1
|
Stitz M, Chaparro C, Lu Z, Olzog VJ, Weinberg CE, Blom J, Goesmann A, Grunau C, Grevelding CG. Satellite-Like W-Elements: Repetitive, Transcribed, and Putative Mobile Genetic Factors with Potential Roles for Biology and Evolution of Schistosoma mansoni. Genome Biol Evol 2021; 13:6361599. [PMID: 34469545 PMCID: PMC8490949 DOI: 10.1093/gbe/evab204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 12/17/2022] Open
Abstract
A large portion of animal and plant genomes consists of noncoding DNA. This part includes tandemly repeated sequences and gained attention because it offers exciting insights into genome biology. We investigated satellite-DNA elements of the platyhelminth Schistosoma mansoni, a parasite with remarkable biological features. Schistosoma mansoni lives in the vasculature of humans causing schistosomiasis, a disease of worldwide importance. Schistosomes are the only trematodes that have evolved separate sexes, and the sexual maturation of the female depends on constant pairing with the male. The schistosome karyotype comprises eight chromosome pairs, males are homogametic (ZZ) and females are heterogametic (ZW). Part of the repetitive DNA of S. mansoni are W-elements (WEs), originally discovered as female-specific satellite DNAs in the heterochromatic block of the W-chromosome. Based on new genome and transcriptome data, we performed a reanalysis of the W-element families (WEFs). Besides a new classification of 19 WEFs, we provide first evidence for stage-, sex-, pairing-, gonad-, and strain-specific/preferential transcription of WEs as well as their mobile nature, deduced from autosomal copies of full-length and partial WEs. Structural analyses suggested roles as sources of noncoding RNA-like hammerhead ribozymes, for which we obtained functional evidence. Finally, the variable WEF occurrence in different schistosome species revealed remarkable divergence. From these results, we propose that WEs potentially exert enduring influence on the biology of S. mansoni. Their variable occurrence in different strains, isolates, and species suggests that schistosome WEs may represent genetic factors taking effect on variability and evolution of the family Schistosomatidae.
Collapse
Affiliation(s)
- Maria Stitz
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Cristian Chaparro
- IHPE, CNRS, IFREMER, UPVD, University Montpellier, Perpignan, France
| | - Zhigang Lu
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | | | | | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Germany
| | - Christoph Grunau
- IHPE, CNRS, IFREMER, UPVD, University Montpellier, Perpignan, France
| | | |
Collapse
|
2
|
Mota EA, de Oliveira VF, Barban do Patrocinio A, Rodrigues V, Guerra-Sá R. Detection of Schistosoma mansoni long non-coding RNAs in the infected C57BL/6 mouse liver. Exp Parasitol 2020; 222:108062. [PMID: 33383024 DOI: 10.1016/j.exppara.2020.108062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/09/2020] [Accepted: 12/22/2020] [Indexed: 11/26/2022]
Abstract
Long non-coding RNAs (lncRNAs) perform several types of regulatory functions and have been recently explored in the genus Schistosoma. Although sequencing and bioinformatics approaches have demonstrated the presence of hundreds of lncRNAs and microRNAs (miRNAs) in this genus, information regarding their abundance, characteristics, and potential functions linked to Schistosoma mansoni biology and parasite-host interaction is limited. Our objectives in the present study were to verify whether 15 previously identified S. mansoni lncRNAs are detectable in the host liver. In addition, we assess whether these lncRNAs are present in the S. mansoni infective form and the stages inside the definitive host. The detection of these 15 S. mansoni lncRNAs and a long terminal repeat (LTR) retrotransposon Saci 4 was performed in the eggs, cercariae, and 3.5-h schistosomula. All lncRNAs were found to be expressed in these stages; some of the lncRNAs were found in the livers of the infected C57BL/6 mice. In conclusion, S. mansoni lncRNAs were detected in host livers and quantified. Furthermore, many of the lncRNAs analyzed showed differential expression in the larval stages, indicating that they play a stage-specific regulatory role.
Collapse
Affiliation(s)
- Ester Alves Mota
- Biochemistry and Molecular Biology Laboratory, Department of Biological Sciences, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, Brazil
| | - Victor Fernandes de Oliveira
- Biochemistry and Molecular Biology Laboratory, Department of Biological Sciences, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, Brazil
| | - Andressa Barban do Patrocinio
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, Universidade de São Paulo, Vila Monte Alegre, Ribeirão Preto, SP, Brazil
| | - Vanderlei Rodrigues
- Department of Biochemistry and Immunology, Faculty of Medicine of Ribeirão Preto, Universidade de São Paulo, Vila Monte Alegre, Ribeirão Preto, SP, Brazil
| | - Renata Guerra-Sá
- Biochemistry and Molecular Biology Laboratory, Department of Biological Sciences, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG, Brazil.
| |
Collapse
|
3
|
Lerat E, Casacuberta J, Chaparro C, Vieira C. On the Importance to Acknowledge Transposable Elements in Epigenomic Analyses. Genes (Basel) 2019; 10:genes10040258. [PMID: 30935103 PMCID: PMC6523952 DOI: 10.3390/genes10040258] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic genomes comprise a large proportion of repeated sequences, an important fraction of which are transposable elements (TEs). TEs are mobile elements that have a significant impact on genome evolution and on gene functioning. Although some TE insertions could provide adaptive advantages to species, transposition is a highly mutagenic event that has to be tightly controlled to ensure its viability. Genomes have evolved sophisticated mechanisms to control TE activity, the most important being epigenetic silencing. However, the epigenetic control of TEs can also affect genes located nearby that can become epigenetically regulated. It has been proposed that the combination of TE mobilization and the induced changes in the epigenetic landscape could allow a rapid phenotypic adaptation to global environmental changes. In this review, we argue the crucial need to take into account the repeated part of genomes when studying the global impact of epigenetic modifications on an organism. We emphasize more particularly why it is important to carefully consider TEs and what bioinformatic tools can be used to do so.
Collapse
Affiliation(s)
- Emmanuelle Lerat
- CNRS, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, UMR 5558, F-69622 Villeurbanne, France.
| | - Josep Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Cristian Chaparro
- CNRS, IHPE UMR 5244, University of Perpignan Via Domitia, IFREMER, University Montpellier, F-66860 Perpignan, France.
| | - Cristina Vieira
- CNRS, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, UMR 5558, F-69622 Villeurbanne, France.
| |
Collapse
|
4
|
Histone methylation changes are required for life cycle progression in the human parasite Schistosoma mansoni. PLoS Pathog 2018; 14:e1007066. [PMID: 29782530 PMCID: PMC5983875 DOI: 10.1371/journal.ppat.1007066] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/01/2018] [Accepted: 04/30/2018] [Indexed: 12/26/2022] Open
Abstract
Epigenetic mechanisms and chromatin structure play an important role in development. Their impact is therefore expected to be strong in parasites with complex life cycles and multiple, strikingly different, developmental stages, i.e. developmental plasticity. Some studies have already described how the chromatin structure, through histone modifications, varies from a developmental stage to another in a few unicellular parasites. While H3K4me3 profiles remain relatively constant, H3K27 trimethylation and bivalent methylation show strong variation. Inhibitors (A366 and GSK343) of H3K27 histone methyltransferase activity in S. mansoni efficiently blocked miracidium to sporocyst transition indicating that H3K27 trimethylation is required for life cycle progression. As S. mansoni is a multicellular parasite that significantly affects both the health and economy of endemic areas, a better understanding of fluke developmental processes within the definitive host will likely highlight novel disease control strategies. Towards this goal, we also studied H4K20me1 in female cercariae and adults. In particular, we found that bivalent trimethylation of H3K4 and H3K27 at the transcription start site of genes is a landmark of the cercarial stage. In cercariae, H3K27me3 presence and strong enrichment in H4K20me1 over long regions (10–100 kb) is associated with development related genes. Here, we provide a broad overview of the chromatin structure of a metazoan parasite throughout its most important lifecycle stages. The five developmental stages studied here present distinct chromatin structures, indicating that histone methylation plays an important role during development. Hence, components of the histone methylation (and demethylation) machinery may provide suitable Schistosomiasis control targets. Schistosoma mansoni is a parasitic flatworm and causative agent of intestinal schistosomiasis, a neglected tropical disease affecting 67 million people worldwide. The parasite has a complex life cycle involving two consecutive obligate hosts (a poikilotherm snail and a homeotherm mammal) and two transitions between these hosts as free-swimming larvae. Here, we show that the chromatin structure of five different developmental stages is characterized by specific changes in chemical modifications of histones, basic proteins that are closely associated with DNA (trimethylation of lysines 4 and 27 and histone H3, and monomethylation of lysine 20 on histone H4). These modifications occur around protein coding genes as well as within repetitive genomic elements. A functional role for histone methylation during schistosome development was elucidated by the use of epi-drugs targeting G9a/GLP and EZH2 histone methyltransferase orthologs in S. mansoni. Our results indicate that histone methylation plays an important role during schistosome development and suggest that the enzymes responsible for maintaining these chromatin modifications are suitable targets for anti-schistosomal drugs.
Collapse
|
5
|
Geyer KK, Munshi SE, Vickers M, Squance M, Wilkinson TJ, Berrar D, Chaparro C, Swain MT, Hoffmann KF. The anti-fecundity effect of 5-azacytidine (5-AzaC) on Schistosoma mansoni is linked to dis-regulated transcription, translation and stem cell activities. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:213-222. [PMID: 29649665 PMCID: PMC6039303 DOI: 10.1016/j.ijpddr.2018.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 12/15/2022]
Abstract
Uncontrolled host immunological reactions directed against tissue-trapped eggs precipitate a potentially lethal, pathological cascade responsible for schistosomiasis. Blocking schistosome egg production, therefore, presents a strategy for simultaneously reducing immunopathology as well as limiting disease transmission in endemic or emerging areas. We recently demonstrated that the ribonucleoside analogue 5-azacytidine (5-AzaC) inhibited Schistosoma mansoni oviposition, egg maturation and ovarian development. While these anti-fecundity effects were associated with a loss of DNA methylation, other molecular processes affected by 5-AzaC were not examined at the time. By comparing the transcriptomes of 5-AzaC-treated females to controls, we provide evidence that this ribonucleoside analogue also modulates other crucial aspects of schistosome egg-laying biology. For example, S. mansoni gene products associated with amino acid-, carbohydrate-, fatty acid-, nucleotide- and tricarboxylic acid (TCA)- homeostasis are all dysregulated in 5-AzaC treated females. To validate the metabolic pathway most significantly affected by 5-AzaC, amino acid metabolism, nascent protein synthesis was subsequently quantified in adult schistosomes. Here, 5-AzaC inhibited this process by 68% ±16.7% (SEM) in male- and 81% ±4.8% (SEM) in female-schistosomes. Furthermore, the transcriptome data indicated that adult female stem cells were also affected by 5-AzaC. For instance, 40% of transcripts associated with proliferating schistosome cells were significantly down-regulated by 5-AzaC. This finding correlated with a considerable reduction (95%) in the number of 5-ethynyl-2'-deoxyuridine (EdU) positive cells found in 5-AzaC-treated females. In addition to protein coding genes, the effect that 5-AzaC had on repetitive element expression was also assessed. Here, 46 repeats were found differentially transcribed between 5-AzaC-treated and control females with long terminal repeat (LTR) and DNA transposon classes being amongst the most significant. This study demonstrates that the anti-fecundity activity of 5-AzaC affects more than just DNA methylation in schistosome parasites. Further characterisation of these processes may reveal novel targets for schistosomiasis control.
Collapse
Affiliation(s)
- Kathrin K Geyer
- Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom.
| | - Sabrina E Munshi
- Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom.
| | - Martin Vickers
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom.
| | - Michael Squance
- Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom.
| | - Toby J Wilkinson
- The Roslin Institute, The University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, United Kingdom.
| | - Daniel Berrar
- Data Science Laboratory, Tokyo Institute of Technology, Tokyo 152-8550, Japan.
| | - Cristian Chaparro
- University of Perpignan Via Domitia, 58 Avenue Paul Alduy, Bat R, F-66860 Perpignan Cedex, France.
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom.
| | - Karl F Hoffmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3DA, United Kingdom.
| |
Collapse
|
6
|
The Schistosoma mansoni genome encodes thousands of long non-coding RNAs predicted to be functional at different parasite life-cycle stages. Sci Rep 2017; 7:10508. [PMID: 28874839 PMCID: PMC5585378 DOI: 10.1038/s41598-017-10853-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/15/2017] [Indexed: 01/06/2023] Open
Abstract
Next Generation Sequencing (NGS) strategies, like RNA-Seq, have revealed the transcription of a wide variety of long non-coding RNAs (lncRNAs) in the genomes of several organisms. In the present work we assessed the lncRNAs complement of Schistosoma mansoni, the blood fluke that causes schistosomiasis, ranked among the most prevalent parasitic diseases worldwide. We focused on the long intergenic/intervening ncRNAs (lincRNAs), hidden within the large amount of information obtained through RNA-Seq in S. mansoni (88 libraries). Our computational pipeline identified 7029 canonically-spliced putative lincRNA genes on 2596 genomic loci (at an average 2.7 isoforms per lincRNA locus), as well as 402 spliced lncRNAs that are antisense to protein-coding (PC) genes. Hundreds of lincRNAs showed traits for being functional, such as the presence of epigenetic marks at their transcription start sites, evolutionary conservation among other schistosome species and differential expression across five different life-cycle stages of the parasite. Real-time qPCR has confirmed the differential life-cycle stage expression of a set of selected lincRNAs. We have built PC gene and lincRNA co-expression networks, unraveling key biological processes where lincRNAs might be involved during parasite development. This is the first report of a large-scale identification and structural annotation of lncRNAs in the S. mansoni genome.
Collapse
|
7
|
Augusto RDC, Tetreau G, Chan P, Walet-Balieu ML, Mello-Silva CC, Santos CP, Grunau C. Double impact: natural molluscicide for schistosomiasis vector control also impedes development of Schistosoma mansoni cercariae into adult parasites. PLoS Negl Trop Dis 2017; 11:e0005789. [PMID: 28753630 PMCID: PMC5550001 DOI: 10.1371/journal.pntd.0005789] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/09/2017] [Accepted: 07/08/2017] [Indexed: 01/10/2023] Open
Abstract
Background Schistosomiasis has been reported in 78 endemic countries and affects 240 million people worldwide. The digenetic parasite Schistosoma mansoni needs fresh water to compete its life cycle. There, it is susceptible to soluble compounds that can affect directly and/or indirectly the parasite’s biology. The cercariae stage is one of the key points in which the parasite is vulnerable to different soluble compounds that can significantly alter the parasite’s life cycle. Molluscicides are recommended by the World Health Organization for the control of schistosomiasis transmission and Euphorbia milii latex is effective against snails intermediate hosts. Methodology/Principal findings We used parasitological tools and electron microscopy to verify the effects of cercariae exposure to natural molluscicide (Euphorbia milii latex) on morphology, physiology and fitness of adult parasite worms. In order to generate insights into key metabolic pathways that lead to the observed phenotypes we used comparative transcriptomics and proteomics. Conclusions/Significance We describe here that the effect of latex on the adult is not due to direct toxicity but it triggers an early change in developmental trajectory and perturbs cell memory, mobility, energy metabolism and other key pathways. We conclude that latex has not only an effect on the vector but applies also long lasting schistosomastatic action. We believe that these results are of interest not only to parasitologists since it shows that natural compounds, presumably without side effects, can have an impact that occurred unexpectedly on developmental processes. Such collateral damage is in this case positive, since it impacts the true target of the treatment campaign. This type of treatment could also provide a rational for the control of other pests. Our results will contribute to enforce the use of E. milii latex in Brazil and other endemic countries as cheap alternative or complement to mass drug treatment with Praziquantel, the only available drug to cure the patients (without preventing re-infection). Intestinal schistosomiasis is among the most important parasitic disease caused by helminthes, affecting 67 million people worldwide. Vector and intermediate host of the parasitic worm are fresh water snails. WHO recommends use of molluscicides for control of local transmission. Among those, natural plant extracts such as Euphorbia milii latex have attracted particular attention since they are sustainable and cheap. We had anecdotic evidence that E. milii latex also impacts infection outcome if treated snails were infected with S. mansoni. We show here that transient exposure of the human dwelling larvae (cercariae) to the latex at doses that do not affect its infectivity has effects 60 days later on the morphology, physiology and fitness of the adult parasite worms. In order to generate insights into key metabolic pathways that lead to the observed phenotypes we used comparative transcriptomics and proteomics. We show that the effect of latex on the adult is not due to direct toxicity but it triggers an early change in developmental trajectory and perturbs cell memory, mobility, energy metabolism and other key pathways. We conclude that latex has not only an effect on the vector but applies also long lasting schistosomastatic action. The present work might also provide insights on targets with implications for developing new interventions for schistosomiasis control.
Collapse
Affiliation(s)
- Ronaldo de Carvalho Augusto
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Brasil
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
- * E-mail:
| | - Guillaume Tetreau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Philippe Chan
- PISSARO Proteomic Platform, Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, France
| | - Marie-Laure Walet-Balieu
- PISSARO Proteomic Platform, Institute for Research and Innovation in Biomedicine, University of Rouen, Rouen, France
| | | | - Claudia Portes Santos
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Brasil
| | - Christoph Grunau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| |
Collapse
|
8
|
Cosseau C, Wolkenhauer O, Padalino G, Geyer KK, Hoffmann KF, Grunau C. (Epi)genetic Inheritance in Schistosoma mansoni: A Systems Approach. Trends Parasitol 2017; 33:285-294. [PMID: 28040375 PMCID: PMC6125318 DOI: 10.1016/j.pt.2016.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/25/2016] [Accepted: 12/02/2016] [Indexed: 12/27/2022]
Abstract
The G×E concept, in which genotype × environment interactions bring about the phenotype, is widely used to describe biological phenomena. We propose to extend the initial notion of the concept, replacing G by 'inheritance system'. This system, comprised of both genome and epigenome components, collectively interacts with the environment to shape the development of a phenotype. In the case of the human blood fluke Schistosoma mansoni, responsible for intestinal bilharzia, the phenotypic trait that is most relevant to global health is infection success. Taking a systems biology view we show how genetic and epigenetic interactions result in ephemeral, but also heritable, phenotypic variations that are important for infection success.
Collapse
Affiliation(s)
- Céline Cosseau
- University Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, University Montpellier, F-66860 Perpignan, France
| | - Olaf Wolkenhauer
- Dept of Systems Biology & Bioinformatics, University of Rostock, D-18051 Rostock, Germany; Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre, Stellenbosch, South Africa
| | - Gilda Padalino
- Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Room 3-31, Aberystwyth University, Ceredigion, SY23 3DA, UK
| | - Kathrin K Geyer
- Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Room 3-31, Aberystwyth University, Ceredigion, SY23 3DA, UK
| | - Karl F Hoffmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Room 3-31, Aberystwyth University, Ceredigion, SY23 3DA, UK
| | - Christoph Grunau
- University Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, University Montpellier, F-66860 Perpignan, France.
| |
Collapse
|
9
|
Roquis D, Rognon A, Chaparro C, Boissier J, Arancibia N, Cosseau C, Parrinello H, Grunau C. Frequency and mitotic heritability of epimutations inSchistosoma mansoni. Mol Ecol 2016; 25:1741-58. [DOI: 10.1111/mec.13555] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/22/2016] [Accepted: 01/23/2016] [Indexed: 12/28/2022]
Affiliation(s)
- David Roquis
- Université de Perpignan Via Domitia; Perpignan F-66860 France
- CNRS; UMR 5244; Interactions Hôtes-Pathogènes-Environnements (IHPE); Perpignan F-66860 France
| | - Anne Rognon
- Université de Perpignan Via Domitia; Perpignan F-66860 France
- CNRS; UMR 5244; Interactions Hôtes-Pathogènes-Environnements (IHPE); Perpignan F-66860 France
| | - Cristian Chaparro
- Université de Perpignan Via Domitia; Perpignan F-66860 France
- CNRS; UMR 5244; Interactions Hôtes-Pathogènes-Environnements (IHPE); Perpignan F-66860 France
| | - Jerome Boissier
- Université de Perpignan Via Domitia; Perpignan F-66860 France
- CNRS; UMR 5244; Interactions Hôtes-Pathogènes-Environnements (IHPE); Perpignan F-66860 France
| | - Nathalie Arancibia
- Université de Perpignan Via Domitia; Perpignan F-66860 France
- CNRS; UMR 5244; Interactions Hôtes-Pathogènes-Environnements (IHPE); Perpignan F-66860 France
| | - Celine Cosseau
- Université de Perpignan Via Domitia; Perpignan F-66860 France
- CNRS; UMR 5244; Interactions Hôtes-Pathogènes-Environnements (IHPE); Perpignan F-66860 France
| | - Hugues Parrinello
- MGX - Montpellier GenomiX IBiSA, Institut de Génomique Fonctionnelle; 141, rue de la Cardonille F-34094 Montpellier Cedex 05 France
| | - Christoph Grunau
- Université de Perpignan Via Domitia; Perpignan F-66860 France
- CNRS; UMR 5244; Interactions Hôtes-Pathogènes-Environnements (IHPE); Perpignan F-66860 France
| |
Collapse
|
10
|
Anderson L, Amaral MS, Beckedorff F, Silva LF, Dazzani B, Oliveira KC, Almeida GT, Gomes MR, Pires DS, Setubal JC, DeMarco R, Verjovski-Almeida S. Schistosoma mansoni Egg, Adult Male and Female Comparative Gene Expression Analysis and Identification of Novel Genes by RNA-Seq. PLoS Negl Trop Dis 2015; 9:e0004334. [PMID: 26719891 PMCID: PMC4699917 DOI: 10.1371/journal.pntd.0004334] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/06/2015] [Indexed: 12/28/2022] Open
Abstract
Background Schistosomiasis is one of the most prevalent parasitic diseases worldwide and is a public health problem. Schistosoma mansoni is the most widespread species responsible for schistosomiasis in the Americas, Middle East and Africa. Adult female worms (mated to males) release eggs in the hepatic portal vasculature and are the principal cause of morbidity. Comparative separate transcriptomes of female and male adult worms were previously assessed with using microarrays and Serial Analysis of Gene Expression (SAGE), thus limiting the possibility of finding novel genes. Moreover, the egg transcriptome was analyzed only once with limited bacterially cloned cDNA libraries. Methodology/Principal findings To compare the gene expression of S. mansoni eggs, females, and males, we performed RNA-Seq on these three parasite forms using 454/Roche technology and reconstructed the transcriptome using Trinity de novo assembly. The resulting contigs were mapped to the genome and were cross-referenced with predicted Smp genes and H3K4me3 ChIP-Seq public data. For the first time, we obtained separate, unbiased gene expression profiles for S. mansoni eggs and female and male adult worms, identifying enriched biological processes and specific enriched functions for each of the three parasite forms. Transcripts with no match to predicted genes were analyzed for their protein-coding potential and the presence of an encoded conserved protein domain. A set of 232 novel protein-coding genes with putative functions related to reproduction, metabolism, and cell biogenesis was detected, which contributes to the understanding of parasite biology. Conclusions/Significance Large-scale RNA-Seq analysis using de novo assembly associated with genome-wide information for histone marks in the vicinity of gene models constitutes a new approach to transcriptome analysis that has not yet been explored in schistosomes. Importantly, all data have been consolidated into a UCSC Genome Browser search- and download-tool (http://schistosoma.usp.br/). This database provides new ways to explore the schistosome genome and transcriptome and will facilitate molecular research on this important parasite. Schistosomiasis is a public health problem caused by parasites of the genus Schistosoma, of which S. mansoni is the primary causative agent. The parasite has a complex life cycle; their sexual reproductive stage is dependent on female and male adult worms mating inside the mesenteric circulation of the human host, with the female releasing hundreds of eggs daily. This phase of the life cycle is responsible for the development of pathology, which is proportional to the number of eggs accumulating in the liver and intestine of the human host. Genome and transcriptome sequencing of this parasite represent important advances in schistosome research, but there is still a need for integrated analyses to better understand the biology of this parasite. In this study, we describe the first large-scale transcriptomes of eggs, and female and male adult worms, the parasite forms that are mainly responsible for the pathology of schistosomiasis. We were able to cross-reference the gene transcription regions with promoter regions, thus improving the gene annotations. Moreover, we identified the expression of novel protein-coding genes not yet described in the current genome annotation, advancing the biological knowledge regarding this parasite.
Collapse
Affiliation(s)
- Letícia Anderson
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Murilo S. Amaral
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Instituto Butantan, São Paulo, SP, Brazil
| | - Felipe Beckedorff
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas F. Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Bianca Dazzani
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Katia C. Oliveira
- Núcleo de Enteroparasitas, Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, São Paulo, SP, Brazil
| | - Giulliana T. Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Monete R. Gomes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - David S. Pires
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Instituto Butantan, São Paulo, SP, Brazil
| | - João C. Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Ricardo DeMarco
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Sergio Verjovski-Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Instituto Butantan, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
11
|
The Epigenome of Schistosoma mansoni Provides Insight about How Cercariae Poise Transcription until Infection. PLoS Negl Trop Dis 2015; 9:e0003853. [PMID: 26305466 PMCID: PMC4549315 DOI: 10.1371/journal.pntd.0003853] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 05/27/2015] [Indexed: 01/26/2023] Open
Abstract
Background Chromatin structure can control gene expression and can define specific transcription states. For example, bivalent methylation of histone H3K4 and H3K27 is linked to poised transcription in vertebrate embryonic stem cells (ESC). It allows them to rapidly engage specific developmental pathways. We reasoned that non-vertebrate metazoans that encounter a similar developmental constraint (i.e. to quickly start development into a new phenotype) might use a similar system. Schistosomes are parasitic platyhelminthes that are characterized by passage through two hosts: a mollusk as intermediate host and humans or rodents as definitive host. During its development, the parasite undergoes drastic changes, most notable immediately after infection of the definitive host, i.e. during the transition from the free-swimming cercariae into adult worms. Methodology/Principal Findings We used Chromatin Immunoprecipitation followed by massive parallel sequencing (ChIP-Seq) to analyze genome-wide chromatin structure of S. mansoni on the level of histone modifications (H3K4me3, H3K27me3, H3K9me3, and H3K9ac) in cercariae, schistosomula and adults (available at http://genome.univ-perp.fr). We saw striking differences in chromatin structure between the developmental stages, but most importantly we found that cercariae possess a specific combination of marks at the transcription start sites (TSS) that has similarities to a structure found in ESC. We demonstrate that in cercariae no transcription occurs, and we provide evidences that cercariae do not possess large numbers of canonical stem cells. Conclusions/Significance We describe here a broad view on the epigenome of a metazoan parasite. Most notably, we find bivalent histone H3 methylation in cercariae. Methylation of H3K27 is removed during transformation into schistosomula (and stays absent in adults) and transcription is activated. In addition, shifts of H3K9 methylation and acetylation occur towards upstream and downstream of the transcriptional start site (TSS). We conclude that specific H3 modifications are a phylogenetically older and probably more general mechanism, i.e. not restricted to stem cells, to poise transcription. Since adult couples must form to cause the disease symptoms, changes in histone modifications appear to be crucial for pathogenesis and represent therefore a therapeutic target. The blood fluke Schistosoma mansoni causes intestinal bilharzia. The parasite has a complex life cycle in which a freshwater snail serves as intermediate host from which the human infecting larvae hatch. These larvae will actively seek skin contact, penetrate through the epithelium and start developing straight away into adult worms. Development from larvae into adults needs thorough adjustment of gene expression through repositioning or modification of proteins that are associated with DNA (the chromatin). We decided to compare the chromatin of human infective larvae (cercariae), the first developmental stage after infection of the vertebrate host (schistosomula) and adults of S. mansoni. We found that cercariae possess chromatin structures (modifications of histone H3) around the beginning of genes that are very different from schistosomula and adults. We conclude that this structure serves to keep gene transcription in a poised state, i.e. transcription is initiated and can start immediately when the blocking histone modification is removed. A similar type of histone modification was found in embryonic stem cells of vertebrates and our data indicate that it is either a more ancient and/or more general means to poise transcription than previously assumed. Since many parasites possess infective stages that develop rapidly within the host, this particular chromatin structure could be a therapeutic target for a new class of antiparasitic drugs.
Collapse
|
12
|
Roquis D, Lepesant JMJ, Villafan E, Boissier J, Vieira C, Cosseau C, Grunau C. Exposure to hycanthone alters chromatin structure around specific gene functions and specific repeats in Schistosoma mansoni. Front Genet 2014; 5:207. [PMID: 25076965 PMCID: PMC4099960 DOI: 10.3389/fgene.2014.00207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/18/2014] [Indexed: 11/23/2022] Open
Abstract
Schistosoma mansoni is a parasitic plathyhelminth responsible for intestinal schistosomiasis (or bilharzia), a disease affecting 67 million people worldwide and causing an important economic burden. The schistosomicides hycanthone, and its later proxy oxamniquine, were widely used for treatments in endemic areas during the twentieth century. Recently, the mechanism of action, as well as the genetic origin of a stably and Mendelian inherited resistance for both drugs was elucidated in two strains. However, several observations suggested early on that alternative mechanisms might exist, by which resistance could be induced for these two drugs in sensitive lines of schistosomes. This induced resistance appeared rapidly, within the first generation, but was metastable (not stably inherited). Epigenetic inheritance could explain such a phenomenon and we therefore re-analyzed the historical data with our current knowledge of epigenetics. In addition, we performed new experiments such as ChIP-seq on hycanthone treated worms. We found distinct chromatin structure changes between sensitive worms and induced resistant worms from the same strain. No specific pathway was discovered, but genes in which chromatin structure modifications were observed are mostly associated with transport and catabolism, which makes sense in the context of the elimination of the drug. Specific differences were observed in the repetitive compartment of the genome. We finally describe what types of experiments are needed to understand the complexity of heritability that can be based on genetic and/or epigenetic mechanisms for drug resistance in schistosomes.
Collapse
Affiliation(s)
- David Roquis
- Département de Biologie, Université de Perpignan Via DomitiaPerpignan, France
- CNRS, UMR 5244, Écologie et Évolution des Interactions (2EI)Perpignan, France
| | - Julie M. J. Lepesant
- Département de Biologie, Université de Perpignan Via DomitiaPerpignan, France
- CNRS, UMR 5244, Écologie et Évolution des Interactions (2EI)Perpignan, France
| | - Emanuel Villafan
- CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Département de Biologie, Université Lyon 1Villeurbane, France
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C.Xalapa, México
| | - Jérôme Boissier
- Département de Biologie, Université de Perpignan Via DomitiaPerpignan, France
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C.Xalapa, México
| | - Cristina Vieira
- CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Département de Biologie, Université Lyon 1Villeurbane, France
- Département de Biologie, Institut Universitaire de FranceParis, France
| | - Céline Cosseau
- Département de Biologie, Université de Perpignan Via DomitiaPerpignan, France
- CNRS, UMR 5244, Écologie et Évolution des Interactions (2EI)Perpignan, France
| | - Christoph Grunau
- Département de Biologie, Université de Perpignan Via DomitiaPerpignan, France
- CNRS, UMR 5244, Écologie et Évolution des Interactions (2EI)Perpignan, France
| |
Collapse
|
13
|
Clément JAJ, Toulza E, Gautier M, Parrinello H, Roquis D, Boissier J, Rognon A, Moné H, Mouahid G, Buard J, Mitta G, Grunau C. Private selective sweeps identified from next-generation pool-sequencing reveal convergent pathways under selection in two inbred Schistosoma mansoni strains. PLoS Negl Trop Dis 2013; 7:e2591. [PMID: 24349597 PMCID: PMC3861164 DOI: 10.1371/journal.pntd.0002591] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 10/30/2013] [Indexed: 01/12/2023] Open
Abstract
Background The trematode flatworms of the genus Schistosoma, the causative agents of schistosomiasis, are among the most prevalent parasites in humans, affecting more than 200 million people worldwide. In this study, we focused on two well-characterized strains of S. mansoni, to explore signatures of selection. Both strains are highly inbred and exhibit differences in life history traits, in particular in their compatibility with the intermediate host Biomphalaria glabrata. Methodology/Principal Findings We performed high throughput sequencing of DNA from pools of individuals of each strain using Illumina technology and identified single nucleotide polymorphisms (SNP) and copy number variations (CNV). In total, 708,898 SNPs were identified and roughly 2,000 CNVs. The SNPs revealed low nucleotide diversity (π = 2×10−4) within each strain and a high differentiation level (Fst = 0.73) between them. Based on a recently developed in-silico approach, we further detected 12 and 19 private (i.e. specific non-overlapping) selective sweeps among the 121 and 151 sweeps found in total for each strain. Conclusions/Significance Functional annotation of transcripts lying in the private selective sweeps revealed specific selection for functions related to parasitic interaction (e.g. cell-cell adhesion or redox reactions). Despite high differentiation between strains, we identified evolutionary convergence of genes related to proteolysis, known as a key virulence factor and a potential target of drug and vaccine development. Our data show that pool-sequencing can be used for the detection of selective sweeps in parasite populations and enables one to identify biological functions under selection. Adaptation of parasites to their environment is governed by the principle of selection. Favourable mutations are fixed in populations while deleterious mutations are progressively eliminated. Here, we aimed to find signatures of selection in two strains of Schistosoma mansoni, the causative agent of intestinal schistosomiasis. The strains differ in specific characters, in particular in their capacity to infect intermediate host snails. The reason for this is unknown and understanding it could help control the spreading of the disease. Finding footprints of adaptation to different snail hosts would lead to the discovery of genes that are particularly important for the interaction. Since a single parasite does not contain sufficient DNA to be sequenced, we pooled several individuals, sequenced them as a whole analysed them. In the regions under selection we found genes that are indeed linked to the parasitic lifestyle. We also discovered that natural selection led to diversification of genes that are related to proteolysis, the process by which the parasite destroys host tissue. The related proteins are considered good targets for drug development and vaccination. Our results suggest that in natural populations many variants of these genes exist and that they evolve rapidly, which might hamper therapeutic approaches.
Collapse
Affiliation(s)
- Julie A. J. Clément
- Univ.Perpignan Via Domitia, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
| | - Eve Toulza
- Univ.Perpignan Via Domitia, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
| | - Mathieu Gautier
- INRA, UMR CBGP (INRA – IRD – Cirad – Montpellier SupAgro), Montferrier-sur-Lez, France
| | | | - David Roquis
- Univ.Perpignan Via Domitia, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
| | - Jérôme Boissier
- Univ.Perpignan Via Domitia, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
| | - Anne Rognon
- Univ.Perpignan Via Domitia, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
| | - Hélène Moné
- Univ.Perpignan Via Domitia, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
| | - Gabriel Mouahid
- Univ.Perpignan Via Domitia, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
| | - Jérôme Buard
- CNRS, Institut de Génétique Humaine, UPR 1142, Montpellier, France
| | - Guillaume Mitta
- Univ.Perpignan Via Domitia, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
| | - Christoph Grunau
- Univ.Perpignan Via Domitia, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- CNRS, Ecologie et Evolution des Interactions, UMR 5244, Perpignan, France
- * E-mail:
| |
Collapse
|
14
|
New frontiers in schistosoma genomics and transcriptomics. J Parasitol Res 2012; 2012:849132. [PMID: 23227308 PMCID: PMC3512318 DOI: 10.1155/2012/849132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/16/2012] [Indexed: 12/11/2022] Open
Abstract
Schistosomes are digenean blood flukes of aves and mammals comprising 23 species. Some species are causative agents of human schistosomiasis, the second major neglected disease affecting over 230 million people worldwide. Modern technologies including the sequencing and characterization of nucleic acids and proteins have allowed large-scale analyses of parasites and hosts, opening new frontiers in biological research with potential biomedical and biotechnological applications. Nuclear genomes of the three most socioeconomically important species (S. haematobium, S. japonicum, and S. mansoni) have been sequenced and are under intense investigation. Mitochondrial genomes of six Schistosoma species have also been completely sequenced and analysed from an evolutionary perspective. Furthermore, DNA barcoding of mitochondrial sequences is used for biodiversity assessment of schistosomes. Despite the efforts in the characterization of Schistosoma genomes and transcriptomes, many questions regarding the biology and evolution of this important taxon remain unanswered. This paper aims to discuss some advances in the schistosome research with emphasis on genomics and transcriptomics. It also aims to discuss the main challenges of the current research and to point out some future directions in schistosome studies.
Collapse
|