1
|
Targońska S, Dobrzyńska-Mizera M, Di Lorenzo ML, Knitter M, Longo A, Dobrzyński M, Rutkowska M, Barnaś S, Czapiga B, Stagraczyński M, Mikulski M, Muzalewska M, Wyleżoł M, Rewak-Soroczyńska J, Nowak N, Andrzejewski J, Reeks J, Wiglusz RJ. Design, clinical applications and post-surgical assessment of bioresorbable 3D-printed craniofacial composite implants. Biomater Sci 2024; 12:3374-3388. [PMID: 38787753 DOI: 10.1039/d3bm01826a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
This study details the design, fabrication, clinical trials' evaluation, and analysis after the clinical application of 3D-printed bone reconstruction implants made of nHAp@PLDLLA [nanohydroxyapatite@poly(L-lactide-co-D,L-lactide)] biomaterial. The 3D-printed formulations have been tested as bone reconstruction Cranioimplants in 3 different medical cases, including frontal lobe, mandibular bone, and cleft palate reconstructions. Replacing one of the implants after 6 months provided a unique opportunity to evaluate the post-surgical implant obtained from a human patient. This allowed us to quantify physicochemical changes and develop a spatial map of osseointegration and material degradation kinetics as a function of specific locations. To the best of our knowledge, hydrolytic degradation and variability in the physicochemical and mechanical properties of the biomimetic, 3D-printed implants have not been quantified in the literature after permanent placement in the human body. Such analysis has revealed the constantly changing properties of the implant, which should be considered to optimize the design of patient-specific bone substitutes. Moreover, it has been proven that the obtained composition can produce biomimetic, bioresorbable and bone-forming alloplastic substitutes tailored to each patient, allowing for shorter surgery times and faster patient recovery than currently available methods.
Collapse
Affiliation(s)
- Sara Targońska
- Institute of Low Temperature and Structure Research, PAS, Okolna 2, PL-50-422 Wroclaw, Poland.
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 75007 Uppsala, Sweden
| | - Monika Dobrzyńska-Mizera
- Institute of Materials Technology, Polymer Division, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland.
| | - Maria Laura Di Lorenzo
- National Research Council (CNR), Institute of Polymers, Composites and Biomaterials (IPCB), Via Campi Flegrei, 34, 80078 Pozzuoli (NA), Italy.
| | - Monika Knitter
- Institute of Materials Technology, Polymer Division, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland.
| | - Alessandra Longo
- National Research Council (CNR), Institute of Polymers, Composites and Biomaterials (IPCB), Via Campi Flegrei, 34, 80078 Pozzuoli (NA), Italy.
- National Research Council (CNR), Institute of Polymers, Composites and Biomaterials (IPCB), Via Paolo Gaifami 18, 95126, Catania, CT, Italy
| | - Maciej Dobrzyński
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Monika Rutkowska
- 4th Military Teaching Hospital, R. Weigla, PL-50-981 Wroclaw, Poland
| | - Szczepan Barnaś
- 4th Military Teaching Hospital, R. Weigla, PL-50-981 Wroclaw, Poland
| | - Bogdan Czapiga
- 4th Military Teaching Hospital, R. Weigla, PL-50-981 Wroclaw, Poland
| | | | | | - Małgorzata Muzalewska
- Department of Fundamentals of Machinery Design, Faculty of Mechanical Engineering Silesian University of Technology, Gliwice, Poland.
| | - Marek Wyleżoł
- Department of Fundamentals of Machinery Design, Faculty of Mechanical Engineering Silesian University of Technology, Gliwice, Poland.
| | | | - Nicole Nowak
- Institute of Low Temperature and Structure Research, PAS, Okolna 2, PL-50-422 Wroclaw, Poland.
| | - Jacek Andrzejewski
- Institute of Materials Technology, Polymer Division, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland.
| | - John Reeks
- Institute of Low Temperature and Structure Research, PAS, Okolna 2, PL-50-422 Wroclaw, Poland.
| | - Rafal J Wiglusz
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland.
- Institute of Low Temperature and Structure Research, PAS, Okolna 2, PL-50-422 Wroclaw, Poland.
| |
Collapse
|
2
|
El Saftawy E, Farag MF, Gebreil HH, Abdelfatah M, Aboulhoda BE, Alghamdi M, Albadawi EA, Abd Elkhalek MA. Malaria: biochemical, physiological, diagnostic, and therapeutic updates. PeerJ 2024; 12:e17084. [PMID: 38529311 PMCID: PMC10962339 DOI: 10.7717/peerj.17084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 02/19/2024] [Indexed: 03/27/2024] Open
Abstract
Background Malaria has been appraised as a significant vector-borne parasitic disease with grave morbidity and high-rate mortality. Several challenges have been confronting the efficient diagnosis and treatment of malaria. Method Google Scholar, PubMed, Web of Science, and the Egyptian Knowledge Bank (EKB) were all used to gather articles. Results Diverse biochemical and physiological indices can mirror complicated malaria e.g., hypoglycemia, dyslipidemia, elevated renal and hepatic functions in addition to the lower antioxidant capacity that does not only destroy the parasite but also induces endothelial damage. Multiple trials have been conducted to improve recent points of care in malaria involving biosensors, lap on-chip, and microdevices technology. Regarding recent therapeutic trials, chemical falcipain inhibitors and plant extracts with anti-plasmodial activities are presented. Moreover, antimalaria nano-medicine and the emergence of nanocarrier (either active or passive) in drug transportation are promising. The combination therapeutic trials e.g., amodiaquine + artemether + lumefantrine are presented to safely counterbalance the emerging drug resistance in addition to the Tafenoquine as a new anti-relapse therapy. Conclusion Recognizing the pathophysiology indices potentiate diagnosis of malaria. The new points of care can smartly manipulate the biochemical and hematological alterations for a more sensitive and specific diagnosis of malaria. Nano-medicine appeared promising. Chemical and plant extracts remain points of research.
Collapse
Affiliation(s)
- Enas El Saftawy
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Giza, Egypt
- Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt
| | - Mohamed F. Farag
- Department of Medical Physiology, Armed Forces College of Medicine, Cairo, Giza, Egypt
| | - Hossam H. Gebreil
- Department of Medical Biochemistry & Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt
| | - Mohamed Abdelfatah
- Department of Medical Physiology, Armed Forces College of Medicine, Cairo, Giza, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Giza, Egypt
| | - Mansour Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia
- Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Emad A. Albadawi
- Department of Anatomy, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | - Marwa Ali Abd Elkhalek
- Department of Medical Biochemistry & Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt
- Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Shahrajabian MH, Sun W. The Golden Spice for Life: Turmeric with the Pharmacological Benefits of Curcuminoids Components, Including Curcumin, Bisdemethoxycurcumin, and Demethoxycurcumins. Curr Org Synth 2024; 21:665-683. [PMID: 37287298 DOI: 10.2174/1570179420666230607124949] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/09/2023]
Abstract
BACKGROUND Turmeric (Curcuma longa L.), belonging to the Zingiberaceae family, is a perennial rhizomatous plant of tropical and subtropical regions. The three major chemical components responsible for the biological activities of turmeric are curcumin, demethoxycurcumin, and bisdemethoxycurcumin. METHODS The literature search included review articles, analytical studies, randomized control experiments, and observations, which have been gathered from various sources, such as Scopus, Google Scholar, PubMed, and ScienceDirect. A review of the literature was carried out using the keywords: turmeric, traditional Chinese medicine, traditional Iranian medicine, traditional Indian medicine, curcumin, curcuminoids, pharmaceutical benefits, turmerone, demethoxycurcumin, and bisdemethoxycurcumin. The main components of the rhizome of the leaf are α-turmerone, β-turmerone, and arturmerone. RESULTS The notable health benefits of turmeric are antioxidant activity, gastrointestinal effects, anticancer effects, cardiovascular and antidiabetic effects, antimicrobial activity, photoprotector activity, hepatoprotective and renoprotective effects, and appropriate for the treatment of Alzheimer's disease and inflammatory and edematic disorders. DISCUSSION Curcuminoids are phenolic compounds usually used as pigment spices with many health benefits, such as antiviral, antitumour, anti-HIV, anti-inflammatory, antiparasitic, anticancer, and antifungal effects. Curcumin, bisdemethoxycurcumin, and demethoxycurcumin are the major active and stable bioactive constituents of curcuminoids. Curcumin, which is a hydroponic polyphenol, and the main coloring agent in the rhizomes of turmeric, has anti-inflammatory, antioxidant, anti-cancer, and anticarcinogenic activities, as well as beneficial effects for infectious diseases and Alzheimer's disease. Bisdemethoxycurcumin possesses antioxidant, anti-cancer, and anti-metastasis activities. Demethoxycurcumin, which is another major component, has anti-inflammatory, antiproliferative, and anti-cancer activities and is the appropriate candidate for the treatment of Alzheimer's disease. CONCLUSION The goal of this review is to highlight the health benefits of turmeric in both traditional and modern pharmaceutical sciences by considering the important roles of curcuminoids and other major chemical constituents of turmeric.
Collapse
Affiliation(s)
| | - Wenli Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
4
|
Thakral S, Yadav A, Singh V, Kumar M, Kumar P, Narang R, Sudhakar K, Verma A, Khalilullah H, Jaremko M, Emwas AH. Alzheimer's disease: Molecular aspects and treatment opportunities using herbal drugs. Ageing Res Rev 2023; 88:101960. [PMID: 37224884 DOI: 10.1016/j.arr.2023.101960] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD), also called senile dementia, is the most common neurological disorder. Around 50 million people, mostly of advanced age, are suffering from dementia worldwide and this is expected to reach 100-130 million between 2040 and 2050. AD is characterized by impaired glutamatergic and cholinergic neurotransmission, which is associated with clinical and pathological symptoms. AD is characterized clinically by loss of cognition and memory impairment and pathologically by senile plaques formed by Amyloid β deposits or neurofibrillary tangles (NFT) consisting of aggregated tau proteins. Amyloid β deposits are responsible for glutamatergic dysfunction that develops NMDA dependent Ca2+ influx into postsynaptic neurons generating slow excitotoxicity process leading to oxidative stress and finally impaired cognition and neuronal loss. Amyloid decreases acetylcholine release, synthesis and neuronal transport. The decreased levels of neurotransmitter acetylcholine, neuronal loss, tau aggregation, amyloid β plaques, increased oxidative stress, neuroinflammation, bio-metal dyshomeostasis, autophagy, cell cycle dysregulation, mitochondrial dysfunction, and endoplasmic reticulum dysfunction are the factors responsible for the pathogenesis of AD. Acetylcholinesterase, NMDA, Glutamate, BACE1, 5HT6, and RAGE (Receptors for Advanced Glycation End products) are receptors targeted in treatment of AD. The FDA approved acetylcholinesterase inhibitors Donepezil, Galantamine and Rivastigmine and N-methyl-D-aspartate antagonist Memantine provide symptomatic relief. Different therapies such as amyloid β therapies, tau-based therapies, neurotransmitter-based therapies, autophagy-based therapies, multi-target therapeutic strategies, and gene therapy modify the natural course of the disease. Herbal and food intake is also important as preventive strategy and recently focus has also been placed on herbal drugs for treatment. This review focuses on the molecular aspects, pathogenesis and recent studies that signifies the potential of medicinal plants and their extracts or chemical constituents for the treatment of degenerative symptoms related to AD.
Collapse
Affiliation(s)
- Samridhi Thakral
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Alka Yadav
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Vikramjeet Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India.
| | - Manoj Kumar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, Haryana, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Rakesh Narang
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Kalvatala Sudhakar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India.
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
5
|
Maciver SK, Abdelnasir S, Anwar A, Siddiqui R, Khan NA. Modular nanotheranostic agents for protistan parasitic diseases: Magic bullets with tracers. Mol Biochem Parasitol 2023; 253:111541. [PMID: 36603708 DOI: 10.1016/j.molbiopara.2022.111541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023]
Abstract
Protistan parasitic infections contribute significantly to morbidity and mortality, causing more than 2 billion human infections annually. However, current treatments are often limited; due to ineffective drugs and drug resistance, thus better options are urgently required. In the present context, theranostics agents are those that offer simultaneous detection, diagnosis and even treatment of protistan parasitic diseases. "Nanotheranostics" is the term used to describe such agents, that are around 100 nm or less in size. Anti-parasitic activity of nanoparticles (NPs) has been reported, and many have useful intrinsic imaging properties, but it is perhaps their multifunctional nature that offers the greatest potential. NPs may be used as adapters onto which various subunits with different functions may be attached. These subunits may facilitate targeting parasites, coupled with toxins to eradicate parasites, and probe subunits for detection of particles and/or parasites. The modular nature of nano-platforms promises a "mix and match" approach for the construction of tailored agents by using combinations of these subunits against different protistan parasites. Even though many of the subunits have shown promise alone, these have not yet been put together convincingly enough to form working theranostics against protistan parasites. Although the clinical application of nanotheranostics to protistan parasitic infections in humans requires more research, we conclude that they offer not just a realisation of Paul Ehrlich's long imagined "magic bullet" concept, but potentially are magic bullets combined with tracer bullets.
Collapse
Affiliation(s)
- Sutherland Kester Maciver
- Centre for Discovery Brain Science, Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Scotland, UK
| | - Sumayah Abdelnasir
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia.
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah, United Arab Emirates; Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey; Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
6
|
The Study of Nanosized Silicate-Substituted Hydroxyapatites Co-Doped with Sr 2+ and Zn 2+ Ions Related to Their Influence on Biological Activities. Curr Issues Mol Biol 2022; 44:6229-6246. [PMID: 36547086 PMCID: PMC9776463 DOI: 10.3390/cimb44120425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Nanosized silicate-substituted hydroxyapatites, characterized by the general formula Ca9.8-x-nSrnZnx(PO4)6-y(SiO4)y(OH)2 (where: n = 0.2 [mol%]; x = 0.5-3.5 [mol%]; y = 4-5 [mol%]), co-doped with Zn2+ and Sr2+ ions, were synthesized with the help of a microwave-assisted hydrothermal technique. The structural properties were determined using XRD (X-ray powder diffraction) and Fourier-transformed infrared spectroscopy (FT-IR). The morphology, size and shape of biomaterials were detected using scanning electron microscopy techniques (SEM). The reference strains of Klebsiella pneumoniae, Escherichia coli and Pseudomonas aeruginosa were used to assess bacterial survivability and the impact on biofilm formation in the presence of nanosilicate-substituted strontium-hydroxyapatites. Safety evaluation was also performed using the standard cytotoxicity test (MTT) and hemolysis assay. Moreover, the mutagenic potential of the materials was assessed (Ames test). The obtained results suggest the dose-dependent antibacterial activity of nanomaterials, especially observed for samples doped with 3.5 mol% Zn2+ ions. Moreover, the modification with five SiO4 groups enhanced the antibacterial effect; however, a rise in the toxicity was observed as well. No harmful activity was detected in the hemolysis assay as well as in the mutagenic assay (Ames test).
Collapse
|
7
|
Development and validation of an LC-MS/MS method for the assessment of Isoxazole, a bioactive analogue of curcumin in rat plasma: Application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1212:123488. [DOI: 10.1016/j.jchromb.2022.123488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
|
8
|
Gujjari L, Kalani H, Pindiprolu SK, Arakareddy BP, Yadagiri G. Current challenges and nanotechnology-based pharmaceutical strategies for the treatment and control of malaria. Parasite Epidemiol Control 2022; 17:e00244. [PMID: 35243049 PMCID: PMC8866151 DOI: 10.1016/j.parepi.2022.e00244] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/12/2021] [Accepted: 02/13/2022] [Indexed: 12/19/2022] Open
Abstract
Malaria is one of the prevalent tropical diseases caused by the parasitic protozoan of the genus Plasmodium spp. With an estimated 228 million cases, it is a major public health concern with high incidence of morbidity and mortality worldwide. The emergence of drug-resistant parasites, inadequate vector control measures, and the non-availability of effective vaccine(s) against malaria pose a serious challenge to malaria eradication especially in underdeveloped and developing countries. Malaria treatment and control comprehensively relies on chemical compounds, which encompass various complications, including severe toxic effects, emergence of drug resistance, and high cost of therapy. To overcome the clinical failures of anti-malarial chemotherapy, a new drug development is of an immediate need. However, the drug discovery and development process is expensive and time consuming. In such a scenario, nanotechnological strategies may offer promising alternative approach for the treatment and control of malaria, with improved efficacy and safety. Nanotechnology based formulations of existing anti-malarial chemotherapeutic agents prove to exceed the limitations of existing therapies in relation to optimum therapeutic benefits, safety, and cost effectiveness, which indeed advances the patient's compliance in treatment. In this review, the shortcomings of malaria therapeutics and necessity of nanotechnological strategies for treating malaria were discussed.
Collapse
Affiliation(s)
- Lohitha Gujjari
- Centre of Infectious Diseases, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160 062, India
- Department of Entomology, The Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA
| | - Hamed Kalani
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sai Kiran Pindiprolu
- Department of Pharmacology, School of Pharmaceutical Sciences and Technologies, Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh 533003, India
| | | | - Ganesh Yadagiri
- Department of Pharmacology, School of Pharmaceutical Sciences and Technologies, Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh 533003, India
- Centre for Food Animal Health, The Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Avenue, Wooster, OH 44691, USA
| |
Collapse
|
9
|
Shakib P, Kalani H, Ho J, Dolatshah M, Amiri S, Cheraghipour K. A Systematic Review on Curcumin and Anti-Plasmodium berghei Effects. Curr Drug Discov Technol 2022; 19:e150322202249. [PMID: 35293297 DOI: 10.2174/1570163819666220315140736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/07/2021] [Accepted: 01/03/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Turmeric (Curcuma longa L.) is a popular spice, containing curcumin that is responsible for its therapeutic effects. Curcumin with anti-inflammatory, antioxidant, anti-cancer, and antimicrobial activities has led to a lot of research focusing on it over the years. This systematic review aimed to evaluate researches on anti-Plasmodium berghei activity of curcumin and its derivatives. METHODS Our study was performed according to PRISMA guidelines and was recorded in the database of systematic review and preclinical meta-analysis of CAMARADESNC3Rs (SyRF). The search was performed in five databases, namely Scopus, PubMed, Web of Science, EMBASE, and Google Scholar from 2010 to 2020. The following keywords were searched: "Plasmodium berghei", "Medicinal Plants", "Curcumin", "Concentration", Animals kind", "Treatment Durations", "Routes of Administration" and "in vivo". RESULTS Of the 3,500 papers initially obtained, 14 articles were reliable and were thus scrutinized. Animal models were included in all studies. The most commonly used animal strain were Albino (43%) followed by C57BL/6 (22%). The other studies used various murine strains, including BALB/c (14%) and ICR (7%). Two (14%) studies did not mention the strain of animal model used. Curcumin alone or in combination with other compounds depending on the dose used, route of administration, and animal model showed a moderate to strong anti-Plasmodium berghei effect. CONCLUSION According to the studies, curcumin has anti-malarial effects on Plasmodium berghei and, however, its effect on human Plasmodium is unclear. Due to the side effects and drug resistance of current drugs in the treatment of human malaria, the use of new compounds with few or no side effects such as curcumin is recommended as an alternative or complementary treatment.
Collapse
Affiliation(s)
- Pegah Shakib
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Kalani
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Jeffery Ho
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
| | | | - Sana Amiri
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Kourosh Cheraghipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
10
|
Grover M, Behl T, Sehgal A, Singh S, Sharma N, Virmani T, Rachamalla M, Farasani A, Chigurupati S, Alsubayiel AM, Felemban SG, Sanduja M, Bungau S. In Vitro Phytochemical Screening, Cytotoxicity Studies of Curcuma longa Extracts with Isolation and Characterisation of Their Isolated Compounds. Molecules 2021; 26:molecules26247509. [PMID: 34946592 PMCID: PMC8705887 DOI: 10.3390/molecules26247509] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/31/2022] Open
Abstract
The Curcuma longa plant is endowed with multiple traditional and therapeutic utilities and is here explored for its phytochemical constituents and cytotoxic potential. Turmeric rhizomes were extracted from three different solvents and screened for the presence of different phytochemical constituents, observation of which indicated that the polar solvents favoured extraction of greater versatile phytochemical constituents. These extracts were investigated for their cytotoxic potential by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay on three different of cell lines including SCC-29B (oral cancer cell line), DU-145 (prostate cancer cell line) and the Vero cell line (healthy cell line/non-cancerous cell line). This assay was performed by taking three extracts from isolated curcuminoids and a pure bioactive compound bisdemethoxycurcumin (BD). Bisdemethoxycurcumin was isolated from curcuminoids and purified by column and thin-layer chromatography, and its structural characterisation was performed with different spectroscopic techniques such as FTIR, NMR (1H Proton and 13C Carbon-NMR) and LC-MS. Amongst the extracts, the ethanolic extracts exhibited stronger cytotoxic potential against the oral cancer cell line (SCC-29B) with an IC50value of 11.27 μg/mL, and that this was too low of a cytotoxicity against the Vero cell line. Although, curcuminoids have also shown a comparable cytotoxic potential against SCC-29B (IC50 value 16.79 μg/mL), it was not as potent against the ethanolic extract, and it was even found to be cytotoxic against healthy cell lines at a very low dose. While considering the isolated compound, bisdemethoxycurcumin, it also possessed a cytotoxic potential against the prostate cancer cell line (DU-145) (IC50 value of 93.28 μg/mL), but was quite safe for the healthy cell line in comparison to doxorubicin.
Collapse
Affiliation(s)
- Madhuri Grover
- School of Pharmaceutical Sciences, MVN University, Palwal 121102, India; (M.G.); (T.V.); (M.S.)
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajoura 140401, India; (A.S.); (S.S.); (N.S.)
- Correspondence: or (T.B.); (S.B.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajoura 140401, India; (A.S.); (S.S.); (N.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajoura 140401, India; (A.S.); (S.S.); (N.S.)
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajoura 140401, India; (A.S.); (S.S.); (N.S.)
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Palwal 121102, India; (M.G.); (T.V.); (M.S.)
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada;
| | - Abdullah Farasani
- Biomedical Research Unit, Medical Research Centre, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Amal M. Alsubayiel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Shatha Ghazi Felemban
- Department of Medical Laboratory Science, Fakeeh College for Medical Sciences, Jeddah 21461, Saudi Arabia;
| | - Mohit Sanduja
- School of Pharmaceutical Sciences, MVN University, Palwal 121102, India; (M.G.); (T.V.); (M.S.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
- Correspondence: or (T.B.); (S.B.)
| |
Collapse
|
11
|
The Potential use of a Curcumin-Piperine Combination as an Antimalarial Agent: A Systematic Review. J Trop Med 2021; 2021:9135617. [PMID: 34671402 PMCID: PMC8523290 DOI: 10.1155/2021/9135617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
Malaria remains a significant global health problem, but the development of effective antimalarial drugs is challenging due to the parasite's complex life cycle and lack of knowledge about the critical specific stages. Medicinal plants have been investigated as adjuvant therapy for malaria, so this systematic review summarizes 46 primary articles published until December 2020 that discuss curcumin and piperine as antimalarial agents. The selected articles discussed their antioxidant, anti-inflammatory, and antiapoptosis properties, as well as their mechanism of action against Plasmodium species. Curcumin is a potent antioxidant, damages parasite DNA, and may promote an immune response against Plasmodium by increasing reactive oxygen species (ROS), while piperine is also a potent antioxidant that potentiates the effects of curcumin. Hence, combining these compounds is likely to have the same effect as chloroquine, that is, attenuate and restrict parasite development, thereby reducing parasitemia and increasing host survival. This systematic review presents new information regarding the development of a curcumin-piperine combination for future malaria therapy.
Collapse
|
12
|
Tatipamula VB, Kukavica B. Phenolic compounds as antidiabetic, anti-inflammatory, and anticancer agents and improvement of their bioavailability by liposomes. Cell Biochem Funct 2021; 39:926-944. [PMID: 34498277 DOI: 10.1002/cbf.3667] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/15/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022]
Abstract
Phenolic compounds, widespread in plants, are a necessary part of the human regimen due to their antioxidant and pro-oxidative properties. Naturally, phenolics structurally range from a very simple phenolic molecule moiety to an intricate polymer. For decades, phenolic compounds have gained pronounced attention because of their protective effects against degenerative disorders such as inflammation, diabetes and cancer. Physico-chemical properties (eg, solubility) restricted their bioactivity and also limited their usage as nutraceutical ingredients. However, encapsulation technology like liposomal formulations has been developed for the delivery of phenolic compounds without affecting their original aesthetic and organoleptic property. Hence, this review outlines the antioxidant and pro-oxidative properties of phenolic compounds and focuses on biological activity reports of flavonoids and phenolic acids as antidiabetic, anti-inflammatory and anticancer agents. Also, the delivery applications of phenolic compounds as liposomes are discussed with few examples.
Collapse
Affiliation(s)
- Vinay Bharadwaj Tatipamula
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.,Faculty of Pharmacy, Duy Tan University, Da Nang, Vietnam
| | - Biljana Kukavica
- Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
13
|
Memvanga PB, Nkanga CI. Liposomes for malaria management: the evolution from 1980 to 2020. Malar J 2021; 20:327. [PMID: 34315484 PMCID: PMC8313885 DOI: 10.1186/s12936-021-03858-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/16/2021] [Indexed: 12/31/2022] Open
Abstract
Malaria is one of the most prevalent parasitic diseases and the foremost cause of morbidity in the tropical regions of the world. Strategies for the efficient management of this parasitic infection include adequate treatment with anti-malarial therapeutics and vaccination. However, the emergence and spread of resistant strains of malaria parasites to the majority of presently used anti-malarial medications, on the other hand, complicates malaria treatment. Other shortcomings of anti-malarial drugs include poor aqueous solubility, low permeability, poor bioavailability, and non-specific targeting of intracellular parasites, resulting in high dose requirements and toxic side effects. To address these limitations, liposome-based nanotechnology has been extensively explored as a new solution in malaria management. Liposome technology improves anti-malarial drug encapsulation, bioavailability, target delivery, and controlled release, resulting in increased effectiveness, reduced resistance progression, and fewer adverse effects. Furthermore, liposomes are exploited as immunological adjuvants and antigen carriers to boost the preventive effectiveness of malaria vaccine candidates. The present review discusses the findings from studies conducted over the last 40 years (1980-2020) using in vitro and in vivo settings to assess the prophylactic and curative anti-malarial potential of liposomes containing anti-malarial agents or antigens. This paper and the discussion herein provide a useful resource for further complementary investigations and may pave the way for the research and development of several available and affordable anti-malarial-based liposomes and liposomal malaria vaccines by allowing a thorough evaluation of liposomes developed to date for the management of malaria.
Collapse
Affiliation(s)
- Patrick B Memvanga
- Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo.
| | - Christian I Nkanga
- Faculty of Pharmaceutical Sciences, Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo
| |
Collapse
|
14
|
Trigo-Gutierrez JK, Vega-Chacón Y, Soares AB, Mima EGDO. Antimicrobial Activity of Curcumin in Nanoformulations: A Comprehensive Review. Int J Mol Sci 2021; 22:7130. [PMID: 34281181 PMCID: PMC8267827 DOI: 10.3390/ijms22137130] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023] Open
Abstract
Curcumin (CUR) is a natural substance extracted from turmeric that has antimicrobial properties. Due to its ability to absorb light in the blue spectrum, CUR is also used as a photosensitizer (PS) in antimicrobial Photodynamic Therapy (aPDT). However, CUR is hydrophobic, unstable in solutions, and has low bioavailability, which hinders its clinical use. To circumvent these drawbacks, drug delivery systems (DDSs) have been used. In this review, we summarize the DDSs used to carry CUR and their antimicrobial effect against viruses, bacteria, and fungi, including drug-resistant strains and emergent pathogens such as SARS-CoV-2. The reviewed DDSs include colloidal (micelles, liposomes, nanoemulsions, cyclodextrins, chitosan, and other polymeric nanoparticles), metallic, and mesoporous particles, as well as graphene, quantum dots, and hybrid nanosystems such as films and hydrogels. Free (non-encapsulated) CUR and CUR loaded in DDSs have a broad-spectrum antimicrobial action when used alone or as a PS in aPDT. They also show low cytotoxicity, in vivo biocompatibility, and improved wound healing. Although there are several in vitro and some in vivo investigations describing the nanotechnological aspects and the potential antimicrobial application of CUR-loaded DDSs, clinical trials are not reported and further studies should translate this evidence to the clinical scenarios of infections.
Collapse
Affiliation(s)
| | | | | | - Ewerton Garcia de Oliveira Mima
- Laboratory of Applied Microbiology, Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University (Unesp), Araraquara 14800-000, Brazil; (J.K.T.-G.); (Y.V.-C.); (A.B.S.)
| |
Collapse
|
15
|
Shinde UK, Suryawanshi DG, Amin PD. Development of Gelucire ® 48/16 and TPGS Mixed Micelles and Its Pellet Formulation by Extrusion Spheronization Technique for Dissolution Rate Enhancement of Curcumin. AAPS PharmSciTech 2021; 22:182. [PMID: 34129146 DOI: 10.1208/s12249-021-02032-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/01/2021] [Indexed: 12/11/2022] Open
Abstract
The oral bioavailability of curcumin is limited, attributed to its low solubility or dissolution and poor absorption. Herein, the study describes formulation of curcumin-loaded mixed micelles of Gelucire® 48/16 and TPGS for its dissolution rate enhancement. Curcumin was dispersed in these molten lipidic surfactants which was then adsorbed on carrier and formulated as pellets by extrusion spheronization. Critical micelle concentration (CMC) of binary mixture of Gelucire® 48/16 and TPGS was lower than their individual CMC demonstrating the synergistic behavior of mixture. Thermodynamic parameters like partition coefficient and Gibbs free energy of solubilization indicated that mixed micelles were more efficient than micelles of its individual components in curcumin solubilization. Dynamic light scattering (DLS) suggested slight increase in micellar size of mixed micelles than its components suggesting curcumin loading in mixed micelles. Fourier transform infrared spectroscopy (FTIR) revealed that phenolic hydroxyl group interacts with lipids which contribute to its enhanced solubility. Furthermore, the differential scanning calorimetry (DSC) and X-ray diffraction (XRD) study indicated the conversion of crystalline curcumin into amorphous form. In the pellet formulation, Gelucire® 48/16 acted as a binder and eliminated the requirement of additional binder. Microcrystalline cellulose (MCC) forms wet mass and retards the release of curcumin from pellets. Increase in concentration of water-soluble diluent increased drug release. The optimized formulation released more than 90% drug and maintains supersaturation level of curcumin for 2 h. Thus, mixed micellar system was effective delivery system for curcumin while pellet formulation is an interesting formulation strategy consisting semi-solid lipids.
Collapse
|
16
|
Sharma L, Dhiman M, Singh A, Sharma MM. Green Approach: ''A Forwarding Step for Curing Leishmaniasis-A Neglected Tropical Disease''. Front Mol Biosci 2021; 8:655584. [PMID: 34124148 PMCID: PMC8193676 DOI: 10.3389/fmolb.2021.655584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/04/2021] [Indexed: 01/23/2023] Open
Abstract
The present review focuses on a dreaded vector-mediated leishmaniasis, with the existing therapeutic approaches including a variety of drugs along with their limitations, the treatment with natural compounds, and different types of metal/metal oxide nanoparticles (NPs). As evidenced, various metallic NPs, comprising silver, silver oxide, gold, zinc oxide, titanium, lead oxide, etc., played a curative role to treat leishmaniasis, are also presented. Keeping in view the advance success of vaccines against the prevalent dreaded diseases in the past and the present scenario, efforts are also being made to develop vaccines based on these NP formulations.
Collapse
Affiliation(s)
- Lakshika Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Mamta Dhiman
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Abhijeet Singh
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - M M Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| |
Collapse
|
17
|
Talarico L, Consumi M, Leone G, Tamasi G, Magnani A. Solid Lipid Nanoparticles Produced via a Coacervation Method as Promising Carriers for Controlled Release of Quercetin. Molecules 2021; 26:2694. [PMID: 34064488 PMCID: PMC8125226 DOI: 10.3390/molecules26092694] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/25/2022] Open
Abstract
Quercetin is a poorly water-soluble flavonoid with many benefits to human health. Besides the natural food resources that may provide Quercetin, the interest in delivery systems that could enhance its bioavailability in the human body has seen growth in recent years. Promising delivery system candidates are represented by Solid Lipid Nanoparticles (SLNs) which are composed of well-tolerated compounds and provide a relatively high encapsulation efficiency and suitable controlled release. In this study, Quercetin-loaded and negatively charged Solid Lipid Nanoparticles were synthesized based on a coacervation method, using stearic acid as a core lipid and Arabic Gum as a stabilizer. Samples were qualitatively characterized by Dynamic light scattering (DLS), Zeta Potential, Surface infrared spectroscopy (FTIR-ATR), and Time of flight secondary ion mass spectrometry (ToF-SIMS). Encapsulation efficiency, drug release, and antioxidant effect against ABTS•+ were evaluated in vitro by UV-VIS spectrophotometry.
Collapse
Affiliation(s)
- Luigi Talarico
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (G.L.); (G.T.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
| | - Marco Consumi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (G.L.); (G.T.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
| | - Gemma Leone
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (G.L.); (G.T.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
| | - Gabriella Tamasi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (G.L.); (G.T.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
| | - Agnese Magnani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (L.T.); (G.L.); (G.T.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM)—Siena Research Unit, Via G. Giusti 9, 50121 Firenze, Italy
| |
Collapse
|
18
|
Jaromin A, Parapini S, Basilico N, Zaremba-Czogalla M, Lewińska A, Zagórska A, Walczak M, Tyliszczak B, Grzeszczak A, Łukaszewicz M, Kaczmarek Ł, Gubernator J. Azacarbazole n-3 and n-6 polyunsaturated fatty acids ethyl esters nanoemulsion with enhanced efficacy against Plasmodium falciparum. Bioact Mater 2021; 6:1163-1174. [PMID: 33134609 PMCID: PMC7588843 DOI: 10.1016/j.bioactmat.2020.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/27/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Alternative therapies are necessary for the treatment of malaria due to emerging drug resistance. However, many promising antimalarial compounds have poor water solubility and suffer from the lack of suitable delivery systems, which seriously limits their activity. To address this problem, we synthesized a series of azacarbazoles that were evaluated for antimalarial activity against D10 (chloroquine-sensitive) and W2 (chloroquine-resistant) strains of P. falciparum. The most active compound, 9H-3-azacarbazole (3), was encapsulated in a novel o/w nanoemulsion consisting of ethyl esters of polyunsaturated fatty acids n-3 and n-6 obtained from flax oil as the oil phase, Smix (Tween 80 and Transcutol HP) and water. This formulation was further analyzed using transmission electron microscopy, dynamic light scattering and in vitro and in vivo studies. It was shown that droplets of the 3-loaded nanosystem were spherical, with satisfactory stability, without cytotoxicity towards fibroblasts and intestinal cell lines at concentrations corresponding to twice the IC50 for P. falciparum. Moreover, the nanoemulsion with this type of oil phase was internalized by Caco-2 cells. Additionally, pharmacokinetics demonstrated rapid absorption of compound 3 (tmax = 5.0 min) after intragastric administration of 3-encapsulated nanoemulsion at a dose of 0.02 mg/kg in mice, with penetration of compound 3 to deep compartments. The 3-encapsulated nanoemulsion was found to be 2.8 and 4.2 times more effective in inhibiting the D10 and W2 strains of the parasite, respectively, compared to non-encapsulated 3. Our findings support a role for novel o/w nanoemulsions as delivery vehicles for antimalarial drugs.
Collapse
Affiliation(s)
- Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Nicoletta Basilico
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| | | | | | - Agnieszka Zagórska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Cracow, Poland
| | - Maria Walczak
- Chair and Department of Toxicology, Jagiellonian University Medical College, Faculty of Pharmacy, Cracow, Poland
| | - Bożena Tyliszczak
- Instytute of Materials Science, Cracow University of Technology, Cracow, Poland
| | - Aleksandra Grzeszczak
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Marcin Łukaszewicz
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | | | - Jerzy Gubernator
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
19
|
Neves Borgheti-Cardoso L, San Anselmo M, Lantero E, Lancelot A, Serrano JL, Hernández-Ainsa S, Fernàndez-Busquets X, Sierra T. Promising nanomaterials in the fight against malaria. J Mater Chem B 2021; 8:9428-9448. [PMID: 32955067 DOI: 10.1039/d0tb01398f] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
For more than one hundred years, several treatments against malaria have been proposed but they have systematically failed, mainly due to the occurrence of drug resistance in part resulting from the exposure of the parasite to low drug doses. Several factors are behind this problem, including (i) the formidable barrier imposed by the Plasmodium life cycle with intracellular localization of parasites in hepatocytes and red blood cells, (ii) the adverse fluidic conditions encountered in the blood circulation that affect the interaction of molecular components with target cells, and (iii) the unfavorable physicochemical characteristics of most antimalarial drugs, which have an amphiphilic character and can be widely distributed into body tissues after administration and rapidly metabolized in the liver. To surpass these drawbacks, rather than focusing all efforts on discovering new drugs whose efficacy is quickly decreased by the parasite's evolution of resistance, the development of effective drug delivery carriers is a promising strategy. Nanomaterials have been investigated for their capacity to effectively deliver antimalarial drugs at local doses sufficiently high to kill the parasites and avoid drug resistance evolution, while maintaining a low overall dose to prevent undesirable toxic side effects. In recent years, several nanostructured systems such as liposomes, polymeric nanoparticles or dendrimers have been shown to be capable of improving the efficacy of antimalarial therapies. In this respect, nanomaterials are a promising drug delivery vehicle and can be used in therapeutic strategies designed to fight the parasite both in humans and in the mosquito vector of the disease. The chemical analyses of these nanomaterials are essential for the proposal and development of effective anti-malaria therapies. This review is intended to analyze the application of nanomaterials to improve the drug efficacy on different stages of the malaria parasites in both the human and mosquito hosts.
Collapse
Affiliation(s)
- Livia Neves Borgheti-Cardoso
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain and Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain and Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain.
| | - María San Anselmo
- Instituto de Nanociencia y Materiales de Aragón (INMA), Dep. Química Orgánica-Facultad de Ciencias, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | - Elena Lantero
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain and Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain and Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain.
| | - Alexandre Lancelot
- Instituto de Nanociencia y Materiales de Aragón (INMA), Dep. Química Orgánica-Facultad de Ciencias, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | - José Luis Serrano
- Instituto de Nanociencia y Materiales de Aragón (INMA), Dep. Química Orgánica-Facultad de Ciencias, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
| | - Silvia Hernández-Ainsa
- Instituto de Nanociencia y Materiales de Aragón (INMA), Dep. Química Orgánica-Facultad de Ciencias, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain. and ARAID Foundation, Government of Aragón, Zaragoza 50018, Spain
| | - Xavier Fernàndez-Busquets
- Nanomalaria Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, ES-08028 Barcelona, Spain and Barcelona Institute for Global Health (ISGlobal, Hospital Clínic-Universitat de Barcelona), Rosselló 149-153, ES-08036 Barcelona, Spain and Nanoscience and Nanotechnology Institute (IN2UB), University of Barcelona, Martí i Franquès 1, ES-08028 Barcelona, Spain.
| | - Teresa Sierra
- Instituto de Nanociencia y Materiales de Aragón (INMA), Dep. Química Orgánica-Facultad de Ciencias, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
| |
Collapse
|
20
|
Tran QH, Thuy TTH, Nguyen TTT. Fabrication of a narrow size nano curcuminoid emulsion by combining phase inversion temperature and ultrasonication: preparation and bioactivity. NEW J CHEM 2021. [DOI: 10.1039/d1nj01241j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel method to prepare narrow size nano curcuminoids from Curcuma longa.
Collapse
Affiliation(s)
- Quang-Hieu Tran
- Chemistry Division-Basic Sciences Department-Saigon Technology University
- Ho Chi Minh City 700000
- Vietnam
- Faculty of Tecnology-Saigon Technology University
- Ho Chi Minh City 700000
| | - Thi Thanh-Ho Thuy
- Faculty of Tecnology-Saigon Technology University
- Ho Chi Minh City 700000
- Vietnam
| | - Thi Thanh-Tu Nguyen
- Faculty of Tecnology-Saigon Technology University
- Ho Chi Minh City 700000
- Vietnam
| |
Collapse
|
21
|
Polymer-Based Materials Loaded with Curcumin for Wound Healing Applications. Polymers (Basel) 2020; 12:polym12102286. [PMID: 33036130 PMCID: PMC7600558 DOI: 10.3390/polym12102286] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 02/07/2023] Open
Abstract
Some of the currently used wound dressings have interesting features such as excellent porosity, good water-absorbing capacity, moderate water vapor transmission rate, high drug loading efficiency, and good capability to provide a moist environment, but they are limited in terms of antimicrobial properties. Their inability to protect the wound from microbial invasion results in wound exposure to microbial infections, resulting in a delayed wound healing process. Furthermore, some wound dressings are loaded with synthetic antibiotics that can cause adverse side effects on the patients. Natural-based compounds exhibit unique features such as good biocompatibility, reduced toxicity, etc. Curcumin, one such natural-based compound, has demonstrated several biological activities such as anticancer, antibacterial and antioxidant properties. Its good antibacterial and antioxidant activity make it beneficial for the treatment of wounds. Several researchers have developed different types of polymer-based wound dressings which were loaded with curcumin. These wound dressings displayed excellent features such as good biocompatibility, induction of skin regeneration, accelerated wound healing processes and excellent antioxidant and antibacterial activity. This review will be focused on the in vitro and in vivo therapeutic outcomes of wound dressings loaded with curcumin.
Collapse
|
22
|
Feng T, Hu Z, Wang K, Zhu X, Chen D, Zhuang H, Yao L, Song S, Wang H, Sun M. Emulsion-based delivery systems for curcumin: Encapsulation and interaction mechanism between debranched starch and curcumin. Int J Biol Macromol 2020; 161:746-754. [DOI: 10.1016/j.ijbiomac.2020.06.088] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 01/29/2023]
|
23
|
Targonska S, Rewak-Soroczynska J, Piecuch A, Paluch E, Szymanski D, Wiglusz RJ. Preparation of a New Biocomposite Designed for Cartilage
Grafting with Antibiofilm Activity. ACS OMEGA 2020; 5:24546-24557. [PMID: 33015472 PMCID: PMC7528337 DOI: 10.1021/acsomega.0c03044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/28/2020] [Indexed: 05/05/2023]
Abstract
![]()
New
polymer–inorganic composites with antibiofilm features
based on the granulated poly(tetrafluoroethylene) (PTFE) and apatite
materials were obtained using a standard hydraulic press. The study
was performed in hydroxy- and fluorapatites doped with different amounts
of silver ions and followed by heat treatment at 600 °C. The
structural, morphological, and physicochemical properties were determined
by X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR)
spectroscopy, scanning electron microscopy-energy-dispersive spectrometry
(SEM-EDS), and transition electron microscopy (TEM). The antibacterial
properties of the obtained materials were evaluated against Gram-negative
pathogens such as Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli as well as against Gram-positive
bacteria Staphylococcus epidermidis. The cytotoxicity assessment was carried out on the red blood cells
(RBC) as a cell model for in vitro study. Moreover, the biofilm formation
on the biocomposite surface was studied using confocal laser scanning
microscopy (CLSM).
Collapse
Affiliation(s)
- Sara Targonska
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
| | - Justyna Rewak-Soroczynska
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
| | - Agata Piecuch
- Institute
of Genetics and Microbiology, University
of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Emil Paluch
- Department
of Microbiology, Faculty of Medicine, Wroclaw
Medical University, Tytusa Chalubinskiego 4, 50-376 Wroclaw, Poland
| | - Damian Szymanski
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
| | - Rafal J. Wiglusz
- Institute
of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland
- . Phone: +48(071)3954159. Fax: +48(071)3441029
| |
Collapse
|
24
|
Li SS, Lu SH, Zhai HL, Yin B, Mi JY. A simple approach to the determination of three curcuminoids with similar chemical structures in different substrates. Journal of Food Science and Technology 2020; 58:2170-2177. [PMID: 33967314 DOI: 10.1007/s13197-020-04727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/15/2020] [Accepted: 08/13/2020] [Indexed: 11/24/2022]
Abstract
The determination of curcuminoids in mixtures is more difficult due to their similar chemical structures as well as serious interferences, thus the complex pretreatments of samples and the optimization of experimental conditions are often required. Here, owing to the mathematical separation of chemical signals by Tchebichef image moments, a simple and effective approach to the simultaneous quantitative analysis was proposed, and applied to the determination of the three curcuminoids in turmeric and curry based on their raw fluorescence 3D spectra. For the established linear models, the leave-one-out correlation coefficients (R loo-cv) were more than 0.9816 within the linear ranges, and the predictive correlation coefficients (R p) for the external independent samples were more than 0.9897. The intra- and inter-day precision (less than 6.82%, RSD), average spiked recovery (89.9% ~ 100.8%), LOD (less than 0.07 μg/mL) and LOQ (less than 0.23 μg/mL) suggest that the proposed approach is accurate and reliable. Compared with N-PLS and MCR-ALS methods, our method can obtain more satisfactory results. This study provides a convenient pathway for the rapid analysis of multi-target components with similar chemical structures in mixture of different substrates.
Collapse
Affiliation(s)
- Sha Sha Li
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 People's Republic of China
| | - Shao Hua Lu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 People's Republic of China
| | - Hong Lin Zhai
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 People's Republic of China
| | - Bo Yin
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 People's Republic of China
| | - Jia Ying Mi
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000 People's Republic of China
| |
Collapse
|
25
|
Alven S, Aderibigbe BA. Nanoparticles Formulations of Artemisinin and Derivatives as Potential Therapeutics for the Treatment of Cancer, Leishmaniasis and Malaria. Pharmaceutics 2020; 12:E748. [PMID: 32784933 PMCID: PMC7466127 DOI: 10.3390/pharmaceutics12080748] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer, malaria, and leishmaniasis remain the deadly diseases around the world although several strategies of treatment have been developed. However, most of the drugs used to treat the aforementioned diseases suffer from several pharmacological limitations such as poor pharmacokinetics, toxicity, drug resistance, poor bioavailability and water solubility. Artemisinin and its derivatives are antimalarial drugs. However, they also exhibit anticancer and antileishmanial activity. They have been evaluated as potential anticancer and antileishmanial drugs but their use is also limited by their poor water solubility and poor bioavailability. To overcome the aforementioned limitations associated with artemisinin and its derivatives used for the treatment of these diseases, they have been incorporated into nanoparticles. Several researchers incorporated this class of drugs into nanoparticles resulting in enhanced therapeutic outcomes. Their potential efficacy for the treatment of parasitic infections such as malaria and leishmaniasis and chronic diseases such as cancer has been reported. This review article will be focused on the nanoparticles formulations of artemisinin and derivatives for the treatment of cancer, malaria, and leishmaniasis and the biological outcomes (in vitro and in vivo).
Collapse
|
26
|
Deda DK, Iglesias BA, Alves E, Araki K, Garcia CRS. Porphyrin Derivative Nanoformulations for Therapy and Antiparasitic Agents. Molecules 2020; 25:molecules25092080. [PMID: 32365664 PMCID: PMC7249045 DOI: 10.3390/molecules25092080] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022] Open
Abstract
Porphyrins and analogous macrocycles exhibit interesting photochemical, catalytic, and luminescence properties demonstrating high potential in the treatment of several diseases. Among them can be highlighted the possibility of application in photodynamic therapy and antimicrobial/antiparasitic PDT, for example, of malaria parasite. However, the low efficiency generally associated with their low solubility in water and bioavailability have precluded biomedical applications. Nanotechnology can provide efficient strategies to enhance bioavailability and incorporate targeted delivery properties to conventional pharmaceuticals, enhancing the effectiveness and reducing the toxicity, thus improving the adhesion to the treatment. In this way, those limitations can be overcome by using two main strategies: (1) Incorporation of hydrophilic substituents into the macrocycle ring while controlling the interaction with biological systems and (2) by including them in nanocarriers and delivery nanosystems. This review will focus on antiparasitic drugs based on porphyrin derivatives developed according to these two strategies, considering their vast and increasing applications befitting the multiple roles of these compounds in nature.
Collapse
Affiliation(s)
- Daiana K. Deda
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes 748, Butanta, Sao Paulo, SP 05508-000, Brazil; (D.K.D.); (K.A.)
| | - Bernardo A. Iglesias
- Bioinorganic and Porphyrinoid Materials Laboratory, Department of Chemistry, Federal University of Santa Maria, Av. Roraima 1000, Camobi, Santa Maria, RS 97105-900, Brazil;
| | - Eduardo Alves
- Department of Life Science, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK;
| | - Koiti Araki
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, Av. Prof. Lineu Prestes 748, Butanta, Sao Paulo, SP 05508-000, Brazil; (D.K.D.); (K.A.)
| | - Celia R. S. Garcia
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 580, Sao Paulo, SP 05508-900, Brazil
- Correspondence: ; Tel.: +55-11-2648-0954
| |
Collapse
|
27
|
Preparation and Characterization of Chitosan-Coated Pectin Aerogels: Curcumin Case Study. Molecules 2020; 25:molecules25051187. [PMID: 32155739 PMCID: PMC7179465 DOI: 10.3390/molecules25051187] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 11/19/2022] Open
Abstract
The following study describes the preparation of pectin aerogels and pectin aerogels coated with an external layer of chitosan. For the preparation of chitosan-coated pectin aerogels, a modified coating procedure was employed. Since pectin as well as pectin aerogels are highly water soluble, a function of chitosan coating is to slow down the dissolution of pectin and consequently the release of the active substances. Textural properties, surface morphologies, thermal properties, and functional groups of prepared aerogels were determined. Results indicated that the coating procedure affected the textural properties of pectin aerogels, resulting in smaller specific surface areas of 276 m2/g, compared to 441 m2/g. However, chitosan-coated pectin aerogels still retained favorable properties for carriers of active substances. The case study for prepared aerogels was conducted with curcumin. Prior to in-vitro release studies, swelling studies were performed. Curcumin’s dissolution from both aerogels showed to be successful. Pectin aerogels released curcumin in 3 h showing a burst release profile. Chitosan-coated pectin aerogels prolonged curcumin release up to 24 h, thus showing a controlled release profile.
Collapse
|
28
|
Preparation and Characterization of Self-Assembled Poly(l-Lactide) on the Surface of β-Tricalcium Diphosphate(V) for Bone Tissue Theranostics. NANOMATERIALS 2020; 10:nano10020331. [PMID: 32075235 PMCID: PMC7075192 DOI: 10.3390/nano10020331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 01/21/2023]
Abstract
This work was aimed to obtain and characterize the well-defined biocomposites based on β-tricalcium diphosphate(V) (β-TCP) co-doped with Ce3+ and Pr3+ ions modified by poly(l-lactide) (PLLA) with precise tailored chain length and different phosphate to polymer ratio. The composites as well as β-tricalcium diphosphate(V) were spectroscopically characterized using emission spectroscopy and luminescence kinetics. Morphological and structural properties were studied using X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The self-assembled poly(l-lactide) in a shape of rose flower has been successfully polymerized on the surface of the β-tricalcium diphosphate(V) nanocrystals. The studied materials were evaluated in vitro including cytotoxicity (MTT assay) and hemolysis tests. The obtained results suggested that the studied materials may find potential application in tissue engineering.
Collapse
|
29
|
Sun Y, Chen D, Pan Y, Qu W, Hao H, Wang X, Liu Z, Xie S. Nanoparticles for antiparasitic drug delivery. Drug Deliv 2019; 26:1206-1221. [PMID: 31746243 PMCID: PMC6882479 DOI: 10.1080/10717544.2019.1692968] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 11/05/2022] Open
Abstract
As an emerging novel drug carrier, nanoparticles provide a promising way for effective treatment of parasitic diseases by overcoming the shortcomings of low bioavailability, poor cellular permeability, nonspecific distribution and rapid elimination of antiparasitic drugs from the body. In recent years, some kinds of ideal nanocarriers have been developed for antiparasitic drug delivery. In this review, the progress of the enhanced antiparasitic effects of different nanoparticles payload and their influencing factors were firstly summarized. Secondly, the transport and disposition process in the body were reviewed. Finally, the challenges and prospects of nanoparticles for antiparasitic drug delivery were proposed. This review will help scholars to understand the development trend of nanoparticles in the treatment of parasitic diseases and explore strategies in the development of more efficient nanocarriers to overcome the difficulty in the treatment of parasite infections in the future.
Collapse
Affiliation(s)
- Yuzhu Sun
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, China
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Wei Qu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, China
| |
Collapse
|
30
|
Combination Therapy Strategies for the Treatment of Malaria. Molecules 2019; 24:molecules24193601. [PMID: 31591293 PMCID: PMC6804225 DOI: 10.3390/molecules24193601] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 11/16/2022] Open
Abstract
Malaria is a vector- and blood-borne infection that is responsible for a large number of deaths around the world. Most of the currently used antimalarial therapeutics suffer from drug resistance. The other limitations associated with the currently used antimalarial drugs are poor drug bioavailability, drug toxicity, and poor water solubility. Combination therapy is one of the best approaches that is currently used to treat malaria, whereby two or more therapeutic agents are combined. Different combination therapy strategies are used to overcome the aforementioned limitations. This review article reports two strategies of combination therapy; the incorporation of two or more antimalarials into polymer-based carriers and hybrid compounds designed by hybridization of two antimalarial pharmacophores.
Collapse
|
31
|
Gondim BL, Oshiro-Júnior JA, Fernanandes FH, Nóbrega FP, Castellano LR, Medeiros AC. Plant Extracts Loaded in Nanostructured Drug Delivery Systems for Treating Parasitic and Antimicrobial Diseases. Curr Pharm Des 2019; 25:1604-1615. [DOI: 10.2174/1381612825666190628153755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 06/19/2019] [Indexed: 11/22/2022]
Abstract
Background: Plant extracts loaded in nanostructured drug delivery systems (NDDSs) have been reported
as an alternative to current therapies for treating parasitic and antimicrobial diseases. Among their advantages,
plant extracts in NDSSs increase the stability of the drugs against environmental factors by promoting
protection against oxygen, humidity, and light, among other factors; improve the solubility of hydrophobic compounds;
enhance the low absorption of the active components of the extracts (i.e., biopharmaceutical classification
II), which results in greater bioavailability; and control the release rate of the substances, which is fundamental
to improving the therapeutic effectiveness. In this review, we present the most recent data on NDDSs using
plant extracts and report results obtained from studies related to in vitro and in vivo biological activities.
Collapse
Affiliation(s)
- Brenna L.C. Gondim
- Laboratorio de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciencias Biologicas e da Saude, Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - João A. Oshiro-Júnior
- Laboratorio de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciencias Biologicas e da Saude, Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Felipe H.A. Fernanandes
- Laboratorio de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciencias Biologicas e da Saude, Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Fernanda P. Nóbrega
- Laboratorio de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciencias Biologicas e da Saude, Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| | - Lúcio R.C. Castellano
- Grupo de Estudos e Pesquisas em Imunologia Humana, Escola Tecnica de Saude, Universidade Federal da Paraiba, Joao Pessoa, PB, Brazil
| | - Ana C.D. Medeiros
- Laboratorio de Desenvolvimento e Ensaios de Medicamentos, Centro de Ciencias Biologicas e da Saude, Universidade Estadual da Paraiba, R. Baraunas, 351, Cidade Universitaria, Campina Grande, Paraiba, 58429-500, Brazil
| |
Collapse
|
32
|
Kotha RR, Luthria DL. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules 2019; 24:molecules24162930. [PMID: 31412624 PMCID: PMC6720683 DOI: 10.3390/molecules24162930] [Citation(s) in RCA: 367] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023] Open
Abstract
Turmeric is a curry spice that originated from India, which has attracted great interest in recent decades because it contains bioactive curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin). Curcumin (1,7-bis-(4-hydroxy-3-methoxyphenyl)-hepta-1,6-diene-3,5-dione), a lipophilic polyphenol may work as an anticancer, antibiotic, anti-inflammatory, and anti-aging agent as suggested by several in vitro, in vivo studies and clinical trials. However, poor aqueous solubility, bioavailability, and pharmacokinetic profiles limit curcumin’s therapeutic usage. To address these issues, several curcumin formulations have been developed. However, suboptimal sample preparation and analysis methodologies often hamper the accurate evaluation of bioactivities and their clinical efficacy. This review summarizes recent research on biological, pharmaceutical, and analytical aspects of the curcumin. Various formulation techniques and corresponding clinical trials and in vivo outcomes are discussed. A detailed comparison of different sample preparation (ultrasonic, pressurized liquid extraction, microwave, reflux) and analytical (FT-IR, FT-NIR, FT-Raman, UV, NMR, HPTLC, HPLC, and LC-MS/MS) methodologies used for the extraction and quantification of curcuminoids in different matrices, is presented. Application of optimal sample preparation, chromatographic separation, and detection methodologies will significantly improve the assessment of different formulations and biological activities of curcuminoids.
Collapse
Affiliation(s)
| | - Devanand L Luthria
- USDA-ARS, Beltsville Human Nutrition Research Center, Beltsville, MD 20705, USA.
| |
Collapse
|
33
|
Kowouvi K, Alies B, Gendrot M, Gaubert A, Vacher G, Gaudin K, Mosnier J, Pradines B, Barthelemy P, Grislain L, Millet P. Nucleoside-lipid-based nanocarriers for methylene blue delivery: potential application as anti-malarial drug. RSC Adv 2019; 9:18844-18852. [PMID: 35516884 PMCID: PMC9064961 DOI: 10.1039/c9ra02576f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/29/2019] [Indexed: 12/26/2022] Open
Abstract
Nucleolipid supramolecular assemblies are promising Drug Delivery Systems (DDS), particularly for nucleic acids. Studies based on negatively and positively charged nucleolipids (diC16dT and DOTAU, respectively) demonstrated appropriate stability, safety, and purity profile to be used as DDS. Methylene Blue (MB) remains a good antimalarial drug candidate, and could be considered for the treatment of uncomplicated or severe malaria. However, the development of MB as an antimalarial drug has been hampered by a high dose regimen required to obtain a proper effect, and a short plasmatic half life. We demonstrated that nanoparticles formed by nucleolipid encapsulation of MB using diC16dT and DOTAU (MB-NPs) is an interesting approach to improve drug stability and delivery. MB-NPs displayed sizes, PDI, zeta values, and colloidal stability allowing a possible use in intravenous formulations. Nanoparticles partially protected MB from oxido-reduction reactions, thus preventing early degradation during storage, and allowing prolongated pharmacokinetic in plasma. MB-NPs' efficacy, tested in vitro on sensitive or multidrug resistant strains of Plasmodium falciparum, was statistically similar to MB alone, with a slightly lower IC50. This nucleolipid-based approach to protect drugs against degradation represents a new alternative tool to be considered for malaria treatment.
Collapse
Affiliation(s)
- Koffi Kowouvi
- Univ. Bordeaux, U1212 INSERM-UMR 5320 CNRS, ARNA, ChemBioPharm 146 rue Léo Saignat F-33076 Bordeaux France
| | - Bruno Alies
- Univ. Bordeaux, U1212 INSERM-UMR 5320 CNRS, ARNA, ChemBioPharm 146 rue Léo Saignat F-33076 Bordeaux France
| | - Mathieu Gendrot
- Unité de Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées Marseille France
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME Marseille France
- IHU Méditerranée Infection Marseille France
| | - Alexandra Gaubert
- Univ. Bordeaux, U1212 INSERM-UMR 5320 CNRS, ARNA, ChemBioPharm 146 rue Léo Saignat F-33076 Bordeaux France
| | - Gaelle Vacher
- Univ. Bordeaux, U1212 INSERM-UMR 5320 CNRS, ARNA, ChemBioPharm 146 rue Léo Saignat F-33076 Bordeaux France
| | - Karen Gaudin
- Univ. Bordeaux, U1212 INSERM-UMR 5320 CNRS, ARNA, ChemBioPharm 146 rue Léo Saignat F-33076 Bordeaux France
| | - Joel Mosnier
- Unité de Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées Marseille France
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME Marseille France
- IHU Méditerranée Infection Marseille France
- Centre National de Référence du Paludisme Marseille France
| | - Bruno Pradines
- Unité de Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées Marseille France
- Aix-Marseille Univ., IRD, SSA, AP-HM, VITROME Marseille France
- IHU Méditerranée Infection Marseille France
- Centre National de Référence du Paludisme Marseille France
| | - Philippe Barthelemy
- Univ. Bordeaux, U1212 INSERM-UMR 5320 CNRS, ARNA, ChemBioPharm 146 rue Léo Saignat F-33076 Bordeaux France
| | - Luc Grislain
- Univ. Bordeaux 146 rue Léo Saignat F-33076 Bordeaux France
| | - Pascal Millet
- Univ. Bordeaux, U1212 INSERM-UMR 5320 CNRS, ARNA, ChemBioPharm 146 rue Léo Saignat F-33076 Bordeaux France
| |
Collapse
|
34
|
Liu M, Guo Q, Shi Y, Cai C, Pei W, Yan H, Jia H, Han J. Studies on pH and temperature dependence of inclusion complexes of bisdemethoxycurcumin with β-cyclodextrin derivatives. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.11.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
|
36
|
Rafiee Z, Nejatian M, Daeihamed M, Jafari SM. Application of different nanocarriers for encapsulation of curcumin. Crit Rev Food Sci Nutr 2018; 59:3468-3497. [DOI: 10.1080/10408398.2018.1495174] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Zahra Rafiee
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Mohammad Nejatian
- Department of Food Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Marjan Daeihamed
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| |
Collapse
|
37
|
The Positive Role of Curcumin-Loaded Salmon Nanoliposomes on the Culture of Primary Cortical Neurons. Mar Drugs 2018; 16:md16070218. [PMID: 29941790 PMCID: PMC6070829 DOI: 10.3390/md16070218] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/31/2018] [Accepted: 06/13/2018] [Indexed: 12/29/2022] Open
Abstract
Curcumin (diferuloylmethane) is a natural bioactive compound with many health-promoting benefits. However, its poor water solubility and bioavailability has limited curcumin’s biomedical application. In the present study, we encapsulated curcumin into liposomes, formed from natural sources (salmon lecithin), and characterized its encapsulation efficiency and release profile. The proposed natural carriers increased the solubility and the bioavailability of curcumin. In addition, various physico-chemical properties of the developed soft nanocarriers with and without curcumin were studied. Nanoliposome-encapsulated curcumin increased the viability and network formation in the culture of primary cortical neurons and decreased the rate of apoptosis.
Collapse
|
38
|
Park SJ, Garcia CV, Shin GH, Kim JT. Improvement of curcuminoid bioaccessibility from turmeric by a nanostructured lipid carrier system. Food Chem 2018; 251:51-57. [DOI: 10.1016/j.foodchem.2018.01.071] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/12/2017] [Accepted: 01/09/2018] [Indexed: 01/09/2023]
|
39
|
Ismail M, Ling L, Du Y, Yao C, Li X. Liposomes of dimeric artesunate phospholipid: A combination of dimerization and self-assembly to combat malaria. Biomaterials 2018; 163:76-87. [DOI: 10.1016/j.biomaterials.2018.02.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/03/2018] [Accepted: 02/09/2018] [Indexed: 10/18/2022]
|
40
|
Co-nanoencapsulation of antimalarial drugs increases their in vitro efficacy against Plasmodium falciparum and decreases their toxicity to Caenorhabditis elegans. Eur J Pharm Sci 2018; 118:1-12. [PMID: 29550283 DOI: 10.1016/j.ejps.2018.03.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/05/2018] [Accepted: 03/13/2018] [Indexed: 02/03/2023]
Abstract
Drugs used for the treatment and prevention of malaria have resistance-related problems, making them ineffective for monotherapy. If properly associated, many of these antimalarial drugs may find their way back to the treatment regimen. Among the therapeutic arsenal, quinine (QN) is a second-line treatment for uncomplicated malaria but has side effects that limit its use. Curcumin (CR) is a natural compound with anti-plasmodial activities and low bioavailability. In this context, the aim of this work was to develop and characterize co-encapsulated QN + CR-loaded polysorbate-coated polymeric nanocapsules (NC-QC) to evaluate their activity on Plasmodium falciparum and the safety of the nanoformulations for Caenorhabditis elegans. NC-QC displayed a diameter of approximately 200 nm, a negative zeta potential and a slightly basic pH. The drugs are homogeneously distributed in the NCs in the amorphous form. Co-encapsulated NCs exhibited a significant reduction in P. falciparum parasitemia, better than QN/CR. The worms exposed to NC-QC showed higher survival and longevity and no decrease in their reproductive capacity compared to free and associated drugs. It was possible to prove that the NCs were absorbed orally by the worms using fluorescence microscopy. Co-encapsulation of QN and CR was effective against P. falciparum, minimizing the toxic effects caused by chronic exposure of the free drugs in C. elegans.
Collapse
|
41
|
Ibrahim S, Tagami T, Ozeki T. Effective-Loading of Platinum-Chloroquine into PEGylated Neutral and Cationic Liposomes as a Drug Delivery System for Resistant Malaria Parasites. Biol Pharm Bull 2018; 40:815-823. [PMID: 28566625 DOI: 10.1248/bpb.b16-00914] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The trans platinum-chloroquine diphosphate dichloride (PtCQ) is a new type of antimalarial drug used to fight parasites resistant to traditional drugs. PtCQ is synthesized by mixing platinum and chloroquine diphosphate (CQ). This study examines two efficient methods for forming a nanodrug, PtCQ-loaded liposomes, for use as a potential antimalarial drug-delivery system: the thin drug-lipid film method to incorporate the drug into a liposomal membrane, and a remote-loading method to load the drug into the interior of a cationic liposome. The membranes accordingly comprised PEGylated neutral or cationic liposomes. PtCQ was efficiently loaded into PEGylated neutral and cationic liposomes using the thin drug-lipid film method (encapsulation efficiency, EE: 76.1±6.7% for neutral liposomes, 1 : 14 drug-to-lipid weight ratio; 70.4±9.8% for cationic liposomes, 1 : 14 drug-to-lipid weight ratio). More PtCQ was loaded into PEGylated neutral liposomes using the remote-loading method than by the thin drug-lipid film method and the EE was maximum (96.1±4.5% for neutral liposomes, 1 : 7 (w/w)). PtCQ was encapsulated in PEGylated cationic liposomes comprising various amounts of cationic lipids (0-20 mol%; EE: 96.9-92.3%) using the remote-loading method. PEGylated neutral liposomes and cationic liposomes exhibited minimum leakage of PtCQ after two months' storage at 4°C, and further exhibited little release under in vitro culture conditions at 37°C for 72 h. These results provide a useful framework for the design of future liposome-based in vivo drug delivery systems targeting the malaria parasite.
Collapse
Affiliation(s)
- Shaimaa Ibrahim
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tatsuaki Tagami
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tetsuya Ozeki
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
42
|
Gomes GS, Maciel TR, Piegas EM, Michels LR, Colomé LM, Freddo RJ, Ávila DSD, Gundel A, Haas SE. Optimization of Curcuma Oil/Quinine-Loaded Nanocapsules for Malaria Treatment. AAPS PharmSciTech 2018; 19:551-564. [PMID: 28875471 DOI: 10.1208/s12249-017-0854-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/30/2017] [Indexed: 11/30/2022] Open
Abstract
Quinine, a treatment used in chloroquine-resistant falciparum malaria, was loaded into poly(ɛ-caprolactone) or Eudragit® RS100 nanocapsules using Curcuma oil as the oil-based core. Until now, the effect of cationic nanocapsules on malaria has not been reported. A 24 factorial design was adopted using, as independent variables, the concentration of Curcuma oil, presence of quinine, type of polymer, and aqueous surfactant. Diameter, zeta potential, and pH were the responses studied. The formulations were also evaluated for drug content, encapsulation efficiency, photostability, and antimalarial activity against Plasmodium berghei-infected mice. The type of polymer influenced all of the responses studied. Quinine-loaded Eudragit® RS100 (F13) and PCL nanocapsules (F9), both with polysorbate 80 coating, showed nanometric particle size, positive zeta potential, neutral pH, high drug content, and quinine photoprotection ability; thus, these nanocapsules were selected for in vivo tests. Both formulations showed lower levels of parasitemia from the beginning of the experiment (5.78 ± 3.60 and 4.76 ± 3.46% for F9 and F13, respectively) and highest survival mean time (15.3 ± 2.0 and 14.9 ± 5.6 days for F9 and F13, respectively). F9 and F13 showed significant survival curve compared to saline, thus demonstrating that nanoencapsulation improved bioefficacy of QN and co-encapsulated curcuminoids, regardless of the surface charge.
Collapse
|
43
|
Thakkar M, S B. Combating malaria with nanotechnology-based targeted and combinatorial drug delivery strategies. Drug Deliv Transl Res 2017; 6:414-25. [PMID: 27067712 DOI: 10.1007/s13346-016-0290-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite the advancement of science, infectious diseases such as malaria remain an ongoing challenge globally. The main reason this disease still remains a menace in many countries around the world is the development of resistance to many of the currently available anti-malarial drugs. While developing new drugs is rather expensive and the prospect of a potent vaccine is still evading our dream of a malaria-free world, one of the feasible options is to package the older drugs in newer ways. For this, nano-sized drug delivery vehicles have been used and are proving to be promising prospects in the way malaria will be treated in the future. Since, monotherapy has given way to combination therapy in malaria treatment, nanotechnology-based delivery carriers enable to encapsulate various drug moieties in the same package, thus avoiding the complications involved in conjugation chemistry to produce hybrid drug molecules. Further, we envisage that using targeted delivery approaches, we may be able to achieve a much better radical cure and curb the side effects associated with the existing drug molecules. Thus, this review will focus on some of the nanotechnology-based combination and targeted therapies and will discuss the possibilities of better therapies that may be developed in the future.
Collapse
Affiliation(s)
- Miloni Thakkar
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed-to-be) University, Vile Parle (W), Mumbai, 400056, India
| | - Brijesh S
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed-to-be) University, Vile Parle (W), Mumbai, 400056, India.
| |
Collapse
|
44
|
Shakeel K, Raisuddin S, Ali S, Imam SS, Rahman MA, Jain GK, Ahmad FJ. Development and in vitro/in vivo evaluation of artemether and lumefantrine co-loaded nanoliposomes for parenteral delivery. J Liposome Res 2017; 29:35-43. [DOI: 10.1080/08982104.2017.1410173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kashif Shakeel
- Department of Pharmaceutics, Jamia Hamdard, New Delhi, India
- Faculty of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi, India
- Azad Institute of Pharmacy and Research, Lucknow, India
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| | - Sadath Ali
- Azad Institute of Pharmacy and Research, Lucknow, India
| | - Syed Sarim Imam
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | | | | | | |
Collapse
|
45
|
Abstract
Curcumin (CUR) is a yellow polyphenolic compound derived from the plant turmeric. It is widely used to treat many types of diseases, including cancers such as those of lung, cervices, prostate, breast, bone and liver. However, its effectiveness has been limited due to poor aqueous solubility, low bioavailability and rapid metabolism and systemic elimination. To solve these problems, researchers have tried to explore novel drug delivery systems such as liposomes, solid dispersion, microemulsion, micelles, nanogels and dendrimers. Among these, liposomes have been the most extensively studied. Liposomal CUR formulation has greater growth inhibitory and pro-apoptotic effects on cancer cells. This review mainly focuses on the preparation of liposomes containing CUR and its use in cancer therapy.
Collapse
Affiliation(s)
- Ting Feng
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yumeng Wei
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Robert J Lee
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
46
|
Aditya N, Espinosa YG, Norton IT. Encapsulation systems for the delivery of hydrophilic nutraceuticals: Food application. Biotechnol Adv 2017; 35:450-457. [DOI: 10.1016/j.biotechadv.2017.03.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/07/2017] [Accepted: 03/31/2017] [Indexed: 01/09/2023]
|
47
|
Amalraj A, Pius A, Gopi S, Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - A review. J Tradit Complement Med 2017; 7:205-233. [PMID: 28417091 PMCID: PMC5388087 DOI: 10.1016/j.jtcme.2016.05.005] [Citation(s) in RCA: 436] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022] Open
Abstract
In recent years, several drugs have been developed deriving from traditional products and current drug research is actively investigating the possible therapeutic roles of many Ayruvedic and Traditional Indian medicinal therapies. Among those being investigated is Turmeric. Its most important active ingredient is curcuminoids. Curcuminoids are phenolic compounds commonly used as a spice, pigment and additive also utilized as a therapeutic agent used in several foods. Comprehensive research over the last century has revealed several important functions of curcuminoids. Various preclinical cell culture and animals studies suggest that curcuminoids have extensive biological activity as an antioxidant, neuroprotective, antitumor, anti-inflammatory, anti-acidogenic, radioprotective and arthritis. Different clinical trials also suggest a potential therapeutic role for curcuminoids in numerous chronic diseases such as colon cancer, lung cancer, breast cancer, inflammatory bowel diseases. The aim of this review is to summarize the chemistry, analog, metal complex, formulations of curcuminoids and their biological activities.
Collapse
Affiliation(s)
| | - Anitha Pius
- Department of Chemistry, The Gandhigram Rural Institute – Deemed University, Gandhigram, Dindigul, 624 302, Tamil Nadu, India
| | - Sreerag Gopi
- Department of Chemistry, The Gandhigram Rural Institute – Deemed University, Gandhigram, Dindigul, 624 302, Tamil Nadu, India
| | - Sreeraj Gopi
- R&D Centre, Aurea Biolabs Pvt Ltd, Kolenchery, Cochin, India
| |
Collapse
|
48
|
Fernández-Calienes Valdés A, Monzote Fidalgo L, Sariego Ramos I, Marrero Delange D, Morales Rico CL, Mendiola Martínez J, Cuéllar AC. Antiprotozoal screening of the Cuban native plant Scutellaria havanensis. PHARMACEUTICAL BIOLOGY 2016; 54:3197-3202. [PMID: 27564587 DOI: 10.1080/13880209.2016.1216130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 04/21/2016] [Accepted: 07/16/2016] [Indexed: 06/06/2023]
Abstract
CONTEXT Scutellaria havanensis Jacq. (Lamiaceae) is a native medicinal herb with a history of use in Cuba. OBJECTIVE This study screens the antiprotozoal activity of S. havanensis. MATERIALS AND METHODS Chloroform and methanol extracts from leaves and stems were evaluated in vitro at doses between 0.015 and 200 μg/mL against protozoan parasites: Plasmodium berghei, Trichomonas vaginalis and Leishmania amazonensis. Chloroform and methanol extracts were characterized by GC/MS. Cytotoxicity against mouse peritoneal macrophages was tested in parallel. RESULTS Scutellaria havanensis extracts exhibited IC50 values between 7.7 and 32.2 μg/mL against trophozoites of P. berghei and T. vaginalis; while the extracts were inactive against L. amazonensis promastigotes. Trichomonicidal activity of methanol extract exhibited the best selectivity but chloroform extract showed the highest antiplasmodial, trichomonicidal and cytotoxic activity. The majority of compounds in the chloroform extract were hydroxy and/or methoxyflavones (77.96%), in particular, wogonin (48.27%). In methanol extract, wogonin (5.89%) was detected. Trichomonicidal effect of wogonin was moderate (IC50 = 56 μM) and unspecific with respect to macrophages (SI = 2). On the contrary, antiplasmodial activity of wogonin were particularly active (IC50 = 15 μM) demonstrating a higher selectivity index (SI = 7.4). CONCLUSIONS Wogonin is an active principle compound of the chloroform extract of S. havanensis against P. berghei and T. vaginalis trophozoites, whereas the methanol extract of S. havanensis should be investigated more deeply as a trichomonicide. Our findings suggest that wogonin is potentially useful for the development of antimalarial alternative treatments.
Collapse
Affiliation(s)
| | - Lianet Monzote Fidalgo
- a Department of Parasitology , Institute of Tropical Medicine "Pedro Kourí" , La Lisa , Havana , Cuba
| | - Idalia Sariego Ramos
- a Department of Parasitology , Institute of Tropical Medicine "Pedro Kourí" , La Lisa , Havana , Cuba
| | | | | | - Judith Mendiola Martínez
- a Department of Parasitology , Institute of Tropical Medicine "Pedro Kourí" , La Lisa , Havana , Cuba
| | - Armando Cuéllar Cuéllar
- c Department of Pharmacy , Institute of Pharmacy and Foods, University of Havana , Havana , Cuba
| |
Collapse
|
49
|
Prabhu P, Suryavanshi S, Pathak S, Patra A, Sharma S, Patravale V. Nanostructured lipid carriers of artemether-lumefantrine combination for intravenous therapy of cerebral malaria. Int J Pharm 2016; 513:504-517. [PMID: 27596113 DOI: 10.1016/j.ijpharm.2016.09.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/28/2016] [Accepted: 09/02/2016] [Indexed: 12/14/2022]
Abstract
Patients with cerebral malaria (CM) are unable to take oral medication due to impaired consciousness and vomiting thus necessitating parenteral therapy. Quinine, artemether, and artesunate which are currently used for parenteral malaria therapy have their own drawbacks. The World Health Organization (WHO) has now banned monotherapy and recommends artemisinin-based combination therapy for malaria treatment. However, presently there is no intravenous formulation available for combination therapy of malaria. Artemether-Lumefantrine (ARM-LFN) is a WHO approved combination for oral malaria therapy. However, the low aqueous solubility of ARM and LFN hinders their intravenous delivery. The objective of this study was to formulate ARM-LFN nanostructured lipid carriers (NLC) for intravenous therapy of CM. ARM-LFN NLC were prepared by microemulsion template technique and characterized for size, drug content, entrapment efficiency, drug release, crystallinity, morphology, amenability to autoclaving, compatibility with infusion fluids, stability, antimalarial efficacy in mice, and toxicity in rats. The ARM-LFN NLC showed sustained drug release, amenability to autoclaving, compatibility with infusion fluids, good stability, complete parasite clearance and reversal of CM symptoms with 100% survival in Plasmodium berghei-infected mice, and safety in rats. The biocompatible ARM-LFN NLC fabricated by an industrially feasible technique offer a promising solution for intravenous therapy of CM.
Collapse
Affiliation(s)
- Priyanka Prabhu
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai 400019, Maharashtra, India
| | - Shital Suryavanshi
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, Maharashtra, India
| | - Sulabha Pathak
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, Maharashtra, India
| | - Aditya Patra
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, Maharashtra, India
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, Maharashtra, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai 400019, Maharashtra, India.
| |
Collapse
|
50
|
Tripathi CB, Beg S, Kaur R, Shukla G, Bandopadhyay S, Singh B. Systematic development of optimized SNEDDS of artemether with improved biopharmaceutical and antimalarial potential. Drug Deliv 2016; 23:3209-3223. [DOI: 10.3109/10717544.2016.1162876] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Chandra Bhushan Tripathi
- UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India,
| | - Sarwar Beg
- UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India,
| | - Ripandeep Kaur
- UGC- Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh, India,
| | - Geeta Shukla
- Department of Microbiology, Panjab University, Chandigarh, India, and
| | - Shantanu Bandopadhyay
- Division of Pharmaceutics, PDM College of Pharmacy, Sarai Aurangabad, Bahadurgarh, Haryana, India
| | - Bhupinder Singh
- UGC Centre of Advanced Studies, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India,
- UGC- Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh, India,
| |
Collapse
|