1
|
Morais ER, Oliveira KC, de Paula RG, Ornelas AMM, Moreira ÉBC, Badoco FR, Magalhães LG, Verjovski-Almeida S, Rodrigues V. Effects of proteasome inhibitor MG-132 on the parasite Schistosoma mansoni. PLoS One 2017; 12:e0184192. [PMID: 28898250 PMCID: PMC5595316 DOI: 10.1371/journal.pone.0184192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 08/18/2017] [Indexed: 12/26/2022] Open
Abstract
Proteasome is a proteolytic complex responsible for intracellular protein turnover in eukaryotes, archaea and in some actinobacteria species. Previous work has demonstrated that in Schistosoma mansoni parasites, the proteasome inhibitor MG-132 affects parasite development. However, the molecular targets affected by MG-132 in S. mansoni are not entirely known. Here, we used expression microarrays to measure the genome-wide changes in gene expression of S. mansoni adult worms exposed in vitro to MG-132, followed by in silico functional analyses of the affected genes using Ingenuity Pathway Analysis (IPA). Scanning electron microscopy was used to document changes in the parasites’ tegument. We identified 1,919 genes with a statistically significant (q-value ≤ 0.025) differential expression in parasites treated for 24 h with MG-132, when compared with control. Of these, a total of 1,130 genes were up-regulated and 790 genes were down-regulated. A functional gene interaction network comprised of MG-132 and its target genes, known from the literature to be affected by the compound in humans, was identified here as affected by MG-132. While MG-132 activated the expression of the 26S proteasome genes, it also decreased the expression of 19S chaperones assembly, 20S proteasome maturation, ubiquitin-like NEDD8 and its partner cullin-3 ubiquitin ligase genes. Interestingly, genes that encode proteins related to potassium ion binding, integral membrane component, ATPase and potassium channel activities were significantly down-regulated, whereas genes encoding proteins related to actin binding and microtubule motor activity were significantly up-regulated. MG-132 caused important changes in the worm tegument; peeling, outbreaks and swelling in the tegument tubercles could be observed, which is consistent with interference on the ionic homeostasis in S. mansoni. Finally, we showed the down-regulation of Bax pro-apoptotic gene, as well as up-regulation of two apoptosis inhibitor genes, IAP1 and BRE1, and in contrast, down-regulation of Apaf-1 apoptotic activator, thus suggesting that apoptosis is deregulated in S. mansoni exposed to MG-132. A considerable insight has been gained concerning the potential of MG-132 as a gene expression modulator, and overall the data suggest that the proteasome might be an important molecular target for the design of new drugs against schistosomiasis.
Collapse
Affiliation(s)
- Enyara R. Morais
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
- * E-mail:
| | - Katia C. Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
- Centro de Parasitologia e Micologia, Núcleo de Enteroparasitas, Instituto Adolfo Lutz, São Paulo, SP, Brasil
| | - Renato G. de Paula
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Alice M. M. Ornelas
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Érika B. C. Moreira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Fernanda Rafacho Badoco
- Grupo de Pesquisa em Produtos Naturais, Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brasil
| | - Lizandra G. Magalhães
- Grupo de Pesquisa em Produtos Naturais, Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brasil
| | - Sergio Verjovski-Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, SP, Brasil
| | - Vanderlei Rodrigues
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
2
|
Leutner S, Oliveira KC, Rotter B, Beckmann S, Buro C, Hahnel S, Kitajima JP, Verjovski-Almeida S, Winter P, Grevelding CG. Combinatory microarray and SuperSAGE analyses identify pairing-dependently transcribed genes in Schistosoma mansoni males, including follistatin. PLoS Negl Trop Dis 2013; 7:e2532. [PMID: 24244773 PMCID: PMC3820750 DOI: 10.1371/journal.pntd.0002532] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 09/29/2013] [Indexed: 12/23/2022] Open
Abstract
Background Schistosomiasis is a disease of world-wide importance and is caused by parasitic flatworms of the genus Schistosoma. These parasites exhibit a unique reproduction biology as the female's sexual maturation depends on a constant pairing-contact to the male. Pairing leads to gonad differentiation in the female, and even gene expression of some gonad-associated genes is controlled by pairing. In contrast, no morphological changes have been observed in males, although first data indicated an effect of pairing also on gene transcription in males. Methodology/Principal Findings To investigate the influence of pairing on males, we performed a combinatory approach applying SuperSAGE and microarray hybridization, generating the most comprehensive data-set on differential transcription available to date. Of 6,326 sense transcripts detected by both analyses, 29 were significantly differentially transcribed. Besides mutual confirmation, the two methods complemented each other as shown by data comparison and real-time PCR, which revealed a number of genes with consistent regulation across all methods. One of the candidate genes, follistatin of S. mansoni (SmFst) was characterized in more detail by in situ hybridization and yeast two-hybrid (Y2H) interaction analyses with potential binding partners. Conclusions/Significance Beyond confirming previously hypothesized differences in metabolic processes between pairing-experienced (EM) and pairing-unexperienced males (UM), our data indicate that neuronal processes are involved in male-female interaction but also TGFβ-signaling. One candidate revealing significant down-regulation in EM was the TGFβ-pathway controlling molecule follistatin (SmFst). First functional analyses demonstrated SmFst interaction with the S. mansoni TGFβ-receptor agonists inhibin/activin (SmInAct) and bone morphogenic protein (SmBMP), and all molecules colocalized in the testes. This indicates a yet unknown role of the TGFβ-pathway for schistosome biology leading to male competence and a possible influence of pairing on the male gonad. Schistosomiasis is an important infectious disease caused by worm parasites of the genus Schistosoma and directly affects more than 240 million people in 78 tropical and sub-tropical countries but also animals. Pathogenesis is triggered by eggs that are produced by paired females and get trapped in liver and gut causing severe inflammation. While studies have concentrated on the reproductive biology of schistosome females in the past, not much is known about males even though they are indispensable for female sexual development and egg production. Therefore, we studied pairing-dependent processes in S. mansoni males using two independent transcriptomics approaches providing a congruent and most comprehensive data-set on genes being differentially transcribed between pairing-experienced, competent males and pairing-unexperienced, naive males. Besides confirming former studies concerning changes in metabolic processes, our results give new insights into processes leading to male competence indicating among others a potential role of neurotransmitters and TGFβ signal-transduction processes. We especially highlight the follistatin gene SmFst, which codes for an inhibitor of the TGFβ-pathway. SmFst transcription was localized in the testes and found to be down-regulated in pairing-experienced males. This indicates a yet unknown function of pairing on the male gonad and a further role of TGFβ-signaling for schistosome biology.
Collapse
Affiliation(s)
- Silke Leutner
- Institute of Parasitology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Katia C. Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | | | - Svenja Beckmann
- Institute of Parasitology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Christin Buro
- Institute of Parasitology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Steffen Hahnel
- Institute of Parasitology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
3
|
New frontiers in schistosoma genomics and transcriptomics. J Parasitol Res 2012; 2012:849132. [PMID: 23227308 PMCID: PMC3512318 DOI: 10.1155/2012/849132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/16/2012] [Indexed: 12/11/2022] Open
Abstract
Schistosomes are digenean blood flukes of aves and mammals comprising 23 species. Some species are causative agents of human schistosomiasis, the second major neglected disease affecting over 230 million people worldwide. Modern technologies including the sequencing and characterization of nucleic acids and proteins have allowed large-scale analyses of parasites and hosts, opening new frontiers in biological research with potential biomedical and biotechnological applications. Nuclear genomes of the three most socioeconomically important species (S. haematobium, S. japonicum, and S. mansoni) have been sequenced and are under intense investigation. Mitochondrial genomes of six Schistosoma species have also been completely sequenced and analysed from an evolutionary perspective. Furthermore, DNA barcoding of mitochondrial sequences is used for biodiversity assessment of schistosomes. Despite the efforts in the characterization of Schistosoma genomes and transcriptomes, many questions regarding the biology and evolution of this important taxon remain unanswered. This paper aims to discuss some advances in the schistosome research with emphasis on genomics and transcriptomics. It also aims to discuss the main challenges of the current research and to point out some future directions in schistosome studies.
Collapse
|
4
|
Wu X, Zhao B, Hong Y, Li X, Peng J, Zhang J, Wang F, Shi Y, Fu Z, Lin J. Characterization of Schistosoma japonicum estrogen-related receptor beta like 1 and immunogenicity analysis of the recombinant protein. Exp Parasitol 2012; 131:383-92. [PMID: 22626519 DOI: 10.1016/j.exppara.2012.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 04/06/2012] [Accepted: 05/02/2012] [Indexed: 10/28/2022]
Abstract
The estrogen-related receptor beta like 1 (EsRRBL1) is a sex hormone receptor. Here, we describe the cloning and expression of the EsRRBL1 gene from Schistosoma japonicum (SjEsRRBL1). Quantitative real time PCR (qPCR) and Western blot analysis revealed that SjEsRRBL1 was highly expressed in 14-, 18-, 23- and 28-days-old schistosomes at the transcriptional and protein levels, when the schistosomes were undergoing early development of reproductive organs, male and female coupling, and egg-laying. qPCR also showed that schistosomula isolated from a S. japonicum-susceptible mouse host had 3- to 4-fold higher expression of SjEsRRBL1 than that from the S. japonicum non-permissive Microtus fortis host or the non-susceptible rat host. Moreover, SjEsRRBL1 expression was 2-fold higher in schistosomula from female mice than that from male mice. Western blot analysis revealed that rSjEsRRBL1 had good antigenicity. After immunization of BALB/c mice with recombinant (r)SjEsRRBL1, partial and significantly protective efficacy was observed in two independent trials (30.84% and 30.70% worm reduction; 35.39% and 35.61% liver eggs reduction), as compared with the blank control group. An enzyme-linked immunosorbent assay (ELISA) showed that mice vaccinated with rSjEsRRBL1 produced increased levels of specific IgG, IFN-γ and IL-4, but a reduced IgG1/IgG2a ratio, as compared to the adjuvant control group and the blank control group, suggesting that rSjEsRRBL1 vaccination could induce a mixed Th1/Th2 response. The results suggested that SjEsRRBL1 might be a critical regulator of schistosome development and represent a promising vaccine target for schistosomiasis.
Collapse
Affiliation(s)
- Xiujuan Wu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Andrade LF, Nahum LA, Avelar LGA, Silva LL, Zerlotini A, Ruiz JC, Oliveira G. Eukaryotic protein kinases (ePKs) of the helminth parasite Schistosoma mansoni. BMC Genomics 2011; 12:215. [PMID: 21548963 PMCID: PMC3117856 DOI: 10.1186/1471-2164-12-215] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 05/06/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Schistosomiasis remains an important parasitic disease and a major economic problem in many countries. The Schistosoma mansoni genome and predicted proteome sequences were recently published providing the opportunity to identify new drug candidates. Eukaryotic protein kinases (ePKs) play a central role in mediating signal transduction through complex networks and are considered druggable targets from the medical and chemical viewpoints. Our work aimed at analyzing the S. mansoni predicted proteome in order to identify and classify all ePKs of this parasite through combined computational approaches. Functional annotation was performed mainly to yield insights into the parasite signaling processes relevant to its complex lifestyle and to select some ePKs as potential drug targets. RESULTS We have identified 252 ePKs, which corresponds to 1.9% of the S. mansoni predicted proteome, through sequence similarity searches using HMMs (Hidden Markov Models). Amino acid sequences corresponding to the conserved catalytic domain of ePKs were aligned by MAFFT and further used in distance-based phylogenetic analysis as implemented in PHYLIP. Our analysis also included the ePK homologs from six other eukaryotes. The results show that S. mansoni has proteins in all ePK groups. Most of them are clearly clustered with known ePKs in other eukaryotes according to the phylogenetic analysis. None of the ePKs are exclusively found in S. mansoni or belong to an expanded family in this parasite. Only 16 S. mansoni ePKs were experimentally studied, 12 proteins are predicted to be catalytically inactive and approximately 2% of the parasite ePKs remain unclassified. Some proteins were mentioned as good target for drug development since they have a predicted essential function for the parasite. CONCLUSIONS Our approach has improved the functional annotation of 40% of S. mansoni ePKs through combined similarity and phylogenetic-based approaches. As we continue this work, we will highlight the biochemical and physiological adaptations of S. mansoni in response to diverse environments during the parasite development, vector interaction, and host infection.
Collapse
Affiliation(s)
- Luiza F Andrade
- Genomics and Computational Biology Group, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-002, Brazil
| | - Laila A Nahum
- Genomics and Computational Biology Group, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-002, Brazil
- Centro de Excelência em Bioinformática, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-110, Brazil
| | - Lívia GA Avelar
- Genomics and Computational Biology Group, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-002, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG- 31270-910, Brazil
| | - Larissa L Silva
- Genomics and Computational Biology Group, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-002, Brazil
- Centro de Excelência em Bioinformática, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-110, Brazil
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG- 31270-910, Brazil
| | - Adhemar Zerlotini
- Centro de Excelência em Bioinformática, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-110, Brazil
| | - Jerônimo C Ruiz
- Genomics and Computational Biology Group, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-002, Brazil
| | - Guilherme Oliveira
- Genomics and Computational Biology Group, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-002, Brazil
- Centro de Excelência em Bioinformática, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG- 30190-110, Brazil
| |
Collapse
|
6
|
Zerlotini A, Oliveira G. The contributions of the Genome Project to the study of schistosomiasis. Mem Inst Oswaldo Cruz 2011; 105:367-9. [PMID: 20721476 DOI: 10.1590/s0074-02762010000400003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 09/04/2009] [Indexed: 11/22/2022] Open
Abstract
In this paper we review the impact that the availability of the Schistosoma mansoni genome sequence and annotation has had on schistosomiasis research. Easy access to the genomic information is important and several types of data are currently being integrated, such as proteomics, microarray and polymorphic loci. Access to the genome annotation and powerful means of extracting information are major resources to the research community.
Collapse
Affiliation(s)
- Adhemar Zerlotini
- Centro de Excelência em Bioinformática, Laboratório de Parasitologia Celular e Molecular, Instituto de Pesquisa René Rachou-Fiocruz, Belo Horizonte, MG, Brasil
| | | |
Collapse
|
7
|
Spade DJ, Griffitt RJ, Liu L, Brown-Peterson NJ, Kroll KJ, Feswick A, Glazer RA, Barber DS, Denslow ND. Queen conch (Strombus gigas) testis regresses during the reproductive season at nearshore sites in the Florida Keys. PLoS One 2010; 5:e12737. [PMID: 20856805 PMCID: PMC2939879 DOI: 10.1371/journal.pone.0012737] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 08/02/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Queen conch (Strombus gigas) reproduction is inhibited in nearshore areas of the Florida Keys, relative to the offshore environment where conchs reproduce successfully. Nearshore reproductive failure is possibly a result of exposure to environmental factors, including heavy metals, which are likely to accumulate close to shore. Metals such as Cu and Zn are detrimental to reproduction in many mollusks. METHODOLOGY/PRINCIPAL FINDINGS Histology shows gonadal atrophy in nearshore conchs as compared to reproductively healthy offshore conchs. In order to determine molecular mechanisms leading to tissue changes and reproductive failure, a microarray was developed. A normalized cDNA library for queen conch was constructed and sequenced using the 454 Life Sciences GS-FLX pyrosequencer, producing 27,723 assembled contigs and 7,740 annotated transcript sequences. The resulting sequences were used to design the microarray. Microarray analysis of conch testis indicated differential regulation of 255 genes (p<0.01) in nearshore conch, relative to offshore. Changes in expression for three of four transcripts of interest were confirmed using real-time reverse transcription polymerase chain reaction. Gene Ontology enrichment analysis indicated changes in biological processes: respiratory chain (GO:0015992), spermatogenesis (GO:0007283), small GTPase-mediated signal transduction (GO:0007264), and others. Inductively coupled plasma-mass spectrometry analysis indicated that Zn and possibly Cu were elevated in some nearshore conch tissues. CONCLUSIONS/SIGNIFICANCE Congruence between testis histology and microarray data suggests that nearshore conch testes regress during the reproductive season, while offshore conch testes develop normally. Possible mechanisms underlying the testis regression observed in queen conch in the nearshore Florida Keys include a disruption of small GTPase (Ras)-mediated signaling in testis development. Additionally, elevated tissue levels of Cu (34.77 ng/mg in testis) and Zn (831.85 ng/mg in digestive gland, 83.96 ng/mg in testis) nearshore are similar to reported levels resulting in reproductive inhibition in other gastropods, indicating that these metals possibly contribute to NS conch reproductive failure.
Collapse
Affiliation(s)
- Daniel J. Spade
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, United States of America
| | - Robert J. Griffitt
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, United States of America
| | - Li Liu
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, United States of America
| | - Nancy J. Brown-Peterson
- Department of Coastal Sciences, University of Southern Mississippi, Ocean Springs, Mississippi, United States of America
| | - Kevin J. Kroll
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, United States of America
| | - April Feswick
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, United States of America
| | - Robert A. Glazer
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Marathon, Florida, United States of America
| | - David S. Barber
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, United States of America
| | - Nancy D. Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
8
|
A new MAP kinase protein involved in estradiol-stimulated reproduction of the helminth parasite Taenia crassiceps. J Biomed Biotechnol 2010; 2010:747121. [PMID: 20145710 PMCID: PMC2817376 DOI: 10.1155/2010/747121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 10/12/2009] [Indexed: 11/24/2022] Open
Abstract
MAP kinases (MAPK) are involved in the regulation of cellular
processes such as reproduction and growth. In parasites, the role
of MAPK has been scarcely studied. Here, we describe the
participation of an ERK-like protein in estrogen-dependent
reproduction of the helminth parasite Taenia
crassiceps. Our results show that 17β-estradiol
induces a concentration-dependent increase in the bud number of in
vitro cultured cysticerci. If parasites are also incubated in
presence of an ERK-inhibitor, the stimulatory effect of estrogen
is blocked. The expression of ERK-like mRNA and its corresponding
protein was detected in the parasite. The ERK-like protein was
over-expressed by all treatments. Nevertheless, a strong induction
of phosphorylation of this protein was observed only in response
to 17β-estradiol. Cross-contamination by host cells was
discarded by flow cytometry analysis. Parasite cells expressing
the ERK-like protein were exclusively located at the subtegument
tissue by confocal microscopy. Finally, the ERK-like protein was
separated by bidimensional electrophoresis and then sequenced,
showing the conserved TEY activation motif, typical of all known
ERK 1/2 proteins. Our results show that an ERK-like protein is
involved in the molecular signalling during the interaction
between the host and T. crassiceps, and may be
considered as target for anti-helminth drugs design.
Collapse
|
9
|
Oliveira KC, Carvalho MLP, Venancio TM, Miyasato PA, Kawano T, DeMarco R, Verjovski-Almeida S. Identification of the Schistosoma mansoni TNF-alpha receptor gene and the effect of human TNF-alpha on the parasite gene expression profile. PLoS Negl Trop Dis 2009; 3:e556. [PMID: 19956564 PMCID: PMC2779652 DOI: 10.1371/journal.pntd.0000556] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 10/20/2009] [Indexed: 11/23/2022] Open
Abstract
Background Schistosoma mansoni is the major causative agent of schistosomiasis. The parasite takes advantage of host signals to complete its development in the human body. Tumor necrosis factor-alpha (TNF-α) is a human cytokine involved in skin inflammatory responses, and although its effect on the adult parasite's metabolism and egg-laying process has been previously described, a comprehensive assessment of the TNF-α pathway and its downstream molecular effects is lacking. Methodology/Principal Findings In the present work we describe a possible TNF-α receptor (TNFR) homolog gene in S. mansoni (SmTNFR). SmTNFR encodes a complete receptor sequence composed of 599 amino acids, and contains four cysteine-rich domains as described for TNFR members. Real-time RT-PCR experiments revealed that SmTNFR highest expression level is in cercariae, 3.5 (±0.7) times higher than in adult worms. Downstream members of the known human TNF-α pathway were identified by an in silico analysis, revealing a possible TNF-α signaling pathway in the parasite. In order to simulate parasite's exposure to human cytokine during penetration of the skin, schistosomula were exposed to human TNF-α just 3 h after cercariae-to-schistosomula in vitro transformation, and large-scale gene expression measurements were performed with microarrays. A total of 548 genes with significantly altered expression were detected, when compared to control parasites. In addition, treatment of adult worms with TNF-α caused a significantly altered expression of 1857 genes. Interestingly, the set of genes altered in adults is different from that of schistosomula, with 58 genes in common, representing 3% of altered genes in adults and 11% in 3 h-old early schistosomula. Conclusions/Significance We describe the possible molecular elements and targets involved in human TNF-α effect on S. mansoni, highlighting the mechanism by which recently transformed schistosomula may sense and respond to this host mediator at the site of cercarial penetration into the skin. Schistosoma mansoni is the major causative agent of schistosomiasis in the Americas. This parasite takes advantage of host signaling molecules such as cytokines and hormones to complete its development inside the host. Tumor necrosis factor-alpha (TNF-α) is one of the most important host cytokines involved in the inflammatory response. When cercariae, the infective stage, penetrates the human skin the release of TNF-α is started. In this work the authors describe the complete sequence of a possible TNF-α receptor in S. mansoni and detect that the receptor is most highly expressed in cercariae among all life cycle stages. Aiming to mimic the situation at the site of skin penetration, cercariae were mechanically transformed in vitro into schistosomula and exposed to human TNF-α. Exposure of early-developing schistosomula to the human hormone caused a large-scale change in the expression of parasite genes. Exposure of adult worms to human TNF-α caused gene expression changes as well, and the set of parasite altered genes in the adult parasite was different from that of schistosomula. This work increases the number of known signaling pathways of the parasite, and opens new perspectives into understanding the molecular components of TNF-α response as well as into possibly interfering with parasite–host interaction.
Collapse
Affiliation(s)
- Katia C. Oliveira
- Laboratory of Gene Expression in Eukaryotes, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Mariana L. P. Carvalho
- Laboratory of Gene Expression in Eukaryotes, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Thiago M. Venancio
- Laboratory of Gene Expression in Eukaryotes, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | | | - Toshie Kawano
- Laboratory of Parasitology, Instituto Butantan, São Paulo, Brazil
| | - Ricardo DeMarco
- Departamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Sergio Verjovski-Almeida
- Laboratory of Gene Expression in Eukaryotes, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
10
|
Han ZG, Brindley PJ, Wang SY, Chen Z. Schistosoma genomics: new perspectives on schistosome biology and host-parasite interaction. Annu Rev Genomics Hum Genet 2009; 10:211-40. [PMID: 19630560 DOI: 10.1146/annurev-genom-082908-150036] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Schistosomiasis, caused mainly by Schistosoma japonicum, S. mansoni, and S. hematobium, remains one of the most prevalent and serious parasitic diseases worldwide. The blood flukes have a complex life cycle requiring adaptation for survival in fresh water as free-living forms and as parasites in snail intermediate and vertebrate definitive hosts. Functional genomics analyses, including transcriptomic and proteomic approaches, have been performed on schistosomes, in particular S. mansoni and S. japonicum, using powerful high-throughput methodologies. These investigations have not only chartered gene expression profiles across genders and developmental stages within mammalian and snail hosts, but have also characterized the features of the surface tegument, the eggshell and excretory-secretory proteomes of schistosomes. The integration of the genomic, transcriptomic, and proteomic information, together with genetic manipulation on individual genes, will provide a global insight into the molecular architecture of the biology, pathogenesis, and host-parasite interactions of the human blood flukes. Importantly, these functional genomics analyses lay a foundation on which to develop new antischistosome vaccines as well as drug targets and diagnostic markers for treatment and control of schistosomiasis.
Collapse
Affiliation(s)
- Ze-Guang Han
- Shanghai-MOST Key Laboratory for Disease and Health Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China.
| | | | | | | |
Collapse
|