1
|
Sasai M, Yamamoto M. Anti-toxoplasma host defense systems and the parasitic counterdefense mechanisms. Parasitol Int 2022; 89:102593. [DOI: 10.1016/j.parint.2022.102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 04/12/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
|
2
|
Hajj RE, Tawk L, Itani S, Hamie M, Ezzeddine J, El Sabban M, El Hajj H. Toxoplasmosis: Current and Emerging Parasite Druggable Targets. Microorganisms 2021; 9:microorganisms9122531. [PMID: 34946133 PMCID: PMC8707595 DOI: 10.3390/microorganisms9122531] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022] Open
Abstract
Toxoplasmosis is a prevalent disease affecting a wide range of hosts including approximately one-third of the human population. It is caused by the sporozoan parasite Toxoplasma gondii (T. gondii), which instigates a range of symptoms, manifesting as acute and chronic forms and varying from ocular to deleterious congenital or neuro-toxoplasmosis. Toxoplasmosis may cause serious health problems in fetuses, newborns, and immunocompromised patients. Recently, associations between toxoplasmosis and various neuropathies and different types of cancer were documented. In the veterinary sector, toxoplasmosis results in recurring abortions, leading to significant economic losses. Treatment of toxoplasmosis remains intricate and encompasses general antiparasitic and antibacterial drugs. The efficacy of these drugs is hindered by intolerance, side effects, and emergence of parasite resistance. Furthermore, all currently used drugs in the clinic target acute toxoplasmosis, with no or little effect on the chronic form. In this review, we will provide a comprehensive overview on the currently used and emergent drugs and their respective parasitic targets to combat toxoplasmosis. We will also abridge the repurposing of certain drugs, their targets, and highlight future druggable targets to enhance the therapeutic efficacy against toxoplasmosis, hence lessening its burden and potentially alleviating the complications of its associated diseases.
Collapse
Affiliation(s)
- Rana El Hajj
- Department of Biological Sciences, Beirut Arab University, P.O. Box 11-5020, Riad El Solh, Beirut 1107 2809, Lebanon;
| | - Lina Tawk
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Balamand, Beirut 1100 2807, Lebanon; (L.T.); (J.E.)
| | - Shaymaa Itani
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon; (S.I.); (M.H.)
| | - Maguy Hamie
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon; (S.I.); (M.H.)
| | - Jana Ezzeddine
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, University of Balamand, Beirut 1100 2807, Lebanon; (L.T.); (J.E.)
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon;
| | - Hiba El Hajj
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Riad El-Solh, Beirut 1107 2020, Lebanon; (S.I.); (M.H.)
- Correspondence: ; Tel.: +961–1-350000 (ext. 4897)
| |
Collapse
|
3
|
Kaur P, Goyal N. Pathogenic role of mitogen activated protein kinases in protozoan parasites. Biochimie 2021; 193:78-89. [PMID: 34706251 DOI: 10.1016/j.biochi.2021.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/29/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023]
Abstract
Protozoan parasites with complex life cycles have high mortality rates affecting billions of human lives. Available anti-parasitic drugs are inadequate due to variable efficacy, toxicity, poor patient compliance and drug-resistance. Hence, there is an urgent need for the development of safer and better chemotherapeutics. Mitogen Activated Protein Kinases (MAPKs) have drawn much attention as potential drug targets. This review summarizes unique structural and functional features of MAP kinases and their possible role in pathogenesis of obligate intracellular protozoan parasites namely, Leishmania, Trypanosoma, Plasmodium and Toxoplasma. It also provides an overview of available knowledge concerning the target proteins of parasite MAPKs and the need to understand and unravel unknown interaction network(s) of MAPK(s).
Collapse
Affiliation(s)
- Pavneet Kaur
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India
| | - Neena Goyal
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, Uttar Pradesh, India.
| |
Collapse
|
4
|
Li ZY, Guo HT, Calderón-Mantilla G, He JJ, Wang JL, Bonev BB, Zhu XQ, Elsheikha HM. Immunostimulatory efficacy and protective potential of putative TgERK7 protein in mice experimentally infected by Toxoplasma gondii. Int J Med Microbiol 2020; 310:151432. [PMID: 32654774 DOI: 10.1016/j.ijmm.2020.151432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/10/2020] [Accepted: 05/23/2020] [Indexed: 12/11/2022] Open
Abstract
The extracellular signal-regulated kinases (ERKs) serve as important determinants of cellular signal transduction pathways, and hence may play important roles during infections. Previous work suggested that putative ERK7 of Toxoplasma gondii is required for efficient intracellular replication of the parasite. However, the antigenic and immunostimulatory properties of TgERK7 protein remain unknown. The objective of this study was to produce a recombinant TgERK7 protein in vitro and to evaluate its effect on the induction of humoral and T cell-mediated immune responses against T. gondii infection in BALB/c mice. Immunization using TgERK7 mixed with Freund's adjuvants significantly increased the ratio of CD3e+CD4+ T/CD3e+CD8a+ T lymphocytes in spleen and elevated serum cytokines (IFN-γ, IL-2, IL-4, IL-10, IL-12p70, IL-23, MCP-1, and TNF-α) in immunized mice compared to control mice. On the contrary, immunization did not induce high levels of serum IgG antibodies. Five predicted peptides of TgERK7 were synthesized and conjugated with KLH and used to analyze the antibody specificity in the sera of immunized mice. We detected a progressive increase in the antibody level only against TgERK7 peptide A (DEVDKHVLRKYD). Antibody raised against this peptide significantly decreased intracellular proliferation of T. gondii in vitro, suggesting that peptide A can potentially induce a protective antibody response. We also showed that immunization improved the survival rate of mice challenged with a virulent strain and significantly reduced the parasite cyst burden within the brains of chronically infected mice. Our data show that TgERK7-based immunization induced TgERK7 peptide A-specific immune responses that can impart protective immunity against T. gondii infection. The therapeutic potential of targeting ERK7 signaling pathway for future toxoplasmosis treatment is warranted.
Collapse
Affiliation(s)
- Zhong-Yuan Li
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi, 541199, China; State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China; College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Hai-Ting Guo
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, College of Basic Medicine, Guilin Medical University, Guilin, Guangxi, 541199, China
| | - Guillermo Calderón-Mantilla
- Universidad de La Sabana, Campus del Puente del Común, Km. 7, Autopista Norte de Bogotá. Chía, Cundinamarca, Colombia
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| | - Jin-Lei Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China
| | - Boyan B Bonev
- School of life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, 730046, China.
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| |
Collapse
|
5
|
Toxoplasma gondii Modulates the Host Cell Responses: An Overview of Apoptosis Pathways. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6152489. [PMID: 31080827 PMCID: PMC6475534 DOI: 10.1155/2019/6152489] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/13/2019] [Accepted: 03/26/2019] [Indexed: 01/29/2023]
Abstract
Infection with Toxoplasma gondii has a major implication in public health. Toxoplasma gondii is an obligate intracellular protozoan parasite that can infect all nucleated cells belonging to a wide range of host species. One of the particularities of this parasite is its invasion and persistence in host cells of immunocompetent people. This infection is usually asymptomatic. In immunocompromised patients, the infection is severe and symptomatic. The mechanisms by which T. gondii persists are poorly studied in humans. In mouse models, many aspects of the interaction between the parasite and the host cells are being studied. Apoptosis is one of these mechanisms that could be modulated by Toxoplasma to persist in host cells. Indeed, Toxoplasma has often been implicated in the regulation of apoptosis and viability mechanisms in both human and murine infection models. Several of these studies centered on the regulation of apoptosis pathways have revealed interference of this parasite with host cell immunity, cell signalling, and invasion mechanisms. This review provides an overview of recent studies concerning the effect of Toxoplasma on different apoptotic pathways in infected host cells.
Collapse
|
6
|
Chakraborty S, Roy S, Mistry HU, Murthy S, George N, Bhandari V, Sharma P. Potential Sabotage of Host Cell Physiology by Apicomplexan Parasites for Their Survival Benefits. Front Immunol 2017; 8:1261. [PMID: 29081773 PMCID: PMC5645534 DOI: 10.3389/fimmu.2017.01261] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/21/2017] [Indexed: 12/26/2022] Open
Abstract
Plasmodium, Toxoplasma, Cryptosporidium, Babesia, and Theileria are the major apicomplexan parasites affecting humans or animals worldwide. These pathogens represent an excellent example of host manipulators who can overturn host signaling pathways for their survival. They infect different types of host cells and take charge of the host machinery to gain nutrients and prevent itself from host attack. The mechanisms by which these pathogens modulate the host signaling pathways are well studied for Plasmodium, Toxoplasma, Cryptosporidium, and Theileria, except for limited studies on Babesia. Theileria is a unique pathogen taking into account the way it modulates host cell transformation, resulting in its clonal expansion. These parasites majorly modulate similar host signaling pathways, however, the disease outcome and effect is different among them. In this review, we discuss the approaches of these apicomplexan to manipulate the host–parasite clearance pathways during infection, invasion, survival, and egress.
Collapse
Affiliation(s)
| | - Sonti Roy
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| | - Hiral Uday Mistry
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| | - Shweta Murthy
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| | - Neena George
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| | | | - Paresh Sharma
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| |
Collapse
|
7
|
Murungi EK, Kariithi HM. Genome-Wide Identification and Evolutionary Analysis of Sarcocystis neurona Protein Kinases. Pathogens 2017; 6:pathogens6010012. [PMID: 28335576 PMCID: PMC5371900 DOI: 10.3390/pathogens6010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/10/2017] [Accepted: 03/17/2017] [Indexed: 02/07/2023] Open
Abstract
The apicomplexan parasite Sarcocystis neurona causes equine protozoal myeloencephalitis (EPM), a degenerative neurological disease of horses. Due to its host range expansion, S. neurona is an emerging threat that requires close monitoring. In apicomplexans, protein kinases (PKs) have been implicated in a myriad of critical functions, such as host cell invasion, cell cycle progression and host immune response evasion. Here, we used various bioinformatics methods to define the kinome of S. neurona and phylogenetic relatedness of its PKs to other apicomplexans. We identified 97 putative PKs clustering within the various eukaryotic kinase groups. Although containing the universally-conserved PKA (AGC group), S. neurona kinome was devoid of PKB and PKC. Moreover, the kinome contains the six-conserved apicomplexan CDPKs (CAMK group). Several OPK atypical kinases, including ROPKs 19A, 27, 30, 33, 35 and 37 were identified. Notably, S. neurona is devoid of the virulence-associated ROPKs 5, 6, 18 and 38, as well as the Alpha and RIO kinases. Two out of the three S. neurona CK1 enzymes had high sequence similarities to Toxoplasma gondii TgCK1-α and TgCK1-β and the Plasmodium PfCK1. Further experimental studies on the S. neurona putative PKs identified in this study are required to validate the functional roles of the PKs and to understand their involvement in mechanisms that regulate various cellular processes and host-parasite interactions. Given the essentiality of apicomplexan PKs in the survival of apicomplexans, the current study offers a platform for future development of novel therapeutics for EPM, for instance via application of PK inhibitors to block parasite invasion and development in their host.
Collapse
Affiliation(s)
- Edwin K Murungi
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, 20115 Njoro, Kenya.
| | - Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 57811, Kaptagat Rd, Loresho, 00200 Nairobi, Kenya.
| |
Collapse
|
8
|
Wang S, Wang Z, Gu Y, Li Z, Li Z, Wei F, Liu Q. Toxoplasma gondii mitogen-activated protein kinases are associated with inflammasome activation in infected mice. Microbes Infect 2016; 18:696-700. [DOI: 10.1016/j.micinf.2016.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/25/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022]
|
9
|
Targeted disruption of CK1α in Toxoplasma gondii increases acute virulence in mice. Eur J Protistol 2016; 56:90-101. [PMID: 27567091 DOI: 10.1016/j.ejop.2016.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 07/18/2016] [Accepted: 07/18/2016] [Indexed: 01/02/2023]
Abstract
Toxoplasma gondii, the causative agent of toxoplasmosis, encodes two casein kinase 1 (CK1) isoforms, CK1α and CK1β, with only CK1α having enzyme activity. Here we investigated the biological role of CK1α by construction of a CK1α deletion mutant (Δck1α) based on the type I parasite, and complement the mutant with restored expression of CK1α. Deletion of CK1α resulted in markedly defective parasite replication in vitro. Infected mice with Δck1α parasite caused suppression of IL-12 production, severe liver damage, higher tissue burdens, and short survival time relative to the CK1α-positive parental strain. Western blot analysis revealed that deletion of CK1α led to increased activation of the signal transducer and activator of transcription (STAT)-3 in infected mice and bone marrow-derived microphages. The transcriptome analysis showed that deletion of CK1α may increase expression of rhoptry proteins (ROPs). Western blot showed enhanced expression of ROP16 in the Δck1α parasite as compared with the wild-type and complemented parasites. These findings demonstrated that deletion of CK1α may increase acute virulence of T. gondii in mice by increased expression of ROPs, activation of STAT3, and suppression of IL-12 production, which have important implications for elucidating regulation mechanism of virulence factors for T. gondii.
Collapse
|
10
|
Deletion of mitogen-activated protein kinase 1 inhibits development and growth of Toxoplasma gondii. Parasitol Res 2015; 115:797-805. [DOI: 10.1007/s00436-015-4807-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/23/2015] [Indexed: 01/04/2023]
|
11
|
A single mutation in the gatekeeper residue in TgMAPKL-1 restores the inhibitory effect of a bumped kinase inhibitor on the cell cycle. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2014; 5:1-8. [PMID: 25941623 PMCID: PMC4412912 DOI: 10.1016/j.ijpddr.2014.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 11/21/2022]
Abstract
Toxoplasma gondii is the causative pathogen for Toxoplasmosis. Bumped kinase inhibitor 1NM-PP1 inhibits the growth of T. gondii by targeting TgCDPK1. However, we recently reported that resistance to 1NM-PP1 can be acquired via a mutation in T. gondii mitogen-activated protein kinase like 1 (TgMAPKL-1). Further characterization of how this TgMAPKL-1 mutation restores the inhibitory effect of 1NM-PP1 would shed further light on the function of TgMAPKL-1 in the parasite life cycle. Therefore, we made parasite clones with TgMAPKL-1 mutated at the gatekeeper residue Ser 191, which is critical for 1NM-PP1 susceptibility. Host cell lysis of RH/ku80(-)/HA-TgMAPKL-1(S191A) was completely inhibited at 250 nM 1NM-PP1, whereas that of RH/ku80(-)/HA-TgMAPKL-1(S191Y) was not. By comparing 1NM-PP1-sensitive (RH/ku80(-)/HA-TgMAPKL-1(S191A)) and -resistant (RH/ku80(-)/HA-TgMAPKL-1(S191Y)) clones, we observed that inhibition of TgMAPKL-1 blocked cell cycle progression after DNA duplication. Morphological analysis revealed that TgMAPKL-1 inhibition caused enlarged parasite cells with many daughter cell scaffolds and imcomplete cytokinesis. We conclude that the mutation in TgMAPKL-1 restored the cell cycle-arresting effect of 1NM-PP1 on T. gondii endodyogeny. Given that endodyogeny is the primary mechanism of cell division for both the tachyzoite and bradyzoite stages of this parasite, TgMAPKL-1 may be a promising target for drug development. Exploration of the signals that regulate TgMAPKL-1 will provide further insights into the unique mode of T. gondii cell division.
Collapse
|
12
|
Toxoplasma gondii development of its replicative niche: in its host cell and beyond. EUKARYOTIC CELL 2014; 13:965-76. [PMID: 24951442 DOI: 10.1128/ec.00081-14] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Intracellular pathogens can replicate efficiently only after they manipulate and modify their host cells to create an environment conducive to replication. While diverse cellular pathways are targeted by different pathogens, metabolism, membrane and cytoskeletal architecture formation, and cell death are the three primary cellular processes that are modified by infections. Toxoplasma gondii is an obligate intracellular protozoan that infects ∼30% of the world's population and causes severe and life-threatening disease in developing fetuses, in immune-comprised patients, and in certain otherwise healthy individuals who are primarily found in South America. The high prevalence of Toxoplasma in humans is in large part a result of its ability to modulate these three host cell processes. Here, we highlight recent work defining the mechanisms by which Toxoplasma interacts with these processes. In addition, we hypothesize why some processes are modified not only in the infected host cell but also in neighboring uninfected cells.
Collapse
|
13
|
Brown KM, Suvorova E, Farrell A, McLain A, Dittmar A, Wiley GB, Marth G, Gaffney PM, Gubbels MJ, White M, Blader IJ. Forward genetic screening identifies a small molecule that blocks Toxoplasma gondii growth by inhibiting both host- and parasite-encoded kinases. PLoS Pathog 2014; 10:e1004180. [PMID: 24945800 PMCID: PMC4055737 DOI: 10.1371/journal.ppat.1004180] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 04/28/2014] [Indexed: 02/02/2023] Open
Abstract
The simultaneous targeting of host and pathogen processes represents an untapped approach for the treatment of intracellular infections. Hypoxia-inducible factor-1 (HIF-1) is a host cell transcription factor that is activated by and required for the growth of the intracellular protozoan parasite Toxoplasma gondii at physiological oxygen levels. Parasite activation of HIF-1 is blocked by inhibiting the family of closely related Activin-Like Kinase (ALK) host cell receptors ALK4, ALK5, and ALK7, which was determined in part by use of an ALK4,5,7 inhibitor named SB505124. Besides inhibiting HIF-1 activation, SB505124 also potently blocks parasite replication under normoxic conditions. To determine whether SB505124 inhibition of parasite growth was exclusively due to inhibition of ALK4,5,7 or because the drug inhibited a second kinase, SB505124-resistant parasites were isolated by chemical mutagenesis. Whole-genome sequencing of these mutants revealed mutations in the Toxoplasma MAP kinase, TgMAPK1. Allelic replacement of mutant TgMAPK1 alleles into wild-type parasites was sufficient to confer SB505124 resistance. SB505124 independently impacts TgMAPK1 and ALK4,5,7 signaling since drug resistant parasites could not activate HIF-1 in the presence of SB505124 or grow in HIF-1 deficient cells. In addition, TgMAPK1 kinase activity is inhibited by SB505124. Finally, mice treated with SB505124 had significantly lower tissue burdens following Toxoplasma infection. These data therefore identify SB505124 as a novel small molecule inhibitor that acts by inhibiting two distinct targets, host HIF-1 and TgMAPK1. Understanding how a compound blocks growth of an intracellular pathogen is important not only for developing these compounds into drugs that can be prescribed to patients, but also because these data will likely provide novel insight into the biology of these pathogens. Forward genetic screens are one established approach towards defining these mechanisms. But performing these screens with intracellular parasites has been limited not only because of technical limitations but also because the compounds may have off-target effects in either the host or parasite. Here, we report the first compound that kills a pathogen by simultaneously inhibiting distinct host- and parasite-encoded targets. Because developing drug resistance simultaneously to two targets is less likely, this work may highlight a new approach to antimicrobial drug discovery.
Collapse
Affiliation(s)
- Kevin M Brown
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Elena Suvorova
- Departments of Molecular Medicine & Global Health, University of South Florida, Tampa, Florida, United States of America
| | - Andrew Farrell
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Aaron McLain
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York, United States of America
| | - Ashley Dittmar
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York, United States of America
| | - Graham B Wiley
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Gabor Marth
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Patrick M Gaffney
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Marc Jan Gubbels
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, United States of America
| | - Michael White
- Departments of Molecular Medicine & Global Health, University of South Florida, Tampa, Florida, United States of America
| | - Ira J Blader
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America; Department of Microbiology and Immunology, University at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|