1
|
Tanaka TQ, Tokuoka SM, Nakatani D, Hamano F, Kawazu SI, Wellems TE, Kita K, Shimizu T, Tokumasu F. Polyunsaturated fatty acids promote Plasmodium falciparum gametocytogenesis. Biol Open 2019; 8:bio.042259. [PMID: 31221627 PMCID: PMC6679406 DOI: 10.1242/bio.042259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The molecular triggers of sexual differentiation into gametocytes by blood stage Plasmodium falciparum, the most malignant human malaria parasites, are subject of much investigation for potential transmission-blocking strategies. The parasites are readily grown in vitro with culture media supplemented by the addition of human serum (10%) or by a commercially available substitute (0.5% AlbuMAX). We found better gametocytemia with serum than AlbuMAX, suggesting suboptimal concentrations of some components in the commercial product; consistent with this hypothesis, substantial concentration differences of multiple fatty acids were detected between serum- and AlbuMAX-supplemented media. Mass spectroscopy analysis distinguished the lipid profiles of gametocyte- and asexual stage-parasite membranes. Delivery of various combinations of unsaturated fatty-acid-containing phospholipids to AlbuMAX-supported gametocyte cultures improved gametocyte production to the levels achieved with human-serum-supplemented media. Maturing gametocytes readily incorporated externally supplied d5-labeled glycerol with fatty acids into unsaturated phospholipids. Phospholipids identified in this work thus may be taken up from extracellular sources or generated internally for important steps of gametocyte development. Further study of polyunsaturated fatty-acid metabolism and phospholipid profiles will improve understanding of gametocyte development and malaria parasite transmission.
Collapse
Affiliation(s)
- Takeshi Q Tanaka
- International Medical Zoology, Graduate School of Medicine, Kagawa University, Kagawa, 761-0793, Japan.,Laboratory of Malaria and Vector Research, National Institute of Allergy and Vector Research, National Institutes of Health, Bethesda, MD 20892-8132, USA.,Research Unit of Advanced Preventive Medicine, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Suzumi M Tokuoka
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, 103-0033, Japan
| | - Daichi Nakatani
- Research Unit of Advanced Preventive Medicine, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Fumie Hamano
- Lipid Signaling Project, Research Institute National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Shin-Ichiro Kawazu
- Research Unit of Advanced Preventive Medicine, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Vector Research, National Institutes of Health, Bethesda, MD 20892-8132, USA
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, 852-8523, Japan
| | - Takao Shimizu
- Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, 103-0033, Japan.,Lipid Signaling Project, Research Institute National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Fuyuki Tokumasu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Vector Research, National Institutes of Health, Bethesda, MD 20892-8132, USA .,Department of Lipidomics, Graduate School of Medicine, The University of Tokyo, Tokyo, 103-0033, Japan
| |
Collapse
|
2
|
Profiling molecular factors associated with pyknosis and developmental arrest induced by an opioid receptor antagonist and dihydroartemisinin in Plasmodium falciparum. PLoS One 2017; 12:e0184874. [PMID: 28934264 PMCID: PMC5608265 DOI: 10.1371/journal.pone.0184874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 09/03/2017] [Indexed: 12/26/2022] Open
Abstract
Malaria continues to be a devastating disease, largely caused by Plasmodium falciparum infection. We investigated the effects of opioid and cannabinoid receptor antagonists on the growth of intraerythrocytic P. falciparum. The delta opioid receptor antagonist 7-benzylidenenaltrexone (BNTX) and the cannabinoid receptor antagonists rimonaband and SR144528 caused growth arrest of the parasite. Notably BNTX and the established antimalarial drug dihydroartemisinin induced prominent pyknosis in parasite cells after a short period of incubation. We compared genome-wide transcriptome profiles in P. falciparum with different degrees of pyknosis in response to drug treatment, and identified 11 transcripts potentially associated with the evoking of pyknosis, of which three, including glutathione reductase (PfGR), triose phosphate transporter (PfoTPT), and a conserved Plasmodium membrane protein, showed markedly different gene expression levels in accordance with the degree of pyknosis. Furthermore, the use of specific inhibitors confirmed PfGR but not PfoTPT as a possible factor contributing to the development of pyknosis. A reduction in total glutathione levels was also detected in association with increased pyknosis. These results further our understanding of the mechanisms responsible for P. falciparum development and the antimalarial activity of dihydroartemisinin, and provide useful information for the development of novel antimalarial agents.
Collapse
|
3
|
Asahi H, Kobayashi F, Inoue SI, Niikura M, Yagita K, Tolba MEM. Copper Homeostasis for the Developmental Progression of Intraerythrocytic Malarial Parasite. Curr Top Med Chem 2017; 16:3048-3057. [PMID: 26881705 PMCID: PMC5068492 DOI: 10.2174/1568026616999160215151704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/10/2016] [Accepted: 02/20/2016] [Indexed: 01/22/2023]
Abstract
Malaria is one of the world’s most devastating diseases, particularly in the tropics. In humans, Plasmodium falciparum lives mainly within red blood cells, and malaria pathogenesis depends on the red blood cells being infected with the parasite. Non-esterified fatty acids (NEFAs), including cis-9-octadecenoic acid, and phospholipids have been critical for complete parasite growth in serum-free culture, although the efficacy of NEFAs in sustaining the growth of P. falciparum has varied markedly. Hexadecanoic acid and trans-9-octadecenoic acid have arrested development of the parasite, in association with down-regulation of genes encoding copper-binding proteins. Selective removal of Cu+ ions has blockaded completely the ring–trophozoite–schizont progression of the parasite. The importance of copper homeostasis for the developmental progression of P. falciparum has been confirmed by inhibition of copper-binding proteins that regulate copper physiology and function by associating with copper ions. These data have provided strong evidence for a link between healthy copper homeostasis and successive developmental progression of P. falciparum. Perturbation of copper homeostasis may be, thus, instrumental in drug and vaccine development for the malaria medication. We review the importance of copper homeostasis in the asexual growth of P. falciparum in relation to NEFAs, copper-binding proteins, apoptosis, mitochondria, and gene expression.
Collapse
Affiliation(s)
- Hiroko Asahi
- Division of Tropical Diseases and Parasitology, Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo 181 8611, Japan.
| | | | | | | | | | | |
Collapse
|
4
|
Khaw LT, Ball HJ, Mitchell AJ, Grau GE, Stocker R, Golenser J, Hunt NH. Brain endothelial cells increase the proliferation of Plasmodium falciparum through production of soluble factors. Exp Parasitol 2014; 145:34-41. [PMID: 25045850 DOI: 10.1016/j.exppara.2014.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/06/2014] [Accepted: 07/08/2014] [Indexed: 01/01/2023]
Abstract
We here describe the novel finding that brain endothelial cells in vitro can stimulate the growth of Plasmodium falciparum through the production of low molecular weight growth factors. By using a conditioned medium approach, we show that the brain endothelial cells continued to release these factors over time. If this mirrors the in vivo situation, these growth factors potentially would provide an advantage, in terms of enhanced growth, for sequestered parasitised red blood cells in the brain microvasculature. We observed this phenomenon with brain endothelial cells from several sources as well as a second P. falciparum strain. The characteristics of the growth factors included: <3 kDa molecular weight, heat stable, and in part chloroform soluble. Future efforts should be directed at identifying these growth factors, since blocking their production or actions might be of benefit for reducing parasite load and, hence, malaria pathology.
Collapse
Affiliation(s)
- L T Khaw
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, Sydney Medical School, University of Sydney, NSW 2006, Australia; Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - H J Ball
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - A J Mitchell
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, Sydney Medical School, University of Sydney, NSW 2006, Australia; Immune Imaging Program, Centenary Institute, Sydney, NSW 2050, Australia
| | - G E Grau
- Vascular Immunology Unit, School of Medical Sciences and Bosch Institute, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - R Stocker
- Vascular Biology Division, Victor Chang Cardiac Research Institute, Lowy Packer Building, 405 Liverpool Street, Darlinghurst, NSW 2010, Australia
| | - J Golenser
- Department of Microbiology and Molecular Genetics, Kuvin Centre for the Study of Tropical and Infectious Diseases, Hebrew University of Jerusalem, Jerusalem, Israel
| | - N H Hunt
- Molecular Immunopathology Unit, School of Medical Sciences and Bosch Institute, Sydney Medical School, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
5
|
Chen KY, Cheng CJ, Yen CM, Tang P, Wang LC. Comparative studies on the proteomic expression patterns in the third- and fifth-stage larvae of Angiostrongylus cantonensis. Parasitol Res 2014; 113:3591-600. [PMID: 25028210 DOI: 10.1007/s00436-014-4024-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/04/2014] [Indexed: 12/19/2022]
Abstract
Angiostrongylus cantonensis is an important zoonotic parasite causing eosinophilic meningitis and eosinophilic meningoencephalitis in humans. In this study, the protein expression profiles of the infective third- and pathogenic fifth-stage larvae (L3 and L5) of this parasite were compared by proteomic techniques. Isolated protein samples were separated by two-dimensional gel electrophoresis (2-DE), stained with silver nitrate, and analyzed by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Proteins from L5 were mainly at pH 5-7 and with molecular weight (MW) 40-100 kDa, whereas those from L3 were at pH 5-6 and with 5-35 kDa. Of 100 protein spots identified, 33 were from L3 whereas 67 from L5 and 63 had known identities, whereas 37 were hypothetical proteins. There were 15 spots of stress proteins, and HSP60 was the most frequently found heat stress proteins in L5. More binding and protein transport-related proteins were found in L5 including peptidylprolyl isomerase (cyclophilin)-like 2, serum albumin, preproalbumin precursor, and dilute class unconventional myosin. L3 had a higher expression of cytoskeleton and membrane proteins than L5. In addition, four protein spots were identified in the sera of the rat host by Western blot analysis. The present proteomic study revealed different protein expression profiles in L3 and L5 of A. cantonensis. These changes may reflect the development of L3 from the poikilothermic snails to L5 in the homoeothemic rats. This information may be useful for the finding of stage-specific proteins and biomarker for diagnosis of angiostrongyliasis.
Collapse
Affiliation(s)
- Kuang-Yao Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | | | | | | | | |
Collapse
|
6
|
Asahi H, Tolba MEM, Tanabe M, Sugano S, Abe K, Kawamoto F. Perturbation of copper homeostasis is instrumental in early developmental arrest of intraerythrocytic Plasmodium falciparum. BMC Microbiol 2014; 14:167. [PMID: 24961242 PMCID: PMC4080775 DOI: 10.1186/1471-2180-14-167] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Accepted: 06/18/2014] [Indexed: 11/24/2022] Open
Abstract
Background Malaria continues to be a devastating disease. The elucidation of factors inducing asexual growth versus arrest of Plasmodium falciparum can provide information about the development of the parasite, and may help in the search for novel malaria medication. Based on information from genome-wide transcriptome profiling of different developmental stages of P. falciparum, we investigated the critical importance of copper homeostasis in the developmental succession of P. falciparum with regard to three aspects of copper function. These were:1) inhibition of copper-binding proteins, 2) copper-ion chelation, and 3) down-regulated expression of genes encoding copper-binding proteins associated with a specific growth-promoting factor. Results Inhibition of copper-binding proteins with tetrathiomolybdate (TTM) caused cessation of growth of the parasite. TTM arrested the parasite irreversibly during the trophozoite to schizont stage progression. Target molecules for TTM may be present in P. falciparum. The involvement of copper ions in developmental arrest was also investigated by copper-ion chelating methods, which indicated a critical function of reduced copper ions (Cu1+) in the parasite during the early developmental stage. Copper ions, not only in the parasite but also in host cells, were targets of the chelators. Chelation of Cu1+caused blockage of trophozoite progression from the ring stage. Profound growth arrest was detected in parasites cultured in a chemically defined medium containing hexadecanoic acid alone as a growth-promoting factor. This developmental arrest was associated with down-regulated expression of genes encoding copper-binding proteins. Cis-9-octadecenoic acid completely prevented the down-regulation of gene expression and developmental arrest that were observed with the use of hexadecanoic acid. Conclusions The critical importance of copper homeostasis in early developmental stages of P. falciparum was confirmed. Perturbation of copper homeostasis induced profound and early developmental arrest of P. falciparum. These findings should help to elucidate the mechanisms behind the development of P. falciparum, and may be applied in the development of effective antimalarial strategies.
Collapse
Affiliation(s)
- Hiroko Asahi
- Department of Parasitology, National Institute of Infectious Diseases, 23-1 Toyama 1-chome, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | | | | | | | |
Collapse
|
7
|
Asahi H, Tolba MEM, Tanabe M, Ohmae H. Molecular factors that are associated with early developmental arrest of intraerythrocytic Plasmodium falciparum. Can J Microbiol 2013; 59:485-93. [PMID: 23826958 DOI: 10.1139/cjm-2013-0166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Malaria continues to be a devastating disease. We investigated the factors that control intraerythrocytic development of the parasite Plasmodium falciparum by using a chemically defined medium (CDM) containing non-esterified fatty acid(s) (NEFA) and phospholipids with specific fatty acid moieties, to identify substances crucial for parasite development. Different NEFAs in the CDM played distinct roles by altering the development of the parasite at various stages, with effects ranging from complete growth to growth arrest at the ring stage. We used genome-wide transcriptome profiling to identify genes that were differentially expressed among the different developmental stages of the parasite, cultured in the presence of various NEFAs. We predicted 26 transcripts that were associated with the suppression of schizogony, of which 5 transcripts, including merozoite surface protein 2, a putative DEAD/DEAH box RNA helicase, serine repeat antigen 3, a putative copper channel, and palmitoyl acyltransferase, were particularly associated with blockage of trophozoite progression from the ring stage. Furthermore, the involvement of copper ions in developmental arrest was detected by copper-ion-chelating methods, implying a critical function of copper homeostasis in the early growth stage of the parasite. These results should help to elucidate the mechanisms behind the development of P. falciparum.
Collapse
Affiliation(s)
- Hiroko Asahi
- Department of Parasitology, National Institute of Infectious Diseases, 23-1 Toyama 1-chome, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | | | |
Collapse
|
8
|
Kwansa-Bentum B, Izumiyama S, Kitamura K, Obata-Ninomiya K, Ohta N, Asahi H. Comparative studies of serum-free media and detection techniques for <i>in vitro</i> drug sensitivity assessment of <i>Plasmodium falciparum</i>. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ojcd.2013.33020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|