1
|
Alsharedeh RH, Rezigue M, Bashatwah RM, Amawi H, Aljabali AAA, Obeid MA, Tambuwala MM. Nanomaterials as a Potential Target for Infectious Parasitic Agents. Curr Drug Deliv 2024; 21:828-851. [PMID: 36815647 DOI: 10.2174/1567201820666230223085403] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/29/2022] [Accepted: 11/16/2022] [Indexed: 02/24/2023]
Abstract
Despite the technological advancement in the era of personalized medicine and therapeutics development, infectious parasitic causative agents remain one of the most challenging areas of research and development. The disadvantages of conventional parasitic prevention and control are the emergence of multiple drug resistance as well as the non-specific targeting of intracellular parasites, which results in high dose concentration needs and subsequently intolerable cytotoxicity. Nanotechnology has attracted extensive interest to reduce medication therapy adverse effects including poor bioavailability and drug selectivity. Numerous nanomaterials-based delivery systems have previously been shown in animal models to be effective in the treatment of various parasitic infections. This review discusses a variety of nanomaterials-based antiparasitic procedures and techniques as well as the processes that allow them to be targeted to different parasitic infections. This review focuses on the key prerequisites for creating novel nanotechnology-based carriers as a potential option in parasite management, specifically in the context of human-related pathogenic parasitic agents.
Collapse
Affiliation(s)
- Rawan H Alsharedeh
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Meriem Rezigue
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Rasha M Bashatwah
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Haneen Amawi
- Department of Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, Jordan
| | - Alaa A A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Mohammad A Obeid
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, Brayford Pool Campus, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| |
Collapse
|
2
|
Fattori ACM, Montija EDA, Fragelli BDDL, Correia RDO, de Castro CA, Romanello L, Nogueira CT, Allegretti SM, Soares EG, Pereira HD, Anibal FDF. Effects of Immunization with Recombinant Schistosoma mansoni Enzymes AK and HGPRT: Murine Infection Control. Pathogens 2023; 12:pathogens12010069. [PMID: 36678417 PMCID: PMC9866087 DOI: 10.3390/pathogens12010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/03/2023] Open
Abstract
Schistosomiasis is one of the most important human helminthiases worldwide. Praziquantel is the current treatment, and no vaccine is available until the present. Thus, the presented study aimed to evaluate the immunization effects with recombinant Schistosoma mansoni enzymes: Adenosine Kinase (AK) and Hypoxanthine-Guanine Phosphoribosyltransferase (HGPRT), as well as a MIX of the two enzymes. Female Balb/c mice were immunized in three doses, and 15 days after the last immunization, animals were infected with S. mansoni. Our results showed that the group MIX presented a reduction in the eggs in feces by 30.74% and 29%, respectively, in the adult worms. The groups AK, HGPRT and MIX could produce IgG1 antibodies, and the groups AK and MIX produced IgE antibodies anti-enzymes and anti-S. mansoni total proteins. The groups AK, HGPRT and MIX induced a reduction in the eosinophils in the peritoneal cavity. Besides, the group AK showed a decrease in the number of hepatic granulomas (41.81%) and the eggs present in the liver (42.30%). Therefore, it suggests that immunization with these enzymes can contribute to schistosomiasis control, as well as help to modulate experimental infection inducing a reduction of physiopathology in the disease.
Collapse
Affiliation(s)
- Ana Carolina Maragno Fattori
- Laboratório de Inflamação e Doenças Infecciosas, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
- Correspondence: (A.C.M.F.); (F.d.F.A.)
| | - Elisandra de A. Montija
- Laboratório de Inflamação e Doenças Infecciosas, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Bruna D. de L. Fragelli
- Laboratório de Inflamação e Doenças Infecciosas, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Ricardo de O. Correia
- Laboratório de Inflamação e Doenças Infecciosas, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Cynthia Aparecida de Castro
- Laboratório de Inflamação e Doenças Infecciosas, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
| | - Larissa Romanello
- Departamento de Saúde e Psicologia, Universidade do Estado de Minas Gerais, Ituiutaba 38302-192, Brazil
| | - Camila T. Nogueira
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil
| | - Silmara M. Allegretti
- Instituto de Biologia, Departamento de Biologia Animal, Universidade Estadual de Campinas, Campinas 13083-970, Brazil
| | - Edson G. Soares
- Laboratório de Citopatologia, Departamento de Patologia e Medicina Legal, Universidade de São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Humberto D. Pereira
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
| | - Fernanda de F. Anibal
- Laboratório de Inflamação e Doenças Infecciosas, Departamento de Morfologia e Patologia, Universidade Federal de São Carlos, São Carlos 13565-905, Brazil
- Correspondence: (A.C.M.F.); (F.d.F.A.)
| |
Collapse
|
3
|
Zajac N, Zoller S, Seppälä K, Moi D, Dessimoz C, Jokela J, Hartikainen H, Glover N. Gene Duplication and Gain in the Trematode Atriophallophorus winterbourni Contributes to Adaptation to Parasitism. Genome Biol Evol 2021; 13:evab010. [PMID: 33484570 PMCID: PMC7936022 DOI: 10.1093/gbe/evab010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2021] [Indexed: 01/10/2023] Open
Abstract
Gene duplications and novel genes have been shown to play a major role in helminth adaptation to a parasitic lifestyle because they provide the novelty necessary for adaptation to a changing environment, such as living in multiple hosts. Here we present the de novo sequenced and annotated genome of the parasitic trematode Atriophallophorus winterbourni and its comparative genomic analysis to other major parasitic trematodes. First, we reconstructed the species phylogeny, and dated the split of A. winterbourni from the Opisthorchiata suborder to approximately 237.4 Ma (±120.4 Myr). We then addressed the question of which expanded gene families and gained genes are potentially involved in adaptation to parasitism. To do this, we used hierarchical orthologous groups to reconstruct three ancestral genomes on the phylogeny leading to A. winterbourni and performed a GO (Gene Ontology) enrichment analysis of the gene composition of each ancestral genome, allowing us to characterize the subsequent genomic changes. Out of the 11,499 genes in the A. winterbourni genome, as much as 24% have arisen through duplication events since the speciation of A. winterbourni from the Opisthorchiata, and as much as 31.9% appear to be novel, that is, newly acquired. We found 13 gene families in A. winterbourni to have had more than ten genes arising through these recent duplications; all of which have functions potentially relating to host behavioral manipulation, host tissue penetration, and hiding from host immunity through antigen presentation. We identified several families with genes evolving under positive selection. Our results provide a valuable resource for future studies on the genomic basis of adaptation to parasitism and point to specific candidate genes putatively involved in antagonistic host-parasite adaptation.
Collapse
Affiliation(s)
- Natalia Zajac
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- ETH Zurich, Department of Environmental Systems Science, Institute of Integrative Biology, Zurich, Switzerland
| | - Stefan Zoller
- ETH Zurich, Department of Environmental Systems Science, Institute of Integrative Biology, Zurich, Switzerland
| | - Katri Seppälä
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - David Moi
- Department of Computational Biology, University of Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Integrative Genomics, Lausanne, Switzerland
| | - Christophe Dessimoz
- Department of Computational Biology, University of Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Integrative Genomics, Lausanne, Switzerland
- Centre for Life’s Origins and Evolution, Department of Genetics Evolution and Environment, University College London, United Kingdom
- Department of Computer Science, University College London, United Kingdom
| | - Jukka Jokela
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- ETH Zurich, Department of Environmental Systems Science, Institute of Integrative Biology, Zurich, Switzerland
| | - Hanna Hartikainen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- ETH Zurich, Department of Environmental Systems Science, Institute of Integrative Biology, Zurich, Switzerland
- School of Life Sciences, University of Nottingham, University Park, United Kingdom
| | - Natasha Glover
- Department of Computational Biology, University of Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Center for Integrative Genomics, Lausanne, Switzerland
| |
Collapse
|
4
|
Adekiya TA, Kondiah PPD, Choonara YE, Kumar P, Pillay V. A Review of Nanotechnology for Targeted Anti-schistosomal Therapy. Front Bioeng Biotechnol 2020; 8:32. [PMID: 32083071 PMCID: PMC7005470 DOI: 10.3389/fbioe.2020.00032] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
Schistosomiasis is one of the major parasitic diseases and second most prevalent among the group of neglected diseases. The prevalence of schistosomiasis may be due to environmental and socio-economic factors, as well as the unavailability of vaccines for schistosomiasis. To date, current treatment; mainly the drug praziquantel (PZQ), has not been effective in treating the early forms of schistosome species. The development of drug resistance has been documented in several regions globally, due to the overuse of PZQ, rate of parasitic mutation, poor treatment compliance, co-infection with different strains of schistosomes and the overall parasite load. Hence, exploring the schistosome tegument may be a potential focus for the design and development of targeted anti-schistosomal therapy, with higher bioavailability as molecular targets using nanotechnology. This review aims to provide a concise incursion on the use of various advance approaches to achieve targeted anti-schistosomal therapy, mainly through the use of nano-enabled drug delivery systems. It also assimilates the molecular structure and function of the schistosome tegument and highlights the potential molecular targets found on the tegument, for effective specific interaction with receptors for more efficacious anti-schistosomal therapy.
Collapse
Affiliation(s)
| | | | | | | | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
5
|
A mysterious family of calcium-binding proteins from parasitic worms. Biochem Soc Trans 2017; 44:1005-10. [PMID: 27528745 DOI: 10.1042/bst20150270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 12/23/2022]
Abstract
There is a family of proteins from parasitic worms which combine N-terminal EF-hand domains with C-terminal dynein light chain-like domains. Data are accumulating on the biochemistry and cell biology of these proteins. However, little is known about their functions in vivo Schistosoma mansoni expresses 13 family members (SmTAL1-SmTAL13). Three of these (SmTAL1, SmTAL2 and SmTAL3) have been subjected to biochemical analysis which demonstrated that they have different molecular properties. Although their overall folds are predicted to be similar, small changes in the EF-hand domains result in differences in their ion binding properties. Whereas SmTAL1 and SmTAL2 are able to bind calcium (and some other) ions, SmTAL3 appears to be unable to bind any divalent cations. Similar biochemical diversity has been seen in the CaBP proteins from Fasciola hepatica Four family members are known (FhCaBP1-4). All of these bind to calcium ions. However, FhCaBP4 dimerizes in the presence of calcium ions, FhCaBP3 dimerizes in the absence of calcium ions and FhCaBP2 dimerizes regardless of the prevailing calcium ion concentration. In both the SmTAL and FhCaBP families, the proteins also differ in their ability to bind calmodulin antagonists and related drugs. Interestingly, SmTAL1 interacts with praziquantel (the drug of choice for treating schistosomiasis). The pharmacological significance (if any) of this finding is unknown.
Collapse
|
6
|
Diniz PP, Nakajima E, Miyasato PA, Nakano E, de Oliveira Rocha M, Martins EAL. Two SmDLC antigens as potential vaccines against schistosomiasis. Acta Trop 2014; 140:193-201. [PMID: 25240208 DOI: 10.1016/j.actatropica.2014.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 08/22/2014] [Accepted: 09/07/2014] [Indexed: 01/02/2023]
Abstract
The Schistosoma mansoni transcriptome revealed new members of the dynein light chain family (DLC/LC8). The antigenicity and immunogenicity of these proteins, and their potential as vaccine candidates were investigated. Two DLC genes (DLC12_JI392413.1 and DLC13_JI387686.1) were cloned and the recombinant proteins produced in E. coli. The immunization of mice with the rDLCs, using alhydrogel as adjuvant, resulted in high titers of antibodies, indicated that these proteins are highly immunogenic. The anti-DLCs antibodies presented cross reactivity with both recombinant antigens and also recognized proteins from S. mansoni adult worm extracts. The DLC12 and DLC13 immunized animals were challenged by infection with cercariae and a protective profile was observed in three different assays, with a significant decreased in worm burden, of 43% and 51% respectively, when compared to the non-vaccinated group. The granulomas formation due to egg retention in the hepatic tissues was evaluated 45 days after infection. Smaller granulomas were observed in the liver of DLC immunized animals, up to 70% reduction in comparison to the granulomas size in the non-vaccinated animals. Fifty-five days after infection, the average size of the hepatic granulomas was still 25-35% smaller in the DLCs vaccinated groups. The interference of DLC immunization on the hepatic granuloma formation may reflect the lower worm burden and consequent decrease on the number of eggs retained in the liver, resulting in lower pro-inflammatory level in the tissue. The protective effect of DLCs immunization, decreasing the worm burden and delaying the rate of granuloma formation, suggests that these antigens should be further studied as potential vaccine candidates.
Collapse
|