-95. [PMID: 23673212 DOI: 10.1017/s0031182013000413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
SMYB1 is a Schistosoma mansoni protein highly similar to members of the Y-box binding protein family. Similar to other homologues, SMYB1 is able to bind double- and single-stranded DNA, as well as RNA molecules. The characterization of proteins involved in the regulation of gene expression in S. mansoni is of great importance for the understanding of molecular events that control morphological and physiological changes in this parasite. Here we demonstrate that SMYB1 is located in the cytoplasm of cells from different life-cycle stages of S. mansoni, suggesting that this protein is probably acting in mRNA metabolism in the cytoplasm and corroborating previous findings from our group that showed its ability to bind RNA. Protein-protein interactions are important events in all biological processes, since most proteins execute their functions through large supramolecular structures. Yeast two-hybrid screenings using SMYB1 as bait identified a partner in S. mansoni similar to the SmD3 protein of Drosophila melanogaster (SmRNP), which is important in the assembly of small nuclear ribonucleoprotein complexes. Also, pull-down assays were conducted using immobilized GST-SMYB1 proteins and confirmed the SMYB1-SmRNP interaction. The interaction of SMYB1 with a protein involved in mRNA processing suggests that it may act in processes such as turnover, transport and stabilization of RNA molecules.
Collapse
|
8
|
Bitar M, Drummond MG, Costa MGS, Lobo FP, Calzavara-Silva CE, Bisch PM, Machado CR, Macedo AM, Pierce RJ, Franco GR. Modeling the zing finger protein SmZF1 from Schistosoma mansoni: Insights into DNA binding and gene regulation. J Mol Graph Model 2012; 39:29-38. [PMID: 23220279 DOI: 10.1016/j.jmgm.2012.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/09/2012] [Accepted: 10/13/2012] [Indexed: 10/27/2022]
Abstract
Zinc finger proteins are widely found in eukaryotes, representing an important class of DNA-binding proteins frequently involved in transcriptional regulation. Zinc finger motifs are composed by two antiparallel β-strands and one α-helix, stabilized by a zinc ion coordinated by conserved histidine and cysteine residues. In Schistosoma mansoni, these regulatory proteins are known to modulate morphological and physiological changes, having crucial roles in parasite development. A previously described C(2)H(2) zinc finger protein, SmZF1, was shown to be present in cell nuclei of different life stages of S. mansoni and to activate gene transcription in a heterologous system. A high-quality SmZF1 tridimensional structure was generated using comparative modeling. Molecular dynamics simulations of the obtained structure revealed stability of the zinc fingers motifs and high flexibility on the terminals, comparable to the profile observed on the template X-ray structure based on thermal b-factors. Based on the protein tridimensional features and amino acid composition, we were able to characterize four C(2)H(2) zinc finger motifs, the first involved in protein-protein interactions while the three others involved in DNA binding. We defined a consensus DNA binding sequence using three distinct algorithms and further carried out docking calculations, which revealed the interaction of fingers 2-4 with the predicted DNA. A search for S. mansoni genes presenting putative SmZF1 binding sites revealed 415 genes hypothetically under SmZF1 control. Using an automatic annotation and GO assignment approach, we found that the majority of those genes code for proteins involved in developmental processes. Taken together, these results present a consistent base to the structural and functional characterization of SmZF1.
Collapse
Affiliation(s)
- Mainá Bitar
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wu W, LoVerde PT. Nuclear hormone receptors in parasitic helminths. Mol Cell Endocrinol 2011; 334:56-66. [PMID: 20600585 PMCID: PMC2974807 DOI: 10.1016/j.mce.2010.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 04/23/2010] [Accepted: 06/10/2010] [Indexed: 11/29/2022]
Abstract
Nuclear receptors (NRs) belong to a large protein superfamily that are important transcriptional modulators in metazoans. Parasitic helminths include parasitic worms from the Lophotrochozoa (Platyhelminths) and Ecdysozoa (Nematoda). NRs in parasitic helminths diverged into two different evolutionary lineages. NRs in parasitic Platyhelminths have orthologues in Deuterostomes, in arthropods or both with a feature of extensive gene loss and gene duplication within different gene groups. NRs in parasitic Nematoda follow the nematode evolutionary lineage with a feature of multiple duplication of SupNRs and gene loss.
Collapse
Affiliation(s)
- Wenjie Wu
- Department of Biochemistry, School of Medicine and Biomedical Science, State University of New York, Buffalo, NY 14214, USA.
| | | |
Collapse
|
10
|
Drummond MG, Calzavara-Silva CE, D'Astolfo DS, Cardoso FC, Rajão MA, Mourão MM, Gava E, Oliveira SC, Macedo AM, Machado CR, Pena SDJ, Kitten GT, Franco GR. Molecular characterization of the Schistosoma mansoni zinc finger protein SmZF1 as a transcription factor. PLoS Negl Trop Dis 2009; 3:e547. [PMID: 19901992 PMCID: PMC2770324 DOI: 10.1371/journal.pntd.0000547] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 10/09/2009] [Indexed: 11/20/2022] Open
Abstract
Background During its development, the parasite Schistosoma mansoni is exposed to different environments and undergoes many morphological and physiological transformations as a result of profound changes in gene expression. Characterization of proteins involved in the regulation of these processes is of importance for the understanding of schistosome biology. Proteins containing zinc finger motifs usually participate in regulatory processes and are considered the major class of transcription factors in eukaryotes. It has already been shown, by EMSA (Eletrophoretic Mobility Shift Assay), that SmZF1, a S. mansoni zinc finger (ZF) protein, specifically binds both DNA and RNA oligonucleotides. This suggests that this protein might act as a transcription factor in the parasite. Methodology/Principal Findings In this study we extended the characterization of SmZF1 by determining its subcellular localization and by verifying its ability to regulate gene transcription. We performed immunohistochemistry assays using adult male and female worms, cercariae and schistosomula to analyze the distribution pattern of SmZF1 and verified that the protein is mainly detected in the cells nuclei of all tested life cycle stages except for adult female worms. Also, SmZF1 was heterologously expressed in mammalian COS-7 cells to produce the recombinant protein YFP-SmZF1, which was mainly detected in the nucleus of the cells by confocal microscopy and Western blot assays. To evaluate the ability of this protein to regulate gene transcription, cells expressing YFP-SmZF1 were tested in a luciferase reporter system. In this system, the luciferase gene is downstream of a minimal promoter, upstream of which a DNA region containing four copies of the SmZF1 putative best binding site (D1-3DNA) was inserted. SmZF1 increased the reporter gene transcription by two fold (p≤0.003) only when its specific binding site was present. Conclusion Taken together, these results strongly support the hypothesis that SmZF1 acts as a transcription factor in S. mansoni. Schistosomes are parasites that exhibit a complex life cycle during which they progress through many morphological and physiological transformations. These transformations are likely accompanied by alterations in gene expression, making genetic regulation important for parasite development. Here we describe a Schistosoma mansoni protein (SmZF1) that may act as a parasite transcription factor. These factors are key proteins for gene regulation. We have previously demonstrated that SmZF1 is able to bind DNA and that its mRNA is present at different stages during the parasite life cycle. In this study we aimed to define if this protein can function as a transcription factor in S. mansoni. SmZF1 was detected in the nucleus of adult male worms, cercariae and schistosomula cells. It was not, however, observed in female cells, suggesting it to be gender specific. We used mammalian cells expressing recombinant SmZF1 to analyze if SmZF1 protein is able to activate/repress gene transcription and demonstrated that it increased the expression of a reporter gene by two-fold. The results obtained confirm SmZF1 as a S. mansoni transcription factor.
Collapse
Affiliation(s)
- Marcela G. Drummond
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos E. Calzavara-Silva
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Laboratório de Imunologia Celular e Molecular, Centro de Pesquisas René Rachou, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Diego S. D'Astolfo
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Fernanda C. Cardoso
- Laboratório de Imunologia de Doenças Infecciosas, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Matheus A. Rajão
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marina M. Mourão
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elisandra Gava
- Laboratório do Desenvolvimento do Coração e Matriz Extracelular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sérgio C. Oliveira
- Laboratório de Imunologia de Doenças Infecciosas, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa M. Macedo
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos R. Machado
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sérgio D. J. Pena
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gregory T. Kitten
- Laboratório do Desenvolvimento do Coração e Matriz Extracelular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Glória R. Franco
- Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
11
|
Han ZG, Brindley PJ, Wang SY, Chen Z. Schistosoma genomics: new perspectives on schistosome biology and host-parasite interaction. Annu Rev Genomics Hum Genet 2009; 10:211-40. [PMID: 19630560 DOI: 10.1146/annurev-genom-082908-150036] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Schistosomiasis, caused mainly by Schistosoma japonicum, S. mansoni, and S. hematobium, remains one of the most prevalent and serious parasitic diseases worldwide. The blood flukes have a complex life cycle requiring adaptation for survival in fresh water as free-living forms and as parasites in snail intermediate and vertebrate definitive hosts. Functional genomics analyses, including transcriptomic and proteomic approaches, have been performed on schistosomes, in particular S. mansoni and S. japonicum, using powerful high-throughput methodologies. These investigations have not only chartered gene expression profiles across genders and developmental stages within mammalian and snail hosts, but have also characterized the features of the surface tegument, the eggshell and excretory-secretory proteomes of schistosomes. The integration of the genomic, transcriptomic, and proteomic information, together with genetic manipulation on individual genes, will provide a global insight into the molecular architecture of the biology, pathogenesis, and host-parasite interactions of the human blood flukes. Importantly, these functional genomics analyses lay a foundation on which to develop new antischistosome vaccines as well as drug targets and diagnostic markers for treatment and control of schistosomiasis.
Collapse
Affiliation(s)
- Ze-Guang Han
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China.
| | | | | | | |
Collapse
|